Pipeline damage identification based on an optimized back-propagation neural network improved by whale optimization algorithm
With the advantages of high economy and large transportation capacity, pipeline transportation is commonly used in industrial production. Pipeline damage induced by various factors will result in changes of physical properties, further leading to changes of dynamic parameters such as natural frequen...
Uloženo v:
| Vydáno v: | Applied intelligence (Dordrecht, Netherlands) Ročník 53; číslo 10; s. 12937 - 12954 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.05.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 0924-669X, 1573-7497 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the advantages of high economy and large transportation capacity, pipeline transportation is commonly used in industrial production. Pipeline damage induced by various factors will result in changes of physical properties, further leading to changes of dynamic parameters such as natural frequency and vibration mode. Recently, as a new type of tool, artificial intelligence is widely used for pipeline damage identification. In this study, to promote the accuracy of pipeline damage identification, a novel method that employs the artificial neural network (ANN) and swarm intelligence algorithm is proposed. In detail, based on the original whale optimization algorithm (WOA), an improved WOA (IWOA) is presented in which an adaptive coefficient strategy and a stochastic optimal substitution strategy are introduced. Then, the IWOA and back-propagation neural network (BPNN) are hybridized into IWOA-BPNN. Subsequently, a damage location detector and a damage degree detector are established based on the proposed IWOA-BPNN. By taking a pipeline fixed at both ends and its curvature and displacement modes, the proposed damage identification method is verified to confirm its effectiveness and accuracy in different damage states. Experimental results demonstrate that the comprehensive performance of IWOA-BPNN is better than other compared models. The relative error of the predicted results obtained by IWOA-BPNN is less than 2.2% when evaluating the damage location and degree for 12 randomly selected test samples, indicating the superiority of the proposed method. The proposed method has broad application prospects in modern industries. |
|---|---|
| AbstractList | With the advantages of high economy and large transportation capacity, pipeline transportation is commonly used in industrial production. Pipeline damage induced by various factors will result in changes of physical properties, further leading to changes of dynamic parameters such as natural frequency and vibration mode. Recently, as a new type of tool, artificial intelligence is widely used for pipeline damage identification. In this study, to promote the accuracy of pipeline damage identification, a novel method that employs the artificial neural network (ANN) and swarm intelligence algorithm is proposed. In detail, based on the original whale optimization algorithm (WOA), an improved WOA (IWOA) is presented in which an adaptive coefficient strategy and a stochastic optimal substitution strategy are introduced. Then, the IWOA and back-propagation neural network (BPNN) are hybridized into IWOA-BPNN. Subsequently, a damage location detector and a damage degree detector are established based on the proposed IWOA-BPNN. By taking a pipeline fixed at both ends and its curvature and displacement modes, the proposed damage identification method is verified to confirm its effectiveness and accuracy in different damage states. Experimental results demonstrate that the comprehensive performance of IWOA-BPNN is better than other compared models. The relative error of the predicted results obtained by IWOA-BPNN is less than 2.2% when evaluating the damage location and degree for 12 randomly selected test samples, indicating the superiority of the proposed method. The proposed method has broad application prospects in modern industries. |
| Author | Wu, Lei Zhao, Shuo Mei, Jiangtao |
