On Perturbed Isometries Between the Positive Cones of Certain Continuous Function Spaces

Let X ,  Y be two compact Hausdorff perfectly normal spaces (in particular, compact metrizable spaces), C ( X ) be the real Banach space of all continuous functions on X , and C + ( X ) be the positive cone of C ( X ). In this paper, we show that if there exists a δ -surjective ε -isometry F : C + (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resultate der Mathematik Jg. 78; H. 2; S. 63
Hauptverfasser: Sun, Longfa, Sun, Yinghua, Wang, Shenghua
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.04.2023
Springer Nature B.V
Schlagworte:
ISSN:1422-6383, 1420-9012
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X ,  Y be two compact Hausdorff perfectly normal spaces (in particular, compact metrizable spaces), C ( X ) be the real Banach space of all continuous functions on X , and C + ( X ) be the positive cone of C ( X ). In this paper, we show that if there exists a δ -surjective ε -isometry F : C + ( X ) → C + ( Y ) , then X and Y are homeomorphic. Moreover, we show that there exists a unique additive surjective isometry V : C + ( X ) → C + ( Y ) (the restriction of a linear surjective isometry U : C ( X ) → C ( Y ) induced by the homeomorphism) such that ‖ F ( f ) - V ( f ) ‖ ≤ 2 ε , for all f ∈ C + ( X ) . This can be regarded as a localized generalization of the Banach–Stone theorem for compact Hausdorff perfectly normal spaces.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-023-01844-3