Dynamical memetization in coral reef optimization algorithms for optimal time series approximation
The huge amount of data chronologically collected in short periods of time by different devices and technologies is an important challenge in the analysis of times series. This problem has produced the development of new automatic techniques to reduce the number of points in the resulting time serie...
Gespeichert in:
| Veröffentlicht in: | Progress in artificial intelligence Jg. 8; H. 2; S. 253 - 262 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2019
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 2192-6352, 2192-6360 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The huge amount of data chronologically collected in short periods of time by different devices and technologies is an important challenge in the analysis of times series. This problem has produced the development of new automatic techniques to reduce the number of points in the resulting time series, in order to facilitate their processing and analysis. In this paper, we propose a new modification of a coral reefs optimization algorithm (CRO) to tackle the problem of reducing the size of the time series minimizing the approximation error. The modification includes a memetization procedure (hybridization with a local search procedure) of the standard algorithm to improve its quality when finding a promising solution in a given searching area. The memetization process is applied to the worse individuals of the algorithm at the beginning, and only to the best ones at the end of the algorithm’s convergence, resulting in a dynamical search approach called dynamic memetic CRO (DMCRO). The proposed DMCRO performance is compared in this paper against other state-of-the-art CRO algorithms, such as the standard one, its statistically driven version (SCRO) and two different hybrid versions (HCRO and HSCRO, respectively), and the standard memetic version (MCRO). All the algorithms compared have been tested in 15 time series approximation, collected from different sources, including financial problems, oceanography data, and cardiology signals, among others, showing that the best results are obtained by DMCRO. |
|---|---|
| AbstractList | The huge amount of data chronologically collected in short periods of time by different devices and technologies is an important challenge in the analysis of times series. This problem has produced the development of new automatic techniques to reduce the number of points in the resulting time series, in order to facilitate their processing and analysis. In this paper, we propose a new modification of a coral reefs optimization algorithm (CRO) to tackle the problem of reducing the size of the time series minimizing the approximation error. The modification includes a memetization procedure (hybridization with a local search procedure) of the standard algorithm to improve its quality when finding a promising solution in a given searching area. The memetization process is applied to the worse individuals of the algorithm at the beginning, and only to the best ones at the end of the algorithm’s convergence, resulting in a dynamical search approach called dynamic memetic CRO (DMCRO). The proposed DMCRO performance is compared in this paper against other state-of-the-art CRO algorithms, such as the standard one, its statistically driven version (SCRO) and two different hybrid versions (HCRO and HSCRO, respectively), and the standard memetic version (MCRO). All the algorithms compared have been tested in 15 time series approximation, collected from different sources, including financial problems, oceanography data, and cardiology signals, among others, showing that the best results are obtained by DMCRO. |
| Author | Durán-Rosal, Antonio M. Gutiérrez, Pedro A. Salcedo-Sanz, Sancho Hervás-Martínez, César |