| Author_xml | – sequence: 1 givenname: Lei surname: Wu fullname: Wu, Lei email: wuleiupc@163.com organization: School of Petroleum Engineering, China University of Petroleum, National Engineering Research Center of Offshore Geophysical & Exploration Equipment, China University of Petroleum, School of Civil and Environmental Engineering, Maritime Institute @NTU, Nanyang Technological University – sequence: 2 givenname: Jiangtao surname: Mei fullname: Mei, Jiangtao organization: National Engineering Research Center of Offshore Geophysical & Exploration Equipment, China University of Petroleum, College of Mechanical and Electrical Engineering, China University of Petroleum – sequence: 3 givenname: Shuo surname: Zhao fullname: Zhao, Shuo organization: School of Petroleum Engineering, China University of Petroleum |
| BookMark | eNp9kE1LHTEUhkNR8PrxB1wNuI7N5ySzLNJqQWgXFdyFcyfJvdGZzDTJrVjofzfXsRS6cHUSzvPknLzH6CBO0SF0TsklJUR9zJQI3WHCGCaCao3VB7SiUnGsRKcO0Ip0TOC27e6P0HHOD4QQzgldoT_fw-yGEF1jYYSNa4J1sQQfeihhis0asrNNPUBsprmEMfyu9zX0j3hO0wybBYtul2CopTxN6bEJY23-2oPPzdMWBvfXXWgYNlMKZTueokMPQ3Znb_UE3X35_OPqBt9-u_569ekW95x2BQuv296CbmlPiQJqNfNcEqGk00TaVnHwwtpuzSxILay0tOWdAOkV960n_ARdLO_WtX7uXC7mYdqlWEcapmnLOJdMVootVJ-mnJPzZk5hhPRsKDH7mM0Ss6kxm9eYjaqS_k_qQ3n9ZkkQhvdVvqi5zokbl_5t9Y71AukFlr8 |
| CitedBy_id | crossref_primary_10_1007_s12206_025_0848_3 crossref_primary_10_1142_S0219455425500713 crossref_primary_10_1038_s41598_025_92588_3 crossref_primary_10_1016_j_est_2025_116388 crossref_primary_10_1016_j_engfailanal_2024_108769 crossref_primary_10_1016_j_aei_2024_102847 crossref_primary_10_3390_met15010027 crossref_primary_10_1038_s41598_025_01159_z crossref_primary_10_1061_JPSEA2_PSENG_1793 crossref_primary_10_1080_10589759_2024_2402887 crossref_primary_10_1038_s41598_023_51135_8 crossref_primary_10_1016_j_renene_2023_119873 crossref_primary_10_1016_j_mtcomm_2025_113603 crossref_primary_10_1007_s00170_025_16128_z |
| Cites_doi | 10.1080/09349847.2019.1634226 10.1109/TFUZZ.2022.3155275 10.1016/j.asoc.2018.09.018 10.1016/j.apm.2020.09.012 10.1016/j.asoc.2022.108630 10.1016/j.jclepro.2015.04.097 10.1007/s13042-022-01518-6 10.1016/j.jsv.2019.115069 10.1016/j.ymssp.2019.106445 10.1007/s00500-020-05250-7 10.1016/j.jobe.2017.04.001 10.1016/j.jclepro.2020.123583 10.1016/j.engstruct.2013.02.031 10.1016/j.apenergy.2015.03.017 10.1016/j.jestch.2020.07.001 10.1007/s10489-018-1362-4 10.1088/1361-665X/ab351e 10.1016/j.oceaneng.2020.107423 10.1007/s11053-020-09710-7 10.1016/j.marstruc.2018.05.006 10.1016/j.apenergy.2014.07.104 10.1016/j.ymssp.2021.107728 10.1002/stc.2347 10.1155/2021/3835083 10.1109/TCAD.2018.2834436 10.1016/j.measurement.2020.107700 10.1784/insi.2011.53.10.552 10.1016/j.jngse.2020.103716 10.1177/1475921710365419 10.1016/j.jterra.2020.02.003 10.3390/s19030545 10.1080/02331934.2021.2010078 10.1016/j.advengsoft.2017.06.015 10.1016/j.neucom.2017.04.053 10.1016/j.eswa.2022.117949 10.1016/j.engappai.2021.104291 10.1016/j.advengsoft.2016.01.008 10.1007/s10098-020-02003-w 10.1021/acs.energyfuels.0c03663 10.1016/j.asoc.2012.03.050 10.1016/j.eswa.2019.113018 10.1016/j.compscitech.2005.07.043 10.1016/j.biortech.2010.03.136 10.1080/0305215X.2020.1746294 10.1007/s12597-022-00587-z |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U |
| DOI | 10.1007/s10489-022-04188-7 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) Proquest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| EndPage | 12954 |
| ExternalDocumentID | 10_1007_s10489_022_04188_7 |
| GrantInformation_xml | – fundername: Natural Science Foundation of Shandong Province grantid: ZR2020QE300 funderid: http://dx.doi.org/10.13039/501100007129 – fundername: Ministry of Industry and Information Technology of the People's Republic of China grantid: CJ09N20 funderid: http://dx.doi.org/10.13039/501100006579 – fundername: Fundamental Research Funds for the Central Universities grantid: 20CX06012A funderid: http://dx.doi.org/10.13039/501100012226 – fundername: Taishan Scholar Foundation of Shandong Province grantid: tsqn201909067 funderid: http://dx.doi.org/10.13039/501100010029 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-4f86cda861c107a1d82f350475e805d673af4dd9b2da584d5d16394a5f73f6f03 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000863800900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-669X |
