Dynamical memetization in coral reef optimization algorithms for optimal time series approximation

The huge amount of data chronologically collected in short periods of time by different devices and technologies is an important challenge in the analysis of times series. This problem has produced the development of new automatic techniques to reduce the number of points in the resulting time serie...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Progress in artificial intelligence Ročník 8; číslo 2; s. 253 - 262
Hlavní autoři: Durán-Rosal, Antonio M., Gutiérrez, Pedro A., Salcedo-Sanz, Sancho, Hervás-Martínez, César
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2019
Springer Nature B.V
Témata:
ISSN:2192-6352, 2192-6360
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The huge amount of data chronologically collected in short periods of time by different devices and technologies is an important challenge in the analysis of times series. This problem has produced the development of new automatic techniques to reduce the number of points in the resulting time series, in order to facilitate their processing and analysis. In this paper, we propose a new modification of a coral reefs optimization algorithm (CRO) to tackle the problem of reducing the size of the time series minimizing the approximation error. The modification includes a memetization procedure (hybridization with a local search procedure) of the standard algorithm to improve its quality when finding a promising solution in a given searching area. The memetization process is applied to the worse individuals of the algorithm at the beginning, and only to the best ones at the end of the algorithm’s convergence, resulting in a dynamical search approach called dynamic memetic CRO (DMCRO). The proposed DMCRO performance is compared in this paper against other state-of-the-art CRO algorithms, such as the standard one, its statistically driven version (SCRO) and two different hybrid versions (HCRO and HSCRO, respectively), and the standard memetic version (MCRO). All the algorithms compared have been tested in 15 time series approximation, collected from different sources, including financial problems, oceanography data, and cardiology signals, among others, showing that the best results are obtained by DMCRO.
AbstractList The huge amount of data chronologically collected in short periods of time by different devices and technologies is an important challenge in the analysis of times series. This problem has produced the development of new automatic techniques to reduce the number of points in the resulting time series, in order to facilitate their processing and analysis. In this paper, we propose a new modification of a coral reefs optimization algorithm (CRO) to tackle the problem of reducing the size of the time series minimizing the approximation error. The modification includes a memetization procedure (hybridization with a local search procedure) of the standard algorithm to improve its quality when finding a promising solution in a given searching area. The memetization process is applied to the worse individuals of the algorithm at the beginning, and only to the best ones at the end of the algorithm’s convergence, resulting in a dynamical search approach called dynamic memetic CRO (DMCRO). The proposed DMCRO performance is compared in this paper against other state-of-the-art CRO algorithms, such as the standard one, its statistically driven version (SCRO) and two different hybrid versions (HCRO and HSCRO, respectively), and the standard memetic version (MCRO). All the algorithms compared have been tested in 15 time series approximation, collected from different sources, including financial problems, oceanography data, and cardiology signals, among others, showing that the best results are obtained by DMCRO.
Author Durán-Rosal, Antonio M.
Gutiérrez, Pedro A.
Salcedo-Sanz, Sancho
Hervás-Martínez, César
Author_xml – sequence: 1
  givenname: Antonio M.
  surname: Durán-Rosal
  fullname: Durán-Rosal, Antonio M.
  email: i92duroa@uco.es
  organization: Department of Computer Science and Numerical Analysis, Rabanales Campus, University of Córdoba
– sequence: 2
  givenname: Pedro A.
  surname: Gutiérrez
  fullname: Gutiérrez, Pedro A.
  organization: Department of Computer Science and Numerical Analysis, Rabanales Campus, University of Córdoba
– sequence: 3
  givenname: Sancho
  surname: Salcedo-Sanz
  fullname: Salcedo-Sanz, Sancho
  organization: Department of Signal Processing and Communications, Universidad de Alcalá
– sequence: 4
  givenname: César
  surname: Hervás-Martínez
  fullname: Hervás-Martínez, César
  organization: Department of Computer Science and Numerical Analysis, Rabanales Campus, University of Córdoba
BookMark eNp9kEtPAyEUhYmpibX2D7iaxPXo5TFMWZr6TEzc6JpQCpVmZhiBJtZfL-34SFx0A-Se-91zOado1PnOIHSO4RID1FcR05rNSsCiBMA1L-EIjQkWpOSUw-j3XZETNI1xDQAEM8CUjdHiZtup1mnVFK1pTXKfKjnfFa4rtA-5Goyxhe-Ta38k1ax8cOmtjYX1YdByYz5NEU1wJhaq74P_yOUdcIaOrWqimX7fE_R6d_syfyifnu8f59dPpaZYpLIiAosKM2Ep4dQyhrkWFJhYCOAzbRQwbfWyZgJs1shC2yVWYCivmOZY0Qm6GOZm7_eNiUmu_SZ02VISQoSguKaQu8jQpYOPMRgr-5AXDVuJQe7ilEOcMscp93HKHTT7B2mX9p9LQbnmMEoHNGafbmXC31YHqC8FhYxt
CitedBy_id crossref_primary_10_1016_j_swevo_2021_100958
crossref_primary_10_1007_s12065_024_00967_y
crossref_primary_10_1016_j_jenvman_2021_112250
crossref_primary_10_3390_app11156676
crossref_primary_10_1109_ACCESS_2020_2981488
Cites_doi 10.1007/s13748-016-0104-2
10.1016/0304-4076(74)90028-1
10.1016/j.patcog.2005.01.025
10.1016/S0167-8655(00)00088-X
10.1016/j.neucom.2016.11.101
10.1214/aoms/1177731944
10.1016/j.engstruct.2017.12.002
10.1145/568518.568520
10.1002/ett.2759
10.1016/j.asoc.2017.11.037
10.1109/51.932724
10.1007/s00382-014-2405-0
10.1016/j.enconman.2014.06.041
10.1109/TSMCB.2005.860138
10.1016/j.asoc.2014.07.007
10.1145/1007730.1007734
10.1016/j.ins.2018.02.041
10.1016/j.swevo.2018.03.003
10.1016/j.jsv.2017.01.019
10.1109/TEVC.2004.832863
10.1016/j.chemolab.2018.11.010
10.1016/j.oceaneng.2016.03.053
10.1142/9789812565402_0001
10.1007/978-3-030-00374-6_20
10.1155/2014/739768
10.1007/3-540-44794-6_10
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s13748-019-00176-0
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Oceanography
EISSN 2192-6360
EndPage 262
ExternalDocumentID 10_1007_s13748_019_00176_0
GrantInformation_xml – fundername: Ministerio de Economía y Competitividad
  grantid: TIN2017-85887-C2-1-P; TIN2017-85887-C2-2-P
  funderid: http://dx.doi.org/10.13039/501100003329
– fundername: Ministerio de Economía y Competitividad
  grantid: TIN2017-90567-REDT
  funderid: http://dx.doi.org/10.13039/501100003329
– fundername: Ministerio de Educación, Cultura y Deporte
  grantid: FPU14/03039
  funderid: http://dx.doi.org/10.13039/501100003176
GroupedDBID -EM
0R~
0VY
203
30V
4.4
406
408
409
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FNLPD
FRRFC
FYJPI
GGCAI
GJIRD
GQ6
HMJXF
HQYDN
HRMNR
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
PT4
RLLFE
ROL
RSV
SCO
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z7X
Z81
Z83
Z88
ZMTXR
AAAVM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABULA
ACBXY
ACSTC
ADKFA
AEBTG
AEZWR
AFDZB
AFHIU
AFLOW
AFOHR
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BSONS
CITATION
FEDTE
FINBP
FSGXE
GGRSB
HF~
HVGLF
HZ~
O9-
JQ2
ID FETCH-LOGICAL-c319t-529195149f3263f4416c93049b9068cea04cfcd7490f4162bcfd1a0e3654c61a3
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000469055600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2192-6352
IngestDate Thu Sep 25 00:51:40 EDT 2025
Tue Nov 18 21:30:43 EST 2025
Sat Nov 29 06:14:06 EST 2025
Fri Feb 21 02:34:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Coral reefs optimization
Memetic algorithms
Segmentation
Time series size reduction
Dynamic strategy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-529195149f3263f4416c93049b9068cea04cfcd7490f4162bcfd1a0e3654c61a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2229931730
PQPubID 2044106
PageCount 10
ParticipantIDs proquest_journals_2229931730
crossref_primary_10_1007_s13748_019_00176_0
crossref_citationtrail_10_1007_s13748_019_00176_0
springer_journals_10_1007_s13748_019_00176_0
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Progress in artificial intelligence
PublicationTitleAbbrev Prog Artif Intell
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Bermejo, Chica, Damas, Salcedo-Sanz, Cordón (CR1) 2018; 42
CR15
CR14
CR13
Martínez-Estudillo, Hervás-Martínez, Martínez-Estudillo, García-Pedrajas (CR17) 2005; 36
Salcedo-Sanz, Del Ser, Landa-Torres, Gil-López, Portilla-Figueras (CR24) 2014; 2014
Chung, Fu, Ng, Luk (CR6) 2004; 8
Nikolaou, Gutiérrez, Durán, Dicaire, Fernández-Navarro, Hervás-Martínez (CR19) 2015; 44
Zellner, Palm (CR31) 1974; 2
CR10
Chakrabarti, Keogh, Mehrotra, Pazzani (CR3) 2002; 27
Durán-Rosal, Hervás-Martínez, Tallón-Ballesteros, Martínez-Estudillo, Salcedo-Sanz (CR8) 2016; 117
Salcedo-Sanz (CR21) 2017; 6
Chatfield (CR4) 2016
Salcedo-Sanz, Pastor-Sánchez, Prieto, Blanco-Aguilera, García-Herrera (CR26) 2014; 87
Pérez-Ortiz, Durán-Rosal, Gutiérrez, Sánchez-Monedero, Nikolaou, Fernández-Navarro, Hervás Martínez (CR20) 2019; 326–327
Durán-Rosal, Gutiérrez, Salcedo-Sanz, Hervás-Martínez (CR11) 2018; 63
Yan, Ma, Luo, Patel (CR30) 2019; 184
Salcedo-Sanz, Sanchez-Garcia, Portilla-Figueras, Jimenez-Fernandez, Ahmadzadeh (CR27) 2014; 25
CR5
Demšar (CR7) 2006; 7
Salcedo-Sanz, Camacho-Gómez, Magdaleno, Pereira, Lorenzana (CR22) 2017; 393
Camacho-Gómez, Wang, Pereira, Díaz, Salcedo-Sanz (CR2) 2018; 157
Friedman (CR12) 1940; 11
Liao (CR16) 2005; 38
Salcedo-Sanz, García-Díaz, Portilla-Figueras, Ser, Gil-López (CR25) 2014; 24
Salotti (CR28) 2001; 22
CR23
Weiss (CR29) 2004; 6
Durán-Rosal, Gutiérrez, Martínez-Estudillo, Hérvas-Martínez (CR9) 2018; 442
Moody, Mark (CR18) 2001; 20
M Pérez-Ortiz (176_CR20) 2019; 326–327
C Camacho-Gómez (176_CR2) 2018; 157
A Durán-Rosal (176_CR8) 2016; 117
176_CR10
AC Martínez-Estudillo (176_CR17) 2005; 36
A Zellner (176_CR31) 1974; 2
C Chatfield (176_CR4) 2016
S Salcedo-Sanz (176_CR26) 2014; 87
GM Weiss (176_CR29) 2004; 6
TW Liao (176_CR16) 2005; 38
J Demšar (176_CR7) 2006; 7
FL Chung (176_CR6) 2004; 8
AM Durán-Rosal (176_CR9) 2018; 442
S Salcedo-Sanz (176_CR24) 2014; 2014
AM Durán-Rosal (176_CR11) 2018; 63
176_CR5
A Nikolaou (176_CR19) 2015; 44
K Chakrabarti (176_CR3) 2002; 27
S Salcedo-Sanz (176_CR22) 2017; 393
M Salotti (176_CR28) 2001; 22
S Salcedo-Sanz (176_CR27) 2014; 25
C Yan (176_CR30) 2019; 184
176_CR23
176_CR13
176_CR14
176_CR15
M Friedman (176_CR12) 1940; 11
G Moody (176_CR18) 2001; 20
E Bermejo (176_CR1) 2018; 42
S Salcedo-Sanz (176_CR21) 2017; 6
S Salcedo-Sanz (176_CR25) 2014; 24
References_xml – volume: 6
  start-page: 1
  year: 2017
  end-page: 15
  ident: CR21
  article-title: A review on the coral reefs optimization algorithm: new development lines and current applications
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-016-0104-2
– volume: 2
  start-page: 17
  issue: 1
  year: 1974
  end-page: 54
  ident: CR31
  article-title: Time series analysis and simultaneous equation econometric models
  publication-title: J. Econom.
  doi: 10.1016/0304-4076(74)90028-1
– volume: 38
  start-page: 1857
  issue: 11
  year: 2005
  end-page: 1874
  ident: CR16
  article-title: Clustering of time series data—a survey
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2005.01.025
– ident: CR14
– volume: 22
  start-page: 215
  issue: 2
  year: 2001
  end-page: 221
  ident: CR28
  article-title: An efficient algorithm for the optimal polygonal approximation of digitized curves
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(00)00088-X
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: CR7
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 326–327
  start-page: 3
  year: 2019
  end-page: 14
  ident: CR20
  article-title: On the use of evolutionary time series analysis for segmenting paleoclimate data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.11.101
– ident: CR10
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  end-page: 92
  ident: CR12
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731944
– volume: 157
  start-page: 14
  year: 2018
  end-page: 26
  ident: CR2
  article-title: Active vibration control design using the coral reefs optimization with substrate layer algorithm
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.12.002
– volume: 27
  start-page: 188
  issue: 2
  year: 2002
  end-page: 228
  ident: CR3
  article-title: Locally adaptive dimensionality reduction for indexing large time series databases
  publication-title: ACM Trans. Database Syst. (TODS)
  doi: 10.1145/568518.568520
– ident: CR23
– volume: 25
  start-page: 1057
  issue: 11
  year: 2014
  end-page: 1069
  ident: CR27
  article-title: A coral-reef optimization algorithm for the optimal service distribution problem in mobile radio access networks
  publication-title: Trans. Emerg. Telecommun. Technol.
  doi: 10.1002/ett.2759
– volume: 63
  start-page: 139
  year: 2018
  end-page: 153
  ident: CR11
  article-title: A statistically-driven coral reef optimization algorithm for optimal size reduction of time series
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.037
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  end-page: 50
  ident: CR18
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.932724
– volume: 44
  start-page: 1919
  issue: 7–8
  year: 2015
  end-page: 1933
  ident: CR19
  article-title: Detection of early warning signals in paleoclimate data using a genetic time series segmentation algorithm
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-014-2405-0
– volume: 87
  start-page: 10
  year: 2014
  end-page: 18
  ident: CR26
  article-title: Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization—extreme learning machine approach
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.06.041
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 15
  ident: CR24
  article-title: The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems
  publication-title: Sci. World J.
– ident: CR15
– ident: CR13
– volume: 36
  start-page: 534
  issue: 3
  year: 2005
  end-page: 545
  ident: CR17
  article-title: Hybridization of evolutionary algorithms and local search by means of a clustering method
  publication-title: IEEE Trans. Syst. Man Cybern Part B (Cybernetics)
  doi: 10.1109/TSMCB.2005.860138
– volume: 24
  start-page: 239
  year: 2014
  end-page: 248
  ident: CR25
  article-title: A coral reefs optimization algorithm for optimal mobile network deployment with electromagnetic pollution control criterion
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.07.007
– volume: 6
  start-page: 7
  issue: 1
  year: 2004
  end-page: 19
  ident: CR29
  article-title: Mining with rarity: a unifying framework
  publication-title: ACM SIGKDD Explor. Newslett.
  doi: 10.1145/1007730.1007734
– year: 2016
  ident: CR4
  publication-title: The Analysis of Time Series: An Introduction
– volume: 442
  start-page: 186
  year: 2018
  end-page: 201
  ident: CR9
  article-title: Simultaneous optimisation of clustering quality and approximation error for time series segmentation
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.02.041
– volume: 42
  start-page: 138
  year: 2018
  end-page: 159
  ident: CR1
  article-title: Coral reef optimization with substrate layers for medical image registration
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.03.003
– ident: CR5
– volume: 393
  start-page: 62
  year: 2017
  end-page: 75
  ident: CR22
  article-title: Structures vibration control via tuned mass dampers using a co-evolution coral reefs optimization algorithm
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.01.019
– volume: 8
  start-page: 471
  issue: 5
  year: 2004
  end-page: 489
  ident: CR6
  article-title: An evolutionary approach to pattern-based time series segmentation
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.832863
– volume: 184
  start-page: 102
  year: 2019
  end-page: 111
  ident: CR30
  article-title: Hybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasets
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2018.11.010
– volume: 117
  start-page: 292
  year: 2016
  end-page: 301
  ident: CR8
  article-title: Massive missing data reconstruction in ocean buoys with evolutionary product unit neural networks
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2016.03.053
– volume: 11
  start-page: 86
  issue: 1
  year: 1940
  ident: 176_CR12
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731944
– volume: 7
  start-page: 1
  year: 2006
  ident: 176_CR7
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 1
  year: 2017
  ident: 176_CR21
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-016-0104-2
– volume: 87
  start-page: 10
  year: 2014
  ident: 176_CR26
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.06.041
– volume: 2
  start-page: 17
  issue: 1
  year: 1974
  ident: 176_CR31
  publication-title: J. Econom.
  doi: 10.1016/0304-4076(74)90028-1
– volume: 393
  start-page: 62
  year: 2017
  ident: 176_CR22
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.01.019
– volume: 36
  start-page: 534
  issue: 3
  year: 2005
  ident: 176_CR17
  publication-title: IEEE Trans. Syst. Man Cybern Part B (Cybernetics)
  doi: 10.1109/TSMCB.2005.860138
– ident: 176_CR15
  doi: 10.1142/9789812565402_0001
– volume: 117
  start-page: 292
  year: 2016
  ident: 176_CR8
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2016.03.053
– ident: 176_CR5
– ident: 176_CR10
  doi: 10.1007/978-3-030-00374-6_20
– volume: 27
  start-page: 188
  issue: 2
  year: 2002
  ident: 176_CR3
  publication-title: ACM Trans. Database Syst. (TODS)
  doi: 10.1145/568518.568520
– volume: 442
  start-page: 186
  year: 2018
  ident: 176_CR9
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.02.041
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 176_CR18
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.932724
– volume: 38
  start-page: 1857
  issue: 11
  year: 2005
  ident: 176_CR16
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2005.01.025
– ident: 176_CR23
  doi: 10.1155/2014/739768
– volume: 63
  start-page: 139
  year: 2018
  ident: 176_CR11
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.037
– volume: 22
  start-page: 215
  issue: 2
  year: 2001
  ident: 176_CR28
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(00)00088-X
– volume: 8
  start-page: 471
  issue: 5
  year: 2004
  ident: 176_CR6
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.832863
– ident: 176_CR13
  doi: 10.1007/3-540-44794-6_10
– volume: 157
  start-page: 14
  year: 2018
  ident: 176_CR2
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.12.002
– volume: 25
  start-page: 1057
  issue: 11
  year: 2014
  ident: 176_CR27
  publication-title: Trans. Emerg. Telecommun. Technol.
  doi: 10.1002/ett.2759
– volume: 42
  start-page: 138
  year: 2018
  ident: 176_CR1
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.03.003
– volume: 6
  start-page: 7
  issue: 1
  year: 2004
  ident: 176_CR29
  publication-title: ACM SIGKDD Explor. Newslett.
  doi: 10.1145/1007730.1007734
– volume: 2014
  start-page: 1
  year: 2014
  ident: 176_CR24
  publication-title: Sci. World J.
– volume: 24
  start-page: 239
  year: 2014
  ident: 176_CR25
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.07.007
– volume: 44
  start-page: 1919
  issue: 7–8
  year: 2015
  ident: 176_CR19
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-014-2405-0
– ident: 176_CR14
– volume-title: The Analysis of Time Series: An Introduction
  year: 2016
  ident: 176_CR4
– volume: 326–327
  start-page: 3
  year: 2019
  ident: 176_CR20
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.11.101
– volume: 184
  start-page: 102
  year: 2019
  ident: 176_CR30
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2018.11.010
SSID ssj0002140134
Score 2.112095
Snippet The huge amount of data chronologically collected in short periods of time by different devices and technologies is an important challenge in the analysis of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 253
SubjectTerms Algorithms
Approximation
Artificial Intelligence
Cardiology
Computational Intelligence
Computer Imaging
Computer Science
Control
Coral reefs
Data Mining and Knowledge Discovery
Mathematical analysis
Mechatronics
Natural Language Processing (NLP)
Oceanography
Optimization
Pattern Recognition and Graphics
Regular Paper
Robotics
Time series
Vision
Title Dynamical memetization in coral reef optimization algorithms for optimal time series approximation
URI https://link.springer.com/article/10.1007/s13748-019-00176-0
https://www.proquest.com/docview/2229931730
Volume 8
WOSCitedRecordID wos000469055600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Link Contemporary 1997-Present
  customDbUrl:
  eissn: 2192-6360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140134
  issn: 2192-6352
  databaseCode: RSV
  dateStart: 20120401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcODCeIrBQDlwg0h9LV2OCJg4oAnxmHar0tSBSbRDbUH8fJw2XQUCJDjbjSrHj891bRNynPjcCcIQmB9LzlApAhYPhGASeAI6AKh3EUyuw_F4OJ2KG9sUVjR_uzclycpTt81uZlIKpr6CGdeKefAyWcFwNzQLG27vJosvK16VM5hyMlqjxzCierZb5vtjPkekFmZ-qYxWAWfU_d-rbpB1CzDpWa0Rm2QJsi3SbZY3UGvL2yS-qHfRI28KKZS2H5POMqpM1z7NATSdo0dJG5J8fpzns_IpLShC3ZqGjGY9PTWaDAWtRpS_z-p-yB3yMLq8P79iduECU2iJJSalwkXEFQiNoM7XiJS4EqYOFwuHDxVIJ1BaJWEgHI00L1Y6caUDPh8EirvS3yWdbJ7BHqG-lG7oJhLxBmIGLSSP0e8qB7xQhQg6esRthB4pO43cLMV4jto5ykaIEQoxqoQYOT1ysnjmpZ7F8St3v7nLyNplEZnt5QIhk4_k0-buWvLPp-3_jf2ArHnV9ZvPNX3SKfNXOCSr6q2cFflRpa8fIe_jcg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86BX1xfuJ0ah5800A_snZ5FHVMnEN0Dt9CmiZa2Dppq_jne-nHiqKCPt81lOt9_C7Xu0PoOHQ9i_q-Im4gPAJKQUnQYYwI5YVKU6WKXQTjgT8cdh8f2W3ZFJZWf7tXJcncU9fNbmZSCqS-jBjXCnnwIlqiELHMxPy7-_H8ZsXJcwZTTgZrdAhEVKfslvn-mM8RqYaZXyqjecDpNf_3qutorQSY-KzQiA20oOJN1KyWN-DSlrdQcFHsogfeqZqqrOzHxFGMpenax4lSGs_Ao0wrkpg8zZIoe56mGKBuQQNGs54eG01WKc5HlL9HRT_kNnroXY7O-6RcuEAkWGIGSSmzAXFRpgHUuRqQkieZqcMFzPK6UgmLSi1DnzJLA80JpA5tYSnX61Dp2cLdQY14FqtdhF0hbN8OBeANwAyaCS8Avyst5fjSB9DRQnYldC7LaeRmKcaE13OUjRA5CJHnQuRWC53Mn3kpZnH8yt2uviUv7TLlZns5A8jkAvm0-nY1-efT9v7GfoRW-qObAR9cDa_30aqTq4K5ummjRpa8qgO0LN-yKE0Oc939ANNO5lY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RXxxfuJ0ah5802C_1i6P4hyKYwzUsbeQpokW1m60VfzzvfRjVVFBfL5rKMld8rtc7n4InQa2azieJ4ntc5eAUTjE71BKuHQDqRwpCy6C8cAbDruTCR19qOLPX7tXKcmipkF3aYqzi3mgLurCN901BcJgSvQ2CzHxMlpx9EN6Ha_fjxe3LFYeP-jUMnimReB0tcrKme-H-Xw61ZDzS5Y0P3z6zf__9ibaKIEnviwsZQstyXgbNStSB1z6-A7yewVHPehGMpJZWaeJwxgLXc2PEykVnsFOE1UiPn2aJWH2HKUYIHAhA0VNW4-1hcsU563L38KiTnIXPfavH65uSEnEQAR4aAbBKjUBiTlUAdizFSAoV1Cdn_Op4XaF5IYjlAg8hxoKZJYvVGByQ9puxxGuye091IhnsdxH2Obc9MyAAw4BLKEod33Yj4UhLU94AEZayKwWgImyS7kmy5iyur-ynkQGk8jySWRGC50tvpkXPTp-1W5X68pKf02ZZjWnAKVsEJ9X61iLfx7t4G_qJ2ht1Ouzwe3w7hCtW7kl6BudNmpkyYs8QqviNQvT5Dg343fy-O86
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+memetization+in+coral+reef+optimization+algorithms+for+optimal+time+series+approximation&rft.jtitle=Progress+in+artificial+intelligence&rft.au=Dur%C3%A1n-Rosal%2C+Antonio+M.&rft.au=Guti%C3%A9rrez%2C+Pedro+A.&rft.au=Salcedo-Sanz%2C+Sancho&rft.au=Herv%C3%A1s-Mart%C3%ADnez%2C+C%C3%A9sar&rft.date=2019-06-01&rft.issn=2192-6352&rft.eissn=2192-6360&rft.volume=8&rft.issue=2&rft.spage=253&rft.epage=262&rft_id=info:doi/10.1007%2Fs13748-019-00176-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13748_019_00176_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-6352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-6352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-6352&client=summon