| Author_xml | – sequence: 1 givenname: Antonio M. surname: Durán-Rosal fullname: Durán-Rosal, Antonio M. email: i92duroa@uco.es organization: Department of Computer Science and Numerical Analysis, Rabanales Campus, University of Córdoba – sequence: 2 givenname: Pedro A. surname: Gutiérrez fullname: Gutiérrez, Pedro A. organization: Department of Computer Science and Numerical Analysis, Rabanales Campus, University of Córdoba – sequence: 3 givenname: Sancho surname: Salcedo-Sanz fullname: Salcedo-Sanz, Sancho organization: Department of Signal Processing and Communications, Universidad de Alcalá – sequence: 4 givenname: César surname: Hervás-Martínez fullname: Hervás-Martínez, César organization: Department of Computer Science and Numerical Analysis, Rabanales Campus, University of Córdoba |
| BookMark | eNp9kEtPAyEUhYmpibX2D7iaxPXo5TFMWZr6TEzc6JpQCpVmZhiBJtZfL-34SFx0A-Se-91zOado1PnOIHSO4RID1FcR05rNSsCiBMA1L-EIjQkWpOSUw-j3XZETNI1xDQAEM8CUjdHiZtup1mnVFK1pTXKfKjnfFa4rtA-5Goyxhe-Ta38k1ax8cOmtjYX1YdByYz5NEU1wJhaq74P_yOUdcIaOrWqimX7fE_R6d_syfyifnu8f59dPpaZYpLIiAosKM2Ep4dQyhrkWFJhYCOAzbRQwbfWyZgJs1shC2yVWYCivmOZY0Qm6GOZm7_eNiUmu_SZ02VISQoSguKaQu8jQpYOPMRgr-5AXDVuJQe7ilEOcMscp93HKHTT7B2mX9p9LQbnmMEoHNGafbmXC31YHqC8FhYxt |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2021_100958 crossref_primary_10_1007_s12065_024_00967_y crossref_primary_10_1016_j_jenvman_2021_112250 crossref_primary_10_3390_app11156676 crossref_primary_10_1109_ACCESS_2020_2981488 |
| Cites_doi | 10.1007/s13748-016-0104-2 10.1016/0304-4076(74)90028-1 10.1016/j.patcog.2005.01.025 10.1016/S0167-8655(00)00088-X 10.1016/j.neucom.2016.11.101 10.1214/aoms/1177731944 10.1016/j.engstruct.2017.12.002 10.1145/568518.568520 10.1002/ett.2759 10.1016/j.asoc.2017.11.037 10.1109/51.932724 10.1007/s00382-014-2405-0 10.1016/j.enconman.2014.06.041 10.1109/TSMCB.2005.860138 10.1016/j.asoc.2014.07.007 10.1145/1007730.1007734 10.1016/j.ins.2018.02.041 10.1016/j.swevo.2018.03.003 10.1016/j.jsv.2017.01.019 10.1109/TEVC.2004.832863 10.1016/j.chemolab.2018.11.010 10.1016/j.oceaneng.2016.03.053 10.1142/9789812565402_0001 10.1007/978-3-030-00374-6_20 10.1155/2014/739768 10.1007/3-540-44794-6_10 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s13748-019-00176-0 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Oceanography |
| EISSN | 2192-6360 |
| EndPage | 262 |
| ExternalDocumentID | 10_1007_s13748_019_00176_0 |
| GrantInformation_xml | – fundername: Ministerio de Economía y Competitividad grantid: TIN2017-85887-C2-1-P; TIN2017-85887-C2-2-P funderid: http://dx.doi.org/10.13039/501100003329 – fundername: Ministerio de Economía y Competitividad grantid: TIN2017-90567-REDT funderid: http://dx.doi.org/10.13039/501100003329 – fundername: Ministerio de Educación, Cultura y Deporte grantid: FPU14/03039 funderid: http://dx.doi.org/10.13039/501100003176 |
| GroupedDBID | -EM 0R~ 0VY 203 30V 4.4 406 408 409 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AXYYD AYJHY AZFZN BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FNLPD FRRFC FYJPI GGCAI GJIRD GQ6 HMJXF HQYDN HRMNR I0C IKXTQ IWAJR IXD J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J PT4 RLLFE ROL RSV SCO SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 Z7X Z81 Z83 Z88 ZMTXR AAAVM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABRTQ ABULA ACBXY ACSTC ADKFA AEBTG AEZWR AFDZB AFHIU AFLOW AFOHR AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA BSONS CITATION FEDTE FINBP FSGXE GGRSB HF~ HVGLF HZ~ O9- JQ2 |
| ID | FETCH-LOGICAL-c319t-529195149f3263f4416c93049b9068cea04cfcd7490f4162bcfd1a0e3654c61a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000469055600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2192-6352 |
| IngestDate | Thu Sep 25 00:51:40 EDT 2025 Tue Nov 18 21:30:43 EST 2025 Sat Nov 29 06:14:06 EST 2025 Fri Feb 21 02:34:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Coral reefs optimization Memetic algorithms Segmentation Time series size reduction Dynamic strategy |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-529195149f3263f4416c93049b9068cea04cfcd7490f4162bcfd1a0e3654c61a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2229931730 |
| PQPubID | 2044106 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2229931730 crossref_primary_10_1007_s13748_019_00176_0 crossref_citationtrail_10_1007_s13748_019_00176_0 springer_journals_10_1007_s13748_019_00176_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Progress in artificial intelligence |
| PublicationTitleAbbrev | Prog Artif Intell |
| PublicationYear | 2019 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Bermejo, Chica, Damas, Salcedo-Sanz, Cordón (CR1) 2018; 42 CR15 CR14 CR13 Martínez-Estudillo, Hervás-Martínez, Martínez-Estudillo, García-Pedrajas (CR17) 2005; 36 Salcedo-Sanz, Del Ser, Landa-Torres, Gil-López, Portilla-Figueras (CR24) 2014; 2014 Chung, Fu, Ng, Luk (CR6) 2004; 8 Nikolaou, Gutiérrez, Durán, Dicaire, Fernández-Navarro, Hervás-Martínez (CR19) 2015; 44 Zellner, Palm (CR31) 1974; 2 CR10 Chakrabarti, Keogh, Mehrotra, Pazzani (CR3) 2002; 27 Durán-Rosal, Hervás-Martínez, Tallón-Ballesteros, Martínez-Estudillo, Salcedo-Sanz (CR8) 2016; 117 Salcedo-Sanz (CR21) 2017; 6 Chatfield (CR4) 2016 Salcedo-Sanz, Pastor-Sánchez, Prieto, Blanco-Aguilera, García-Herrera (CR26) 2014; 87 Pérez-Ortiz, Durán-Rosal, Gutiérrez, Sánchez-Monedero, Nikolaou, Fernández-Navarro, Hervás Martínez (CR20) 2019; 326–327 Durán-Rosal, Gutiérrez, Salcedo-Sanz, Hervás-Martínez (CR11) 2018; 63 Yan, Ma, Luo, Patel (CR30) 2019; 184 Salcedo-Sanz, Sanchez-Garcia, Portilla-Figueras, Jimenez-Fernandez, Ahmadzadeh (CR27) 2014; 25 CR5 Demšar (CR7) 2006; 7 Salcedo-Sanz, Camacho-Gómez, Magdaleno, Pereira, Lorenzana (CR22) 2017; 393 Camacho-Gómez, Wang, Pereira, Díaz, Salcedo-Sanz (CR2) 2018; 157 Friedman (CR12) 1940; 11 Liao (CR16) 2005; 38 Salcedo-Sanz, García-Díaz, Portilla-Figueras, Ser, Gil-López (CR25) 2014; 24 Salotti (CR28) 2001; 22 CR23 Weiss (CR29) 2004; 6 Durán-Rosal, Gutiérrez, Martínez-Estudillo, Hérvas-Martínez (CR9) 2018; 442 Moody, Mark (CR18) 2001; 20 M Pérez-Ortiz (176_CR20) 2019; 326–327 C Camacho-Gómez (176_CR2) 2018; 157 A Durán-Rosal (176_CR8) 2016; 117 176_CR10 AC Martínez-Estudillo (176_CR17) 2005; 36 A Zellner (176_CR31) 1974; 2 C Chatfield (176_CR4) 2016 S Salcedo-Sanz (176_CR26) 2014; 87 GM Weiss (176_CR29) 2004; 6 TW Liao (176_CR16) 2005; 38 J Demšar (176_CR7) 2006; 7 FL Chung (176_CR6) 2004; 8 AM Durán-Rosal (176_CR9) 2018; 442 S Salcedo-Sanz (176_CR24) 2014; 2014 AM Durán-Rosal (176_CR11) 2018; 63 176_CR5 A Nikolaou (176_CR19) 2015; 44 K Chakrabarti (176_CR3) 2002; 27 S Salcedo-Sanz (176_CR22) 2017; 393 M Salotti (176_CR28) 2001; 22 S Salcedo-Sanz (176_CR27) 2014; 25 C Yan (176_CR30) 2019; 184 176_CR23 176_CR13 176_CR14 176_CR15 M Friedman (176_CR12) 1940; 11 G Moody (176_CR18) 2001; 20 E Bermejo (176_CR1) 2018; 42 S Salcedo-Sanz (176_CR21) 2017; 6 S Salcedo-Sanz (176_CR25) 2014; 24 |
| References_xml | – volume: 6 start-page: 1 year: 2017 end-page: 15 ident: CR21 article-title: A review on the coral reefs optimization algorithm: new development lines and current applications publication-title: Prog. Artif. Intell. doi: 10.1007/s13748-016-0104-2 – volume: 2 start-page: 17 issue: 1 year: 1974 end-page: 54 ident: CR31 article-title: Time series analysis and simultaneous equation econometric models publication-title: J. Econom. doi: 10.1016/0304-4076(74)90028-1 – volume: 38 start-page: 1857 issue: 11 year: 2005 end-page: 1874 ident: CR16 article-title: Clustering of time series data—a survey publication-title: Pattern Recognit doi: 10.1016/j.patcog.2005.01.025 – ident: CR14 – volume: 22 start-page: 215 issue: 2 year: 2001 end-page: 221 ident: CR28 article-title: An efficient algorithm for the optimal polygonal approximation of digitized curves publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(00)00088-X – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: CR7 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 326–327 start-page: 3 year: 2019 end-page: 14 ident: CR20 article-title: On the use of evolutionary time series analysis for segmenting paleoclimate data publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.11.101 – ident: CR10 – volume: 11 start-page: 86 issue: 1 year: 1940 end-page: 92 ident: CR12 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177731944 – volume: 157 start-page: 14 year: 2018 end-page: 26 ident: CR2 article-title: Active vibration control design using the coral reefs optimization with substrate layer algorithm publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2017.12.002 – volume: 27 start-page: 188 issue: 2 year: 2002 end-page: 228 ident: CR3 article-title: Locally adaptive dimensionality reduction for indexing large time series databases publication-title: ACM Trans. Database Syst. (TODS) doi: 10.1145/568518.568520 – ident: CR23 – volume: 25 start-page: 1057 issue: 11 year: 2014 end-page: 1069 ident: CR27 article-title: A coral-reef optimization algorithm for the optimal service distribution problem in mobile radio access networks publication-title: Trans. Emerg. Telecommun. Technol. doi: 10.1002/ett.2759 – volume: 63 start-page: 139 year: 2018 end-page: 153 ident: CR11 article-title: A statistically-driven coral reef optimization algorithm for optimal size reduction of time series publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.037 – volume: 20 start-page: 45 issue: 3 year: 2001 end-page: 50 ident: CR18 article-title: The impact of the MIT-BIH arrhythmia database publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.932724 – volume: 44 start-page: 1919 issue: 7–8 year: 2015 end-page: 1933 ident: CR19 article-title: Detection of early warning signals in paleoclimate data using a genetic time series segmentation algorithm publication-title: Clim. Dyn. doi: 10.1007/s00382-014-2405-0 – volume: 87 start-page: 10 year: 2014 end-page: 18 ident: CR26 article-title: Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization—extreme learning machine approach publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.06.041 – volume: 2014 start-page: 1 year: 2014 end-page: 15 ident: CR24 article-title: The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems publication-title: Sci. World J. – ident: CR15 – ident: CR13 – volume: 36 start-page: 534 issue: 3 year: 2005 end-page: 545 ident: CR17 article-title: Hybridization of evolutionary algorithms and local search by means of a clustering method publication-title: IEEE Trans. Syst. Man Cybern Part B (Cybernetics) doi: 10.1109/TSMCB.2005.860138 – volume: 24 start-page: 239 year: 2014 end-page: 248 ident: CR25 article-title: A coral reefs optimization algorithm for optimal mobile network deployment with electromagnetic pollution control criterion publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.07.007 – volume: 6 start-page: 7 issue: 1 year: 2004 end-page: 19 ident: CR29 article-title: Mining with rarity: a unifying framework publication-title: ACM SIGKDD Explor. Newslett. doi: 10.1145/1007730.1007734 – year: 2016 ident: CR4 publication-title: The Analysis of Time Series: An Introduction – volume: 442 start-page: 186 year: 2018 end-page: 201 ident: CR9 article-title: Simultaneous optimisation of clustering quality and approximation error for time series segmentation publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.02.041 – volume: 42 start-page: 138 year: 2018 end-page: 159 ident: CR1 article-title: Coral reef optimization with substrate layers for medical image registration publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.03.003 – ident: CR5 – volume: 393 start-page: 62 year: 2017 end-page: 75 ident: CR22 article-title: Structures vibration control via tuned mass dampers using a co-evolution coral reefs optimization algorithm publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.01.019 – volume: 8 start-page: 471 issue: 5 year: 2004 end-page: 489 ident: CR6 article-title: An evolutionary approach to pattern-based time series segmentation publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.832863 – volume: 184 start-page: 102 year: 2019 end-page: 111 ident: CR30 article-title: Hybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasets publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2018.11.010 – volume: 117 start-page: 292 year: 2016 end-page: 301 ident: CR8 article-title: Massive missing data reconstruction in ocean buoys with evolutionary product unit neural networks publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.03.053 – volume: 11 start-page: 86 issue: 1 year: 1940 ident: 176_CR12 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177731944 – volume: 7 start-page: 1 year: 2006 ident: 176_CR7 publication-title: J. Mach. Learn. Res. – volume: 6 start-page: 1 year: 2017 ident: 176_CR21 publication-title: Prog. Artif. Intell. doi: 10.1007/s13748-016-0104-2 – volume: 87 start-page: 10 year: 2014 ident: 176_CR26 publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.06.041 – volume: 2 start-page: 17 issue: 1 year: 1974 ident: 176_CR31 publication-title: J. Econom. doi: 10.1016/0304-4076(74)90028-1 – volume: 393 start-page: 62 year: 2017 ident: 176_CR22 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.01.019 – volume: 36 start-page: 534 issue: 3 year: 2005 ident: 176_CR17 publication-title: IEEE Trans. Syst. Man Cybern Part B (Cybernetics) doi: 10.1109/TSMCB.2005.860138 – ident: 176_CR15 doi: 10.1142/9789812565402_0001 – volume: 117 start-page: 292 year: 2016 ident: 176_CR8 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.03.053 – ident: 176_CR5 – ident: 176_CR10 doi: 10.1007/978-3-030-00374-6_20 – volume: 27 start-page: 188 issue: 2 year: 2002 ident: 176_CR3 publication-title: ACM Trans. Database Syst. (TODS) doi: 10.1145/568518.568520 – volume: 442 start-page: 186 year: 2018 ident: 176_CR9 publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.02.041 – volume: 20 start-page: 45 issue: 3 year: 2001 ident: 176_CR18 publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.932724 – volume: 38 start-page: 1857 issue: 11 year: 2005 ident: 176_CR16 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2005.01.025 – ident: 176_CR23 doi: 10.1155/2014/739768 – volume: 63 start-page: 139 year: 2018 ident: 176_CR11 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.037 – volume: 22 start-page: 215 issue: 2 year: 2001 ident: 176_CR28 publication-title: Pattern Recognit. Lett. doi: 10.1016/S0167-8655(00)00088-X – volume: 8 start-page: 471 issue: 5 year: 2004 ident: 176_CR6 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.832863 – ident: 176_CR13 doi: 10.1007/3-540-44794-6_10 – volume: 157 start-page: 14 year: 2018 ident: 176_CR2 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2017.12.002 – volume: 25 start-page: 1057 issue: 11 year: 2014 ident: 176_CR27 publication-title: Trans. Emerg. Telecommun. Technol. doi: 10.1002/ett.2759 – volume: 42 start-page: 138 year: 2018 ident: 176_CR1 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.03.003 – volume: 6 start-page: 7 issue: 1 year: 2004 ident: 176_CR29 publication-title: ACM SIGKDD Explor. Newslett. doi: 10.1145/1007730.1007734 – volume: 2014 start-page: 1 year: 2014 ident: 176_CR24 publication-title: Sci. World J. – volume: 24 start-page: 239 year: 2014 ident: 176_CR25 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.07.007 – volume: 44 start-page: 1919 issue: 7–8 year: 2015 ident: 176_CR19 publication-title: Clim. Dyn. doi: 10.1007/s00382-014-2405-0 – ident: 176_CR14 – volume-title: The Analysis of Time Series: An Introduction year: 2016 ident: 176_CR4 – volume: 326–327 start-page: 3 year: 2019 ident: 176_CR20 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.11.101 – volume: 184 start-page: 102 year: 2019 ident: 176_CR30 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2018.11.010 |
| SSID | ssj0002140134 |
| Score | 2.1122012 |
| Snippet | The huge amount of data chronologically collected in short periods of time by different devices and technologies is an important challenge in the analysis of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 253 |
| SubjectTerms | Algorithms Approximation Artificial Intelligence Cardiology Computational Intelligence Computer Imaging Computer Science Control Coral reefs Data Mining and Knowledge Discovery Mathematical analysis Mechatronics Natural Language Processing (NLP) Oceanography Optimization Pattern Recognition and Graphics Regular Paper Robotics Time series Vision |
| Title | Dynamical memetization in coral reef optimization algorithms for optimal time series approximation |
| URI | https://link.springer.com/article/10.1007/s13748-019-00176-0 https://www.proquest.com/docview/2229931730 |
| Volume | 8 |
| WOSCitedRecordID | wos000469055600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2192-6360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140134 issn: 2192-6352 databaseCode: RSV dateStart: 20120401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8QwDI7gYGDheIqDA2Vgg0ptmj4yIuDEhBAv3ValaQKVrj3UFsTPx2mTq0CABEMnu1FlJ_bnuLYROna5St2MKkd4UepQou0gwAYAcrEPGs9CIrthE9H1dTydshtTFFbbv91tSrK11H2xm-6UAqEvc7RphTh4Ga2Au4v1wIbbu8fFzQppYwadTobTSBzwqMRUy3y_zGeP1MPML5nR1uFMhv_71A20bgAmPut2xCZakuUWGtrhDdic5W2UXnSz6IG3kIVsTD0mzkssdNU-rqRUeA4WpbAkPnuaV3nzXNQYoG5HA0Y9nh7rnSxr3LYof8-7esgd9DC5vD-_cszABUeAXhoISpkHiIsyBaDOV4CUQsF0Hi5lbhgLyV0qlMgiylwFNJIKlXnclX4YUBF63N9Fg3Jeyj2Eg8zPIo9x5dGAkpQDLpXEl4xzHsDDR8izQk-E6Uauh2LMkr6PshZiAkJMWiEm7gidLN556Xpx_Mo9trpMzLmsEz29nAFk8oF8anXXk39ebf9v7AdojbTq19c1YzRoqld5iFbFW5PX1VG7Xz8AWsrjyA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gIMGF8RSDATlwg0ptmrbLEQHTEGNCMNBuVZomUGntUFsQPx-nj1UgQIJDT3ajynacz3FtI3RschWYIVWGsLzAoET7QYANAOR6Nmg8dIksh014o1FvMmG3VVFYVv_tXqckC0_dFLvpTikQ-jJDu1aIgxfREizu6I75d_eP85sVUsQMOp0Mu5EYcKKSqlrm-2U-n0gNzPySGS0OnH77f5-6jtYqgInPSovYQAsy2UTtengDrvbyFgouyln0wBvLWOZVPSaOEix01T5OpVR4Bh4lrkl8-jRLo_w5zjBA3ZIGjHo8PdaWLDNctCh_j8p6yG300L8cnw-MauCCIUAvOQSlzALERZkCUGcrQEquYDoPFzDT7QnJTSqUCD3KTAU0EggVWtyUtutQ4Vrc3kGtZJbIXYSd0A49i3FlUYeSgAMulcSWjHPuwMM7yKqF7ouqG7keijH1mz7KWog-CNEvhOibHXQyf-el7MXxK3e31qVf7cvM19PLGUAmG8inte4a8s-r7f2N_QitDMY3Q394NbreR6ukMAV9ddNFrTx9lQdoWbzlUZYeFrb7ARBA5qw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RXxxfuJ0ah5802Kbpu3yKM6hKGPgB3sraZpoYe1GW8U_30s_VhUVxIc-3TWU3CX5XS93P4SOTa4CM6TKEJYXGJTofRBgAwC5ng0WD10iS7IJbzjsjcds9KGKv7jtXqcky5oG3aUpyc9moTprCt901xQIg5mht1mIiRfREtUX6XW8fvc4_8tCivhBp5ZhZRIDTldSVc58P8zn06mBnF-ypMXhM2j__7PX0VoFPPF56SkbaEEmm6hdkzrgao1voaBfctSDbixjmVd1mjhKsNDV_DiVUuEp7DRxLeKTp2ka5c9xhgEClzJQ1LT1WHu4zHDRuvwtKuskt9HD4PL-4sqoiBgMAfbKIVhlFiAxyhSAPVsBgnIF0_m5gJluT0huUqFE6FFmKpCRQKjQ4qa0XYcK1-L2Dmol00TuIuyEduhZjCuLOpQEHPCqJLZknHMHHt5BVm0AX1RdyjVZxsRv-ivrSfRhEv1iEn2zg07m78zKHh2_andru_rVes18zWrOAErZID6t7diIfx5t72_qR2hl1B_4t9fDm320SgpP0H90uqiVpy_yAC2L1zzK0sPCjd8BIczvkA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+memetization+in+coral+reef+optimization+algorithms+for+optimal+time+series+approximation&rft.jtitle=Progress+in+artificial+intelligence&rft.au=Dur%C3%A1n-Rosal%2C+Antonio+M.&rft.au=Guti%C3%A9rrez%2C+Pedro+A.&rft.au=Salcedo-Sanz%2C+Sancho&rft.au=Herv%C3%A1s-Mart%C3%ADnez%2C+C%C3%A9sar&rft.date=2019-06-01&rft.issn=2192-6352&rft.eissn=2192-6360&rft.volume=8&rft.issue=2&rft.spage=253&rft.epage=262&rft_id=info:doi/10.1007%2Fs13748-019-00176-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13748_019_00176_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-6352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-6352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-6352&client=summon |