Numerical solutions for distributed-order fractional optimal control problems by using generalized fractional-order Chebyshev wavelets

This paper studies a numerical approach based on generalized fractional-order Chebyshev wavelets for solving distributed-order fractional optimal control problems (DO-FOCPs). The exact value of the Riemann–Liouville fractional integral operator of the given wavelets is computed by applying regulariz...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nonlinear dynamics Ročník 108; číslo 1; s. 265 - 277
Hlavní autoři: Ghanbari, Ghodsieh, Razzaghi, Mohsen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.03.2022
Springer Nature B.V
Témata:
ISSN:0924-090X, 1573-269X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper studies a numerical approach based on generalized fractional-order Chebyshev wavelets for solving distributed-order fractional optimal control problems (DO-FOCPs). The exact value of the Riemann–Liouville fractional integral operator of the given wavelets is computed by applying regularized beta function. The exact formula and collocation method are applied to transform the DO-FOCP to a new optimization problem. This new problem can be solved by the existing methods. Four examples are given to show the advantage of this method in comparison with the existing methods in the literature.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-021-07195-4