| IngestDate | Wed Nov 05 14:44:34 EST 2025 Tue Nov 18 21:55:29 EST 2025 Sat Nov 29 05:33:33 EST 2025 Fri Feb 21 02:44:28 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Back-propagation neural network Whale optimization algorithm Damage location and degree Pipeline damage identification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-4f86cda861c107a1d82f350475e805d673af4dd9b2da584d5d16394a5f73f6f03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2816233525 |
| PQPubID | 326365 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2816233525 crossref_primary_10_1007_s10489_022_04188_7 crossref_citationtrail_10_1007_s10489_022_04188_7 springer_journals_10_1007_s10489_022_04188_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20230500 2023-05-00 20230501 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 5 year: 2023 text: 20230500 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Bagherkhani, Baghlani (CR20) 2021; 53 Rios-Mercado, Borraz-Sanchez (CR3) 2015; 147 Xiang, Gou, He, Xia, Wang (CR36) 2018; 73 Wang, Zhang (CR40) 2021; 2021 Zou, Xue, Gai (CR37) 2020; 89 Chen, Yu (CR22) 2017; 63 Wang, Gu, Chen (CR10) 2020; 159 Luo, Shi (CR49) 2019; 49 Qing, Li, Wang (CR14) 2019; 19 Turkoglu, Uymaz, Kaya (CR28) 2022; 13 Mirjalili, Lewis (CR41) 2016; 95 Sun, Xu (CR32) 2016; 112 Zhang, Kim, Goi (CR17) 2021; 28 Turkoglu, Kaya (CR38) 2020; 23 Crall, Laney, Keller (CR13) 2019; 28 Yahaghi, Movafeghi, Rokrok, Mirzapour (CR9) 2020; 31 Dinh-Cong, Vo-Duy, Ho-Huu, Dang-Trung, Nguyen-Thoi (CR21) 2017; 112 Kang, Li, Xu (CR23) 2012; 12 Vazirizade, Nozhati, Zadeh (CR35) 2017; 11 Nguyen, Bui, Choi, Lee, Armaghani (CR43) 2021; 30 Kaur, Arora (CR45) 2018; 5 Liu, Wang, Zhao (CR5) 2021; 35 Chen, Li, Reniers (CR1) 2021; 279 Turkoglu, Uymaz, Kaya (CR27) 2022; 120 Wu, Li, Liu (CR26) 2021; 103 Yang, Hu, Zhang (CR39) 2021; 25 Du, Zhou, Jing (CR7) 2020; 141 Yu, Xu (CR50) 2014; 134 Fan, Qiao (CR15) 2011; 10 Chen, Yang, Heidari (CR47) 2020; 154 Tufan, Akalp (CR16) 2019; 26 Wong, Wang, Koh, Tui, Tan, Xu (CR11) 2011; 53 Cai, Jiang, Lodewijks (CR4) 2018; 61 CR51 Dehcheshmeh, Hosseinzadeh, Amiri (CR44) 2020; 25 Ala, Simic, Pamucar (CR24) 2022; 207 Pootakham, Kumar (CR2) 2010; 101 Peng, Zhang, Liu (CR6) 2021; 85 Padil, Bakhary, Abdulkareem, Li, Hao (CR30) 2020; 467 Liu, Li, Wang, Men, Xu (CR33) 2021; 158 Cao, Sha, Gao, Ostachowicz (CR18) 2017; 26 Mafarja, Mirjalili (CR48) 2017; 260 Tsuda (CR12) 2006; 66 CR29 Chen, Yu (CR46) 2020; 75 CR25 Kumar, Ismail, Zhao, Noori, Yadav, Chen, Singh, Altabey, Silik, Kumar, Kumar, Balodi (CR8) 2021; 23 Kim, Jin, Kim, Kim (CR34) 2020; 208 Pooya, Massumi (CR19) 2021; 91 Li, Li, Xu (CR42) 2021; 113 Shu, Zhang, Gonzalez (CR31) 2013; 52 Wen, Xiao, Yang (CR52) 2019; 38 B Turkoglu (4188_CR28) 2022; 13 MM Dehcheshmeh (4188_CR44) 2020; 25 FL Zhang (4188_CR17) 2021; 28 SP Wen (4188_CR52) 2019; 38 G Kaur (4188_CR45) 2018; 5 S Mirjalili (4188_CR41) 2016; 95 EB Liu (4188_CR5) 2021; 35 Y Xiang (4188_CR36) 2018; 73 MD Crall (4188_CR13) 2019; 28 HL Chen (4188_CR47) 2020; 154 J Yang (4188_CR39) 2021; 25 F Yu (4188_CR50) 2014; 134 Y Liu (4188_CR33) 2021; 158 SM Vazirizade (4188_CR35) 2017; 11 W Sun (4188_CR32) 2016; 112 ZX Chen (4188_CR46) 2020; 75 ZY Li (4188_CR42) 2021; 113 W Fan (4188_CR15) 2011; 10 MS Cao (4188_CR18) 2017; 26 ZP Chen (4188_CR22) 2017; 63 C Chen (4188_CR1) 2021; 279 H Kim (4188_CR34) 2020; 208 F Kang (4188_CR23) 2012; 12 4188_CR51 M Zou (4188_CR37) 2020; 89 J Cai (4188_CR4) 2018; 61 JP Shu (4188_CR31) 2013; 52 J Luo (4188_CR49) 2019; 49 L Wu (4188_CR26) 2021; 103 XL Qing (4188_CR14) 2019; 19 AL Ala (4188_CR24) 2022; 207 H Nguyen (4188_CR43) 2021; 30 B Turkoglu (4188_CR38) 2020; 23 R Kumar (4188_CR8) 2021; 23 SB Peng (4188_CR6) 2021; 85 Y Du (4188_CR7) 2020; 141 BS Wong (4188_CR11) 2011; 53 KH Padil (4188_CR30) 2020; 467 RZ Rios-Mercado (4188_CR3) 2015; 147 T Pootakham (4188_CR2) 2010; 101 D Dinh-Cong (4188_CR21) 2017; 112 B Turkoglu (4188_CR27) 2022; 120 XH Wang (4188_CR10) 2020; 159 H Tsuda (4188_CR12) 2006; 66 T Tufan (4188_CR16) 2019; 26 4188_CR25 MM Mafarja (4188_CR48) 2017; 260 E Yahaghi (4188_CR9) 2020; 31 SMH Pooya (4188_CR19) 2021; 91 A Bagherkhani (4188_CR20) 2021; 53 H Wang (4188_CR40) 2021; 2021 4188_CR29 |
| References_xml | – volume: 75 start-page: 445 issue: 4 year: 2020 end-page: 454 ident: CR46 article-title: A novel WOA-based structural damage identification using weighted modal data and flexibility assurance criterion publication-title: Struct Eng Mech – volume: 23 start-page: 561 issue: 2 year: 2021 end-page: 580 ident: CR8 article-title: Damage detection of wind turbine system based on signal processing approach: a critical review publication-title: Clean Techn Environ Policy – volume: 12 start-page: 2329 issue: 8 year: 2012 end-page: 2335 ident: CR23 article-title: Damage detection based on improved particle swarm optimization using vibration data publication-title: Appl Soft Comput – volume: 28 issue: 2 year: 2021 ident: CR17 article-title: Efficient Bayesian FFT method for damage detection using ambient vibration data with consideration of uncertainty publication-title: Struct Control Health Monit – ident: CR51 – volume: 38 start-page: 1084 issue: 6 year: 2019 end-page: 1094 ident: CR52 article-title: Adjusting learning rate of Memristor-based multilayer neural networks via fuzzy method publication-title: IEEE Trans Comput-Aided Des Integr Circuits Syst – volume: 5 start-page: 275 issue: 3 year: 2018 end-page: 284 ident: CR45 article-title: Chaotic whale optimization algorithm publication-title: J Comput Des Eng – volume: 154 start-page: 113018 year: 2020 ident: CR47 article-title: An efficient double adaptive random spare reinforced whale optimization algorithm publication-title: Expert Syst Appl – volume: 260 start-page: 302 year: 2017 end-page: 312 ident: CR48 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing – ident: CR29 – volume: 31 start-page: 107 issue: 2 year: 2020 end-page: 115 ident: CR9 article-title: Defects detection of digital radiographic images of aircraft structure materials via geometric locally adaptive sharpening publication-title: Res Nondestruct Eval – volume: 147 start-page: 536 year: 2015 end-page: 555 ident: CR3 article-title: Optimization problems in natural gas transportation systems: a state-of-the-art review publication-title: Appl Energy – volume: 113 start-page: 1029 issue: 3–4 year: 2021 end-page: 1043 ident: CR42 article-title: Temperature-sensitive point selection and thermal error modeling of spindle based on synthetical temperature information publication-title: Int J Adv Manuf Technol – ident: CR25 – volume: 28 start-page: 105002 issue: 10 year: 2019 ident: CR13 article-title: Giant magnetoresistance scanning of magnetic self-sensing composites publication-title: Smart Mater Struct – volume: 141 start-page: 106445 year: 2020 ident: CR7 article-title: Damage detection techniques for wind turbine blades: a review publication-title: Mech Syst Signal Process – volume: 208 start-page: 107423 year: 2020 ident: CR34 article-title: Damage detection of bottom-set gillnet using artificial neural network publication-title: Ocean Eng – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: CR41 article-title: The whale optimization algorithm publication-title: Adv Eng Softw – volume: 91 start-page: 670 year: 2021 end-page: 694 ident: CR19 article-title: A novel and efficient method for damage detection in beam-like structures solely based on damaged structure data and using mode shape curvature estimation publication-title: Appl Math Model – volume: 66 start-page: 676 issue: 5 year: 2006 end-page: 683 ident: CR12 article-title: Ultrasound and damage detection in CFRP using fiber Bragg grating sensors publication-title: Compos Sci Technol – volume: 279 start-page: 123583 year: 2021 ident: CR1 article-title: Safety and security of oil and gas pipeline transportation: a systematic analysis of research trends and future needs using WoS publication-title: J Clean Prod – volume: 30 start-page: 191 issue: 1 year: 2021 end-page: 207 ident: CR43 article-title: A novel combination of whale optimization algorithm and support vector machine with different kernel functions for prediction of blasting-induced Fly-rock in quarry mines publication-title: Nat Resour Res – volume: 2021 start-page: 3835083 year: 2021 ident: CR40 article-title: Visual mechanism characteristics of static painting based on PSO-BP neural network publication-title: Comput Intell Neurosci – volume: 73 start-page: 874 year: 2018 end-page: 883 ident: CR36 article-title: A SVR–ANN combined model based on ensemble EMD for rainfall prediction publication-title: Appl Soft Comput – volume: 467 start-page: 115069 year: 2020 ident: CR30 article-title: Non-probabilistic method to consider uncertainties in frequency response function for vibration-based damage detection using artificial neural network publication-title: J Sound Vib – volume: 207 start-page: 117949 year: 2022 ident: CR24 article-title: Appointment scheduling problem under fairness policy in healthcare services: fuzzy ant lion optimizer publication-title: Expert Syst Appl – volume: 85 start-page: 103716 year: 2021 ident: CR6 article-title: A new hybrid algorithm model for prediction of internal corrosion rate of multiphase pipeline publication-title: J Nat Gas Sci Eng – volume: 159 start-page: 107700 year: 2020 ident: CR10 article-title: A new technology for steel pipeline damage detecting without removing cladding publication-title: Measurement – volume: 19 start-page: 545 issue: 3 year: 2019 ident: CR14 article-title: Piezoelectric transducer-based structural health monitoring for aircraft applications publication-title: Sensors – volume: 53 start-page: 683 issue: 4 year: 2021 end-page: 701 ident: CR20 article-title: Enhancing the curvature mode shape method for structural damage severity estimation by means of the distributed genetic algorithm publication-title: Eng Optim – volume: 26 issue: 5 year: 2019 ident: CR16 article-title: Modal plot-system identification and fault detection publication-title: Struct Control Health Monit – volume: 63 start-page: 825 issue: 6 year: 2017 end-page: 835 ident: CR22 article-title: A novel PSO-based algorithm for structural damage detection using Bayesian multi-sample objective function publication-title: Struct Eng Mech – volume: 103 start-page: 104291 year: 2021 ident: CR26 article-title: NHACR: a novel heuristic approach for 2D rectangle packing area minimization problem with central rectangle publication-title: Eng Appl Artif Intell – volume: 112 start-page: 1282 year: 2016 end-page: 1291 ident: CR32 article-title: Using a back propagation neural network based on improved particle swarm optimization to study the influential factors of carbon dioxide emissions in Hebei Province, China publication-title: J Clean Prod – volume: 112 start-page: 76 year: 2017 end-page: 87 ident: CR21 article-title: An efficient multi-stage optimization approach for damage detection in plate structures publication-title: Adv Eng Softw – volume: 134 start-page: 102 year: 2014 end-page: 113 ident: CR50 article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network publication-title: Appl Energy – volume: 25 start-page: 47 issue: 1 year: 2020 end-page: 56 ident: CR44 article-title: Feasibility study on model-based damage detection in shear frames using pseudo modal strain energy publication-title: Smart Struct Syst – volume: 10 start-page: 83 issue: 1 year: 2011 end-page: 111 ident: CR15 article-title: Vibration-based damage identification methods: a review and comparative study publication-title: Struct Health an Monit Int J – volume: 49 start-page: 1982 issue: 5 year: 2019 end-page: 2000 ident: CR49 article-title: A hybrid whale optimization algorithm based on modified differential evolution for global optimization problems publication-title: Appl Intell – volume: 26 issue: 4 year: 2017 ident: CR18 article-title: Structural damage identification using damping: a compendium of uses and features publication-title: Smart Mater Struct – volume: 23 start-page: 1342 issue: 6 year: 2020 end-page: 1350 ident: CR38 article-title: Training multi-layer perceptron with artificial algae algorithm publication-title: Eng Sci Technol an Int J-Jestech – volume: 52 start-page: 408 year: 2013 end-page: 421 ident: CR31 article-title: The application of a damage detection method using artificial neural network and train-induced vibrations on a simplified railway bridge model publication-title: Eng Struct – volume: 25 start-page: 1751 issue: 3 year: 2021 end-page: 1776 ident: CR39 article-title: An improved evolution algorithm using population competition genetic algorithm and self-correction BP neural network based on fitness landscape publication-title: Soft Comput – volume: 120 start-page: 108630 year: 2022 ident: CR27 article-title: Binary artificial algae algorithm for feature selection publication-title: Appl Soft Comput – volume: 35 start-page: 479 issue: 1 year: 2021 end-page: 492 ident: CR5 article-title: Analysis and research on pipeline vibration of a natural gas Compressor Station and vibration reduction measures publication-title: Energy Fuel – volume: 158 start-page: 107728 year: 2021 ident: CR33 article-title: Damage detection of tunnel based on the high-density cross-sectional curvature obtained using strain data from BOTDA sensors publication-title: Mech Syst Signal Process – volume: 13 start-page: 1179 issue: 4 year: 2022 end-page: 1196 ident: CR28 article-title: Clustering analysis through artificial algae algorithm publication-title: Int J Mach Learn Cybern – volume: 89 start-page: 21 year: 2020 end-page: 29 ident: CR37 article-title: Identification of the shear parameters for lunar regolith based on a GA-BP neural network publication-title: J Terrramech – volume: 53 start-page: 552 issue: 10 year: 2011 end-page: 556 ident: CR11 article-title: Crack detection using image processing techniques for radiographic inspection of aircraft wing spar publication-title: Insight – volume: 101 start-page: 7137 issue: 18 year: 2010 end-page: 7143 ident: CR2 article-title: Bio-oil transport by pipeline: a techno-economic assessment publication-title: Bioresour Technol – volume: 11 start-page: 230 year: 2017 end-page: 235 ident: CR35 article-title: Seismic reliability assessment of structures using artificial neural network publication-title: J Build Eng – volume: 61 start-page: 188 year: 2018 end-page: 201 ident: CR4 article-title: Residual ultimate strength of damaged seamless metallic pipelines with combined dent and metal loss publication-title: Mar Struct – volume: 31 start-page: 107 issue: 2 year: 2020 ident: 4188_CR9 publication-title: Res Nondestruct Eval doi: 10.1080/09349847.2019.1634226 – ident: 4188_CR29 doi: 10.1109/TFUZZ.2022.3155275 – volume: 73 start-page: 874 year: 2018 ident: 4188_CR36 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.09.018 – volume: 91 start-page: 670 year: 2021 ident: 4188_CR19 publication-title: Appl Math Model doi: 10.1016/j.apm.2020.09.012 – volume: 63 start-page: 825 issue: 6 year: 2017 ident: 4188_CR22 publication-title: Struct Eng Mech – volume: 120 start-page: 108630 year: 2022 ident: 4188_CR27 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.108630 – volume: 28 issue: 2 year: 2021 ident: 4188_CR17 publication-title: Struct Control Health Monit – volume: 112 start-page: 1282 year: 2016 ident: 4188_CR32 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2015.04.097 – volume: 13 start-page: 1179 issue: 4 year: 2022 ident: 4188_CR28 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-022-01518-6 – volume: 467 start-page: 115069 year: 2020 ident: 4188_CR30 publication-title: J Sound Vib doi: 10.1016/j.jsv.2019.115069 – volume: 141 start-page: 106445 year: 2020 ident: 4188_CR7 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2019.106445 – volume: 25 start-page: 1751 issue: 3 year: 2021 ident: 4188_CR39 publication-title: Soft Comput doi: 10.1007/s00500-020-05250-7 – volume: 11 start-page: 230 year: 2017 ident: 4188_CR35 publication-title: J Build Eng doi: 10.1016/j.jobe.2017.04.001 – volume: 279 start-page: 123583 year: 2021 ident: 4188_CR1 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.123583 – volume: 52 start-page: 408 year: 2013 ident: 4188_CR31 publication-title: Eng Struct doi: 10.1016/j.engstruct.2013.02.031 – volume: 5 start-page: 275 issue: 3 year: 2018 ident: 4188_CR45 publication-title: J Comput Des Eng – volume: 147 start-page: 536 year: 2015 ident: 4188_CR3 publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.03.017 – volume: 23 start-page: 1342 issue: 6 year: 2020 ident: 4188_CR38 publication-title: Eng Sci Technol an Int J-Jestech doi: 10.1016/j.jestch.2020.07.001 – volume: 49 start-page: 1982 issue: 5 year: 2019 ident: 4188_CR49 publication-title: Appl Intell doi: 10.1007/s10489-018-1362-4 – volume: 28 start-page: 105002 issue: 10 year: 2019 ident: 4188_CR13 publication-title: Smart Mater Struct doi: 10.1088/1361-665X/ab351e – volume: 208 start-page: 107423 year: 2020 ident: 4188_CR34 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2020.107423 – volume: 30 start-page: 191 issue: 1 year: 2021 ident: 4188_CR43 publication-title: Nat Resour Res doi: 10.1007/s11053-020-09710-7 – volume: 61 start-page: 188 year: 2018 ident: 4188_CR4 publication-title: Mar Struct doi: 10.1016/j.marstruc.2018.05.006 – volume: 134 start-page: 102 year: 2014 ident: 4188_CR50 publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.07.104 – volume: 158 start-page: 107728 year: 2021 ident: 4188_CR33 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2021.107728 – volume: 26 issue: 5 year: 2019 ident: 4188_CR16 publication-title: Struct Control Health Monit doi: 10.1002/stc.2347 – volume: 2021 start-page: 3835083 year: 2021 ident: 4188_CR40 publication-title: Comput Intell Neurosci doi: 10.1155/2021/3835083 – volume: 75 start-page: 445 issue: 4 year: 2020 ident: 4188_CR46 publication-title: Struct Eng Mech – volume: 38 start-page: 1084 issue: 6 year: 2019 ident: 4188_CR52 publication-title: IEEE Trans Comput-Aided Des Integr Circuits Syst doi: 10.1109/TCAD.2018.2834436 – volume: 159 start-page: 107700 year: 2020 ident: 4188_CR10 publication-title: Measurement doi: 10.1016/j.measurement.2020.107700 – volume: 53 start-page: 552 issue: 10 year: 2011 ident: 4188_CR11 publication-title: Insight doi: 10.1784/insi.2011.53.10.552 – volume: 85 start-page: 103716 year: 2021 ident: 4188_CR6 publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2020.103716 – volume: 10 start-page: 83 issue: 1 year: 2011 ident: 4188_CR15 publication-title: Struct Health an Monit Int J doi: 10.1177/1475921710365419 – volume: 89 start-page: 21 year: 2020 ident: 4188_CR37 publication-title: J Terrramech doi: 10.1016/j.jterra.2020.02.003 – volume: 19 start-page: 545 issue: 3 year: 2019 ident: 4188_CR14 publication-title: Sensors doi: 10.3390/s19030545 – ident: 4188_CR25 doi: 10.1080/02331934.2021.2010078 – volume: 112 start-page: 76 year: 2017 ident: 4188_CR21 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.06.015 – volume: 25 start-page: 47 issue: 1 year: 2020 ident: 4188_CR44 publication-title: Smart Struct Syst – volume: 260 start-page: 302 year: 2017 ident: 4188_CR48 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.053 – volume: 207 start-page: 117949 year: 2022 ident: 4188_CR24 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.117949 – volume: 26 issue: 4 year: 2017 ident: 4188_CR18 publication-title: Smart Mater Struct – volume: 103 start-page: 104291 year: 2021 ident: 4188_CR26 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2021.104291 – volume: 95 start-page: 51 year: 2016 ident: 4188_CR41 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 113 start-page: 1029 issue: 3–4 year: 2021 ident: 4188_CR42 publication-title: Int J Adv Manuf Technol – volume: 23 start-page: 561 issue: 2 year: 2021 ident: 4188_CR8 publication-title: Clean Techn Environ Policy doi: 10.1007/s10098-020-02003-w – volume: 35 start-page: 479 issue: 1 year: 2021 ident: 4188_CR5 publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.0c03663 – volume: 12 start-page: 2329 issue: 8 year: 2012 ident: 4188_CR23 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.03.050 – volume: 154 start-page: 113018 year: 2020 ident: 4188_CR47 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.113018 – volume: 66 start-page: 676 issue: 5 year: 2006 ident: 4188_CR12 publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2005.07.043 – volume: 101 start-page: 7137 issue: 18 year: 2010 ident: 4188_CR2 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.03.136 – volume: 53 start-page: 683 issue: 4 year: 2021 ident: 4188_CR20 publication-title: Eng Optim doi: 10.1080/0305215X.2020.1746294 – ident: 4188_CR51 doi: 10.1007/s12597-022-00587-z |
| SSID | ssj0003301 |
| Score | 2.4081335 |
| Snippet | With the advantages of high economy and large transportation capacity, pipeline transportation is commonly used in industrial production. Pipeline damage... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 12937 |
| SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks Back propagation Back propagation networks Computer Science Damage assessment Damage detection Identification methods Machines Manufacturing Mechanical Engineering Neural networks Optimization Optimization algorithms Physical properties Processes Resonant frequencies Swarm intelligence Transportation Vibration mode |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6efDi_MTplBy8abEfaZueRGXDg4whCruVNB9a3Lq5VUXB_92XNl1RcBdvLX1JA-87eXk_hE6478skdCLLZUmoIcxsiyagjzwi0lEEvsqC07dhv0-Hw2hgNtzmpqyysomFoRYTrvfIz13qgKfWzTsvpi-WRo3Sp6sGQmMVNXWnMpDz5lW3P7hb2GLI1gvMPMgyrCCIhubajLk8R3S5ECRjNnFAXsKfrqmON38dkRaep9f675o30YaJOfFlKSRbaEVm26hV4Tlgo9476GuQTvX1dIkFG4OdwakwtUQF-7D2eALDA8vwBEzNOP2E94TxZwsWBpapJNMtMuF3WVlgjtNi20ITfuD3J_BH1diSmo0eYcn503gXPfS699c3loFnsDjobW4RRQMuGA0cDjkkcwR1lefbJPQltX0RhB5TRIgocQWDMEf4AmK_iDBfhZ4KlO3toUY2yeQ-woknCI9s6biBgPjMZgrCroS6wtfI41S1kVNxJuamd7mG0BjFdddlzc0YuBkX3IzDNjpdjJmWnTuWUncqFsZGi-dxzb82OquEoP7892wHy2c7ROsatb6sm-ygRj57lUdojb_l6Xx2bGT4Gxcm-Mg priority: 102 providerName: ProQuest |
| Title | Pipeline damage identification based on an optimized back-propagation neural network improved by whale optimization algorithm |
| URI | https://link.springer.com/article/10.1007/s10489-022-04188-7 https://www.proquest.com/docview/2816233525 |
| Volume | 53 |
| WOSCitedRecordID | wos000863800900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw9Il1O-xCgW2iUCofuLFI-bBj5ziqTkhAVTHYyi6R448tYk2rtgOBxH_n2UlWhgBpu1iJ_OxYfn5f8fsAeKkYMwWPsiCWBXclzMJAFEiPKqMmshR7jcf0Oz4ei-k0mzRBYavW2729kvSc-rdgN-rce9B4CmmE-OVbsM1cthlno5-c3vBftNB9nTy0LII0zaZNqMzf57gtjjY65h_Xol7aHHfvt85H8LDRLslRfRwewwNTPYFuW7mBNIS8Bz8n5cIFohui5Qw5Cil14zXkEUWcbNMEH2RF5shUZuUPfC-k-hLg4pEH1WAuGSZ-rqpdyUnpf1A4wO_k2yVKnnZsDS2vLubLcn0524dPx6OPwzdBU4ghUEih64BakSotRRoptBZlpEVsExZSzowImU55Ii3VOitiLVGh0UyjlpdRySxPbGrD5AA61bwyT4EUiaYqC00Upxo1sVBaVLAKEWvmaowL24OoxUeumizlrljGVb7Jr-z2N8f9zf3-5rwHr27GLOocHf-F7rdozht6XeWxiFAPdKlhe3DYonXT_e_Znt0N_Dnsunr1tcdkHzrr5bV5ATvq67pcLQewxc8-D2D79Wg8-YBvb3mA7ftw6Fp-gu2EnQ_8af8FG4bz7g |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9wwFH5iqUQvZa06QMGH9tRGOI6TOAeEKhaBGEYcqDS34HhhojKZgZmCqNS_xG_kOQsjkODGgVui2I70_L3NfgvANxWGJov9xGMyi10LM-qJDPlRJdz4luNXU-50O-50RLebnE7BfZML48IqG5lYCmo9UO6MfIsJHzW1K965M7zyXNcod7vatNCoYHFs7m7RZRttH-3h_n5n7GD_bPfQq7sKeArhNva4FZHSUkS-QtdH-lowG4SUx6ERNNRRHEjLtU4ypiVqZx1qNFkSLkMbBzayNMB1p2GWo-Pl-OqE7j5K_iAo2y1T9Gm8KEq6dZJOnarHXXASun6U-4jO-KkinFi3zy5kSz13MP_eKLQAn2qLmvyqWGARpkyxBPNNtwpSC69l-H-aD13yvSFa9lGKklzXkVIlOInT55rggyzIAAVpP_-H75lUfzwkBMrdapgrAIq_K6rweZKXhzJu4B257aG2beZWo-XlBZJo3OuvwO83IcJnmCkGhfkCJAs0Vwk1Pos0Wp9UWjQqM8F06PqqC9sCv0FCqurK7K5ByGU6qSnt0JMietISPWncgh-Pc4ZVXZJXR683kElrGTVKJ3hpwc8GdJPPL6-2-vpqmzB3eHbSTttHneM1-MiQT6oI0XWYGV__NV_hg7oZ56PrjZJ7CJy_NRgfAELVU48 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RWlW9QJ_qFmh9aE9tROLYsXNAqCqsikCrPbTSqpfU8QOistktu4BA4o_x6xgnDqtWKjcOvSXK2JHGn-dhzwPgvebcliLJI6pK4VuYxZEscT_qnNnEMfxqm5U-EIOBHI3y4RJcd7kwPqyyk4mNoDYT7c_IN6lMUFP74p2bLoRFDHf629Pfke8g5W9au3YaLUT27cU5um-zrb0dXOsPlPZ3v335GoUOA5FG6M0j5mSmjZJZotENUomR1KU8ZoJbGXOTiVQ5ZkxeUqNQUxtu0HzJmeJOpC5zcYrzPoCHgmXSh5MN-Y9bLZCmTevlGP2bKMvyUUjYCWl7zAcqoRsYswSRKv5UigtL96_L2Ubn9Vf_Z249hZVgaZPP7dZ4Bku2fg6rXRcLEoTaC7gaVlOflG-JUWOUrqQyIYKqAS3xet4QfFA1maCAHVeX-F4q_StCpqA8bsl8YVD8Xd2G1ZOqOazxhBfk_Ai1cDe2pVbHh8ii-dH4JXy_Fya8guV6UtvXQMrUMJ3HNqGZQas0Vg6NzVJSw32_del6kHSoKHSo2O4bhxwXi1rTHkkFIqlokFSIHny8HTNt65XcSb3ewacIsmtWLLDTg08dABef_z3bm7tnewePEYPFwd5gfw2eUDQW28DRdVien5zaDXikz-bV7ORts5EI_LxvLN4AXolcnw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pipeline+damage+identification+based+on+an+optimized+back-propagation+neural+network+improved+by+whale+optimization+algorithm&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Wu%2C+Lei&rft.au=Mei%2C+Jiangtao&rft.au=Zhao%2C+Shuo&rft.date=2023-05-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=53&rft.issue=10&rft.spage=12937&rft.epage=12954&rft_id=info:doi/10.1007%2Fs10489-022-04188-7&rft.externalDocID=10_1007_s10489_022_04188_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |