A new firefly algorithm with mean condition partial attraction

As compared with other optimization algorithms (e.g., genetic algorithm, ant colony algorithm, and particle swarm algorithm), FA is relatively simple to be realized. It does not require strict continuous and differentiable conditions, requires less prior knowledge. However, it still cannot effective...

Full description

Saved in:
Bibliographic Details
Published in:Applied intelligence (Dordrecht, Netherlands) Vol. 52; no. 4; pp. 4418 - 4431
Main Authors: Xu, Guang-Hui, Zhang, Ting-Wei, Lai, Qiang
Format: Journal Article
Language:English
Published: New York Springer US 01.03.2022
Springer Nature B.V
Subjects:
ISSN:0924-669X, 1573-7497
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As compared with other optimization algorithms (e.g., genetic algorithm, ant colony algorithm, and particle swarm algorithm), FA is relatively simple to be realized. It does not require strict continuous and differentiable conditions, requires less prior knowledge. However, it still cannot effectively avoid slow convergence and poor stability. To optimize FA for the attraction model, a new FA with mean condition partial attraction is proposed (mcFA) in this paper. McFA, characterized by fast computing power, high precision, and easy implementation, is capable of remedying the defect that the FA is easy to converge slowly. As opposed to standard FA, mcFA has determined excellent model parameter values, and the mean condition partial attraction model is more suitable for different dimensional solutions than the full attraction model. Lastly, as verified by the theoretical and experimental results, mcFA outperforms other algorithms on most of the test functions. Moreover, the mean condition partial attraction model is shown to yield better solutions than the full attraction model.
AbstractList As compared with other optimization algorithms (e.g., genetic algorithm, ant colony algorithm, and particle swarm algorithm), FA is relatively simple to be realized. It does not require strict continuous and differentiable conditions, requires less prior knowledge. However, it still cannot effectively avoid slow convergence and poor stability. To optimize FA for the attraction model, a new FA with mean condition partial attraction is proposed (mcFA) in this paper. McFA, characterized by fast computing power, high precision, and easy implementation, is capable of remedying the defect that the FA is easy to converge slowly. As opposed to standard FA, mcFA has determined excellent model parameter values, and the mean condition partial attraction model is more suitable for different dimensional solutions than the full attraction model. Lastly, as verified by the theoretical and experimental results, mcFA outperforms other algorithms on most of the test functions. Moreover, the mean condition partial attraction model is shown to yield better solutions than the full attraction model.
Author Lai, Qiang
Xu, Guang-Hui
Zhang, Ting-Wei
Author_xml – sequence: 1
  givenname: Guang-Hui
  surname: Xu
  fullname: Xu, Guang-Hui
  organization: Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, School of Electrical and Electronics Engineering, Hubei University of Technology
– sequence: 2
  givenname: Ting-Wei
  surname: Zhang
  fullname: Zhang, Ting-Wei
  organization: Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, School of Electrical and Electronics Engineering, Hubei University of Technology
– sequence: 3
  givenname: Qiang
  orcidid: 0000-0002-7703-9793
  surname: Lai
  fullname: Lai, Qiang
  email: laiqiang87@126.com
  organization: School of Electrical and Automation Engineering, East China Jiaotong University
BookMark eNp9kE9LAzEQxYNUsK1-AU8Bz6uTTHazexFK8R8UvCh4C9nspqZsszWbUvrtTa0geOghkzC838zLm5CR731LyDWDWwYg7wYGoqwy4CydQvCsOCNjlkvMpKjkiIyh4iIriurjgkyGYQUAiMDG5H5Gfbuj1oXWdnuqu2UfXPxc012qdN1qT03vGxdd7-lGh-h0R3WMQZtD65KcW90N7dXvPSXvjw9v8-ds8fr0Mp8tMoOsipmwZS0EFlaaGmo0tYAmPY2VddVwi8mNBaFlbhvkiBwQuEFb67xEk-c1TsnNce4m9F_bdohq1W-DTysVL5AJiaVkSVUeVSb0w5B-pIyL-uAz-XWdYqAOaaljWiqlpX7SUkVC-T90E9xah_1pCI_QkMR-2YY_Vyeob3_Mfn8
CitedBy_id crossref_primary_10_1177_16878132221085125
crossref_primary_10_1016_j_ins_2022_11_164
crossref_primary_10_1016_j_asoc_2023_110158
crossref_primary_10_7717_peerj_cs_956
crossref_primary_10_1109_ACCESS_2022_3224924
crossref_primary_10_1007_s11227_021_04031_9
crossref_primary_10_1016_j_neucom_2022_05_100
crossref_primary_10_1007_s10489_021_02982_3
crossref_primary_10_3390_math9212705
crossref_primary_10_3390_su14095668
Cites_doi 10.1007/s00500-016-2104-3
10.1371/journal.pone.0112634
10.1016/j.future.2019.02.028
10.1016/j.future.2020.03.055
10.1007/s00500-016-2116-z
10.3390/en13071808
10.1007/s00607-018-0645-2
10.1504/IJCSM.2016.081701
10.1016/j.eswa.2015.08.054
10.1016/j.ins.2016.12.024
10.1016/j.cnsns.2012.06.009
10.1007/s13369-019-03759-0
10.1007/s40009-013-0129-z
10.1109/ACCESS.2021.3052960
10.1002/qre.1591
10.1016/j.swevo.2013.06.001
10.1016/j.jocs.2017.07.009
10.1109/CEC.2019.8789954
10.1007/s00521-015-1923-y
10.1109/ISCID.2013.90
10.1007/s00500-020-05569-1
10.1007/s10462-017-9568-0
10.1109/CEC.2016.7744067
10.1109/CEC.2019.8790273
10.1109/ICEEOT.2016.7755239
10.1007/s10462-016-9463-0
10.1007/s12293-016-0212-3
10.1109/CEC.2016.7743964
10.1109/IAEAC.2017.8054023
10.1142/SO217984920503224
10.1109/TCSII.2020.2990698
10.1109/CEC.2016.7744275
10.1109/CEC.2019.8789903
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-021-02642-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest One Psychology New
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 4431
ExternalDocumentID 10_1007_s10489_021_02642_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-4f8b4436f7cb0b3cb40d7cbcf7b9d2f3003f04a75fd323320302c3fba583c55b3
IEDL.DBID M7S
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000675328500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 14:56:40 EST 2025
Sat Nov 29 05:33:25 EST 2025
Tue Nov 18 21:14:26 EST 2025
Fri Feb 21 02:47:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Partial attraction model
Mean condition
Firefly algorithm
Model parameters
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-4f8b4436f7cb0b3cb40d7cbcf7b9d2f3003f04a75fd323320302c3fba583c55b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7703-9793
PQID 2631473871
PQPubID 326365
PageCount 14
ParticipantIDs proquest_journals_2631473871
crossref_citationtrail_10_1007_s10489_021_02642_6
crossref_primary_10_1007_s10489_021_02642_6
springer_journals_10_1007_s10489_021_02642_6
PublicationCentury 2000
PublicationDate 20220300
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 3
  year: 2022
  text: 20220300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Gandomi, Yang, Talatahari (CR15) 2013; 18
Lai, Kuate, Liu (CR30) 2020; 67
CR18
Verma, Aggarwal, Patodi (CR20) 2016; 44
Wang, Zhou, Sun (CR14) 2017; 21
CR37
Xia, Gui, He (CR17) 2018; 26
CR13
CR35
Lin, Christine, Michael (CR39) 2015; 31
CR34
Fister, Fister, Yang (CR1) 2013; 13
Zhou, Ding, Ma (CR16) 2019; 101
CR33
Cheung, Ding, Shen (CR23) 2014; 9
Sedighizadeh, Masehian, Sedighizadeh (CR38) 2020; 179
Wahid, Ghazali, Ismail (CR42) 2019; 44
Alsghaier, Akour (CR40) 2020; 31
Xu, Xu, Ge (CR31) 2020; 13
CR4
Mauder, Sandera, Stetina (CR10) 2017; 45
Wang, Wang, Zhou (CR12) 2017; 2
CR6
Wang, Wang, Sun (CR32) 2017; 5
Li, Chen, Wang (CR5) 2020; 111
Wang, Wang, Zhou (CR11) 2017; 382
CR29
Yuan, Zhao, Liu (CR41) 2021; 9
Heidari, Mirjalili, Faris (CR9) 2019; 97
CR28
Nekouie, Yaghoobi (CR2) 2016; 46
Tilahun, Ngnotchouye, Hamadneh (CR3) 2019; 51
CR27
CR26
CR25
Yang, Chen (CR7) 2021; 117
CR24
CR21
Wang, Cui, Sun (CR36) 2017; 21
CR43
Ahmadianfar, Heidari, Gandomi (CR8) 2021; 181
Khajehzadeh, Taha, Eslami (CR22) 2013; 36
Yu (CR19) 2016; 7
2642_CR25
YT Yang (2642_CR7) 2021; 117
2642_CR24
F Wahid (2642_CR42) 2019; 44
AA Heidari (2642_CR9) 2019; 97
2642_CR21
2642_CR43
N Nekouie (2642_CR2) 2016; 46
AH Gandomi (2642_CR15) 2013; 18
X Xia (2642_CR17) 2018; 26
L Zhou (2642_CR16) 2019; 101
H Wang (2642_CR36) 2017; 21
CD Lin (2642_CR39) 2015; 31
JH Yuan (2642_CR41) 2021; 9
2642_CR4
2642_CR27
2642_CR26
2642_CR6
M Khajehzadeh (2642_CR22) 2013; 36
2642_CR29
2642_CR28
D Sedighizadeh (2642_CR38) 2020; 179
2642_CR34
2642_CR33
H Wang (2642_CR12) 2017; 2
2642_CR13
NJ Cheung (2642_CR23) 2014; 9
2642_CR35
H Alsghaier (2642_CR40) 2020; 31
I Ahmadianfar (2642_CR8) 2021; 181
SL Tilahun (2642_CR3) 2019; 51
Q Lai (2642_CR30) 2020; 67
H Wang (2642_CR14) 2017; 21
OP Verma (2642_CR20) 2016; 44
GH Xu (2642_CR31) 2020; 13
S Li (2642_CR5) 2020; 111
T Mauder (2642_CR10) 2017; 45
JI Fister (2642_CR1) 2013; 13
G Yu (2642_CR19) 2016; 7
H Wang (2642_CR32) 2017; 5
2642_CR37
2642_CR18
H Wang (2642_CR11) 2017; 382
References_xml – volume: 181
  start-page: 256
  issue: 2
  year: 2021
  end-page: 269
  ident: CR8
  article-title: RUN Beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method
  publication-title: Expert Syst Appl
– volume: 21
  start-page: 5091
  issue: 17
  year: 2017
  end-page: 5102
  ident: CR14
  article-title: Firefly algorithm with adaptive control parameters
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2104-3
– volume: 9
  start-page: e112634
  issue: 11
  year: 2014
  ident: CR23
  article-title: Adaptive firefly algorithm: parameter analysis and its application
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0112634
– volume: 97
  start-page: 849
  issue: 2
  year: 2019
  end-page: 872
  ident: CR9
  article-title: Harris hawks optimization: algorithm and applications
  publication-title: Fut Gener Comput Syst
  doi: 10.1016/j.future.2019.02.028
– volume: 51
  start-page: 445
  issue: 3
  year: 2019
  end-page: 492
  ident: CR3
  article-title: Continuous versions of firefly algorithm: a review
  publication-title: Artif Intell
– volume: 45
  start-page: 347
  issue: 4
  year: 2017
  end-page: 350
  ident: CR10
  article-title: Optimization of the quality of continuously cast steel slabs using the firefly algorithm
  publication-title: Mater Technol
– ident: CR18
– ident: CR43
– volume: 111
  start-page: 300
  issue: 2
  year: 2020
  end-page: 323
  ident: CR5
  article-title: Slime mould algorithm: a new method for stochastic optimization
  publication-title: Fut Gener Comput Syst
  doi: 10.1016/j.future.2020.03.055
– volume: 21
  start-page: 5325
  issue: 18
  year: 2017
  end-page: 5339
  ident: CR36
  article-title: Randomly attracted firefly algorithm with neighborhood search and dynamic parameter adjustment mechanism
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2116-z
– ident: CR4
– volume: 67
  start-page: 1129
  issue: 6
  year: 2020
  end-page: 1133
  ident: CR30
  article-title: An extremely simple chaotic system with infinitely many coexisting attractors
  publication-title: IEEE Trans Circ Syst II: Express Briefs
– ident: CR37
– ident: CR33
– volume: 13
  start-page: 1808
  issue: 7
  year: 2020
  end-page: 1822
  ident: CR31
  article-title: Distributed event-based control of hierarchical leader-follower networks with time-varying layer-to-layer delays
  publication-title: Energies
  doi: 10.3390/en13071808
– volume: 101
  start-page: 477
  issue: 5
  year: 2019
  end-page: 493
  ident: CR16
  article-title: An accurate partially attracted firefly algorithm
  publication-title: Comput
  doi: 10.1007/s00607-018-0645-2
– ident: CR35
– ident: CR6
– volume: 7
  start-page: 530
  issue: 6
  year: 2016
  end-page: 536
  ident: CR19
  article-title: An improved firefly algorithm based on probabilistic attraction
  publication-title: Inter J Comput Sci Math
  doi: 10.1504/IJCSM.2016.081701
– ident: CR29
– volume: 44
  start-page: 168
  year: 2016
  end-page: 176
  ident: CR20
  article-title: Opposition and dimensional based modified firefly algorithm
  publication-title: Expert Sys Appli
  doi: 10.1016/j.eswa.2015.08.054
– volume: 117
  start-page: 215
  issue: 3
  year: 2021
  end-page: 227
  ident: CR7
  article-title: Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts
  publication-title: Expert Syst Appl
– volume: 382
  start-page: 374
  year: 2017
  end-page: 387
  ident: CR11
  article-title: Firefly algorithm with neighborhood attraction
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.12.024
– ident: CR25
– ident: CR27
– volume: 31
  start-page: 155
  issue: 2
  year: 2020
  end-page: 167
  ident: CR40
  article-title: Software fault prediction using whale algorithm with genetics algorithm
  publication-title: Soft Pra Exper
– volume: 18
  start-page: 89
  issue: 1
  year: 2013
  end-page: 98
  ident: CR15
  article-title: Firefly algorithm with chaos
  publication-title: Commun Nonlinear Sci
  doi: 10.1016/j.cnsns.2012.06.009
– ident: CR21
– volume: 44
  start-page: 4027
  issue: 4
  year: 2019
  end-page: 4047
  ident: CR42
  article-title: Improved firefly algorithm based on genetic algorithm operators for energy efficiency in smart buildings
  publication-title: Ara J Sci Eng
  doi: 10.1007/s13369-019-03759-0
– volume: 5
  start-page: 33
  issue: 1
  year: 2017
  end-page: 41
  ident: CR32
  article-title: Firefly algorithm with random attraction
  publication-title: Inter J Bio Comput
– volume: 36
  start-page: 279
  issue: 3
  year: 2013
  end-page: 288
  ident: CR22
  article-title: A new hybrid firefly algorithm for foundation optimization
  publication-title: National Acad Sci Lett
  doi: 10.1007/s40009-013-0129-z
– volume: 179
  start-page: 194
  issue: 2
  year: 2020
  end-page: 212
  ident: CR38
  article-title: A new generalized particle swarm optimization algorithm
  publication-title: Math Comput Sim
– ident: CR13
– volume: 9
  start-page: 16623
  year: 2021
  end-page: 16629
  ident: CR41
  article-title: DMPPT Control of photovoltaic microgrid based on improved sparrow search algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3052960
– volume: 46
  start-page: 267
  issue: 2
  year: 2016
  end-page: 287
  ident: CR2
  article-title: A new method in multimodal optimization based on firefly algorithm
  publication-title: Artif Intell
– ident: CR34
– volume: 31
  start-page: 155
  issue: 2
  year: 2015
  end-page: 167
  ident: CR39
  article-title: Using genetic algorithms to design experiments: a review
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.1591
– volume: 13
  start-page: 34
  year: 2013
  end-page: 46
  ident: CR1
  article-title: A comprehensive review of firefly algorithms
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2013.06.001
– volume: 26
  start-page: 488
  year: 2018
  end-page: 500
  ident: CR17
  article-title: A hybrid optimizer based on firefly algorithm and particle swarm optimization algorithm
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2017.07.009
– ident: CR28
– ident: CR26
– ident: CR24
– volume: 2
  start-page: 128
  year: 2017
  end-page: 134
  ident: CR12
  article-title: Dynamic step factor based firefly algorithm for optimization problems
  publication-title: IEEE Inter Confer Comput Sci Eng
– volume: 45
  start-page: 347
  issue: 4
  year: 2017
  ident: 2642_CR10
  publication-title: Mater Technol
– ident: 2642_CR25
  doi: 10.1109/CEC.2019.8789954
– ident: 2642_CR13
– ident: 2642_CR4
  doi: 10.1007/s00521-015-1923-y
– volume: 181
  start-page: 256
  issue: 2
  year: 2021
  ident: 2642_CR8
  publication-title: Expert Syst Appl
– volume: 2
  start-page: 128
  year: 2017
  ident: 2642_CR12
  publication-title: IEEE Inter Confer Comput Sci Eng
– volume: 117
  start-page: 215
  issue: 3
  year: 2021
  ident: 2642_CR7
  publication-title: Expert Syst Appl
– ident: 2642_CR35
  doi: 10.1109/ISCID.2013.90
– volume: 97
  start-page: 849
  issue: 2
  year: 2019
  ident: 2642_CR9
  publication-title: Fut Gener Comput Syst
  doi: 10.1016/j.future.2019.02.028
– volume: 382
  start-page: 374
  year: 2017
  ident: 2642_CR11
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.12.024
– volume: 13
  start-page: 34
  year: 2013
  ident: 2642_CR1
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2013.06.001
– volume: 21
  start-page: 5325
  issue: 18
  year: 2017
  ident: 2642_CR36
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2116-z
– volume: 44
  start-page: 4027
  issue: 4
  year: 2019
  ident: 2642_CR42
  publication-title: Ara J Sci Eng
  doi: 10.1007/s13369-019-03759-0
– volume: 13
  start-page: 1808
  issue: 7
  year: 2020
  ident: 2642_CR31
  publication-title: Energies
  doi: 10.3390/en13071808
– volume: 31
  start-page: 155
  issue: 2
  year: 2020
  ident: 2642_CR40
  publication-title: Soft Pra Exper
– ident: 2642_CR43
  doi: 10.1007/s00500-020-05569-1
– volume: 51
  start-page: 445
  issue: 3
  year: 2019
  ident: 2642_CR3
  publication-title: Artif Intell
  doi: 10.1007/s10462-017-9568-0
– ident: 2642_CR37
– ident: 2642_CR26
  doi: 10.1109/CEC.2016.7744067
– volume: 179
  start-page: 194
  issue: 2
  year: 2020
  ident: 2642_CR38
  publication-title: Math Comput Sim
– volume: 101
  start-page: 477
  issue: 5
  year: 2019
  ident: 2642_CR16
  publication-title: Comput
  doi: 10.1007/s00607-018-0645-2
– ident: 2642_CR28
  doi: 10.1109/CEC.2019.8790273
– volume: 67
  start-page: 1129
  issue: 6
  year: 2020
  ident: 2642_CR30
  publication-title: IEEE Trans Circ Syst II: Express Briefs
– volume: 7
  start-page: 530
  issue: 6
  year: 2016
  ident: 2642_CR19
  publication-title: Inter J Comput Sci Math
  doi: 10.1504/IJCSM.2016.081701
– volume: 5
  start-page: 33
  issue: 1
  year: 2017
  ident: 2642_CR32
  publication-title: Inter J Bio Comput
– ident: 2642_CR34
  doi: 10.1109/ICEEOT.2016.7755239
– volume: 31
  start-page: 155
  issue: 2
  year: 2015
  ident: 2642_CR39
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.1591
– volume: 46
  start-page: 267
  issue: 2
  year: 2016
  ident: 2642_CR2
  publication-title: Artif Intell
  doi: 10.1007/s10462-016-9463-0
– ident: 2642_CR6
  doi: 10.1007/s12293-016-0212-3
– volume: 36
  start-page: 279
  issue: 3
  year: 2013
  ident: 2642_CR22
  publication-title: National Acad Sci Lett
  doi: 10.1007/s40009-013-0129-z
– volume: 21
  start-page: 5091
  issue: 17
  year: 2017
  ident: 2642_CR14
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2104-3
– ident: 2642_CR27
  doi: 10.1109/CEC.2016.7743964
– ident: 2642_CR33
  doi: 10.1109/IAEAC.2017.8054023
– volume: 18
  start-page: 89
  issue: 1
  year: 2013
  ident: 2642_CR15
  publication-title: Commun Nonlinear Sci
  doi: 10.1016/j.cnsns.2012.06.009
– ident: 2642_CR18
  doi: 10.1142/SO217984920503224
– volume: 111
  start-page: 300
  issue: 2
  year: 2020
  ident: 2642_CR5
  publication-title: Fut Gener Comput Syst
  doi: 10.1016/j.future.2020.03.055
– volume: 26
  start-page: 488
  year: 2018
  ident: 2642_CR17
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2017.07.009
– ident: 2642_CR21
  doi: 10.1109/TCSII.2020.2990698
– ident: 2642_CR29
  doi: 10.1109/CEC.2016.7744275
– volume: 9
  start-page: e112634
  issue: 11
  year: 2014
  ident: 2642_CR23
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0112634
– ident: 2642_CR24
  doi: 10.1109/CEC.2019.8789903
– volume: 9
  start-page: 16623
  year: 2021
  ident: 2642_CR41
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3052960
– volume: 44
  start-page: 168
  year: 2016
  ident: 2642_CR20
  publication-title: Expert Sys Appli
  doi: 10.1016/j.eswa.2015.08.054
SSID ssj0003301
Score 2.389745
Snippet As compared with other optimization algorithms (e.g., genetic algorithm, ant colony algorithm, and particle swarm algorithm), FA is relatively simple to be...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4418
SubjectTerms Algorithms
Ant colony optimization
Artificial Intelligence
Attraction
Computer Science
Convergence
Genetic algorithms
Heuristic methods
Machines
Manufacturing
Mechanical Engineering
Processes
SummonAdditionalLinks – databaseName: SpringerLink Contemporary
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86ffDF-YnTKXnwTQNtkibtizDE4YMM8Yu9lSRtVNi6sVXB_95L1m4qKuhboelRLnf3u0vuA6FjqxOl3alNxrUkgPgJ0Sw2hGvAG50ZgHw_teRK9npxv59cV0Vh0zrbvb6S9Jb6Q7Ebd-k9FMJfQHFKxDJaAbiL3cCGm9uHuf2FCN3PyYPIggiR9KtSme9pfIajhY_55VrUo023-b__3EDrlXeJOzNx2ERLebGFmvXkBlwp8jY662Bwp7EFe2cHb1gNHkeT5_JpiN2xLB7mqsAQJ2c-nQuPnXQBVVWWk1kZxA66717cnV-SapICMaBiJeE21pwzYaXRgWZG8yCDR2OlTjJqGTDNBlzJyGaMMkZB86lhVqsoZiaKNNtFjWJU5HsI0yyXSSDiXIaKh1zpSFgbSh0qSgOraQuFNUNTU7UZd9MuBumiQbJjUAoMSj2DUtFCJ_NvxrMmG7-ubtf7lFYKN02pYCGXDMK_Fjqt92Xx-mdq-39bfoDWqCuA8FlobdQoJy_5IVo1r-XzdHLkBfEdf-HVwQ
  priority: 102
  providerName: Springer Nature
Title A new firefly algorithm with mean condition partial attraction
URI https://link.springer.com/article/10.1007/s10489-021-02642-6
https://www.proquest.com/docview/2631473871
Volume 52
WOSCitedRecordID wos000675328500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6Vx4ELlJdYoCsfegOrie3EyYUKEAiJdrXiuXCJbCcGpGVZdtNK_feMvQ4rKsGFi5UoySjy2PPyzHwA363OlXZRm1JoSVHj51TzzFChUd_o0qDK96glv2Snk_V6eTcE3MYhrbKRiV5Ql0_Gxch_sJTHQnK0738On6lDjXKnqwFCYwbmXJeE2Kfunb9KYvTVPWIe-hg0TfNeKJoJpXPCJQsxdKbRJmA0fauYptbmfwekXu8cL332j7_CYrA4yf5kiSzDl2qwAksNmgMJm3sV9vYJmtjEogy0_X9E9e-QWH3_SFyoljxWakDQdy59ihcZuhWHVFVdjyalEWtweXx0cXhCA7oCNbjtaipspoXgqZVGR5obLaISL42VOi-Z5Th9NhJKJrbkjHOG0oAZbrVKMm6SRPN1mB08DaoNIKysZB6lWSVjJWKhdJJaG0sdK8Yiq1kL4mZqCxNajzsEjH4xbZrs2FEgOwrPjiJtwc7rN8NJ440P395ueFCETTgupgxowW7Dxenj96ltfkxtCxaYK4LwmWjbMFuP_lTfYN78rR_GozbMyOubNswdHHW6Z3h3KimOv6PDtl-cOHaTWxzPzq9eACEA5jc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8qHRK7UMaHVtaBD9tpWCS2EycHQNVY1apdxaGTegu2EwNSv2gDqP_U_kae06QVSPTWA7dISZ6c_H7vy_bzA7iwOlbazdqkQkuKHj-mmkeGCo3-RqcGXX7RtWQgh8NoPI4_1eC-qoVx2yorm1gY6nRu3Bz5WxZyX0iO8f2HxXfquka51dWqhcaGFv1s_QtTttW73kfE95Kxzs3oukvLrgLUIN1yKmykheChlUZ7mhstvBQvjZU6TpnlSHPrCSUDm3LGOUMtYIZbrYKImyDQHOU-gCOBQ3F61Zd0a_k5L9ote5jT0DCMx2WRTlmqJ9zmJIbJO8YgjIZ_OsJddPvXgmzh5zqN_-0PPYHHZURN2hsVOIFaNnsKjapbBSmN1zN43yaYQhCLNt5O1kRNvuDg869T4qaiyTRTM2LmbgEfmUoWTqNQqsrz5ab04zncHeQrXkB9Np9lp0BYmsnYC6NM-kr4QukgtNaX2leMeVazJvgVlIkpj1Z3HT4mye5QaAd_gvAnBfxJ2ISr7TuLzcEie59uVZgnpZFZJTvAm_CmYs3u9r-lvdwv7TU86o5uB8mgN-yfwTFzBR_FrrsW1PPlj-wcHpqf-bfV8lVBfwKfD82m30GcPOw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RUFW9lEeLSAl0D3BqV7F311770KIIiBqBohxaKerF3V17ASmvJgbEX-PXMevYiUAqtxy4RXI8sj3fvHZn9gM4tDpW2q3apEJLihE_pppHhgqN8UanBkN-wVpyIbvdqN-Pe2vwUM3CuLbKyicWjjodG7dG3mQh94XkmN83bdkW0TttH0_-Uccg5XZaKzqNOUTOs_s7LN9m3zunqOsjxtpnv05-0pJhgBqEXk6FjbQQPLTSaE9zo4WX4k9jpY5TZjlC3npCycCmnHHO0CKY4VarIOImCDRHuW9gXWKN6doJe8GfRRTgvKBe9rC-oWEY98uBnXJsT7hGJYaFPOYjjIZPg-Iy0322OVvEvPbGa_5am_ChzLRJa24aW7CWjbZho2KxIKVT-wg_WgRLC2LR99vBPVGDS3z4_GpI3BI1GWZqRMzYbewjgsnEWRpKVXk-nY-EfILfK3mLHaiNxqNsFwhLMxl7YZRJXwlfKB2E1vpS-4oxz2pWB79Sa2LKI9cd88cgWR4W7aCQIBSSAgpJWIevi3sm8wNHXvx3o9J_UjqfWbJUfh2-VQhaXv6_tM8vS_sC7xBEyUWne74H75mbAyma8RpQy6c32T68Nbf59Wx6UFgCgb-rBtMjQURGEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+firefly+algorithm+with+mean+condition+partial+attraction&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Guang-Hui%2C+Xu&rft.au=Ting-Wei%2C+Zhang&rft.au=Lai%2C+Qiang&rft.date=2022-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=52&rft.issue=4&rft.spage=4418&rft.epage=4431&rft_id=info:doi/10.1007%2Fs10489-021-02642-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon