Pipeline damage identification based on an optimized back-propagation neural network improved by whale optimization algorithm

With the advantages of high economy and large transportation capacity, pipeline transportation is commonly used in industrial production. Pipeline damage induced by various factors will result in changes of physical properties, further leading to changes of dynamic parameters such as natural frequen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied intelligence (Dordrecht, Netherlands) Ročník 53; číslo 10; s. 12937 - 12954
Hlavní autoři: Wu, Lei, Mei, Jiangtao, Zhao, Shuo
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.05.2023
Springer Nature B.V
Témata:
ISSN:0924-669X, 1573-7497
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the advantages of high economy and large transportation capacity, pipeline transportation is commonly used in industrial production. Pipeline damage induced by various factors will result in changes of physical properties, further leading to changes of dynamic parameters such as natural frequency and vibration mode. Recently, as a new type of tool, artificial intelligence is widely used for pipeline damage identification. In this study, to promote the accuracy of pipeline damage identification, a novel method that employs the artificial neural network (ANN) and swarm intelligence algorithm is proposed. In detail, based on the original whale optimization algorithm (WOA), an improved WOA (IWOA) is presented in which an adaptive coefficient strategy and a stochastic optimal substitution strategy are introduced. Then, the IWOA and back-propagation neural network (BPNN) are hybridized into IWOA-BPNN. Subsequently, a damage location detector and a damage degree detector are established based on the proposed IWOA-BPNN. By taking a pipeline fixed at both ends and its curvature and displacement modes, the proposed damage identification method is verified to confirm its effectiveness and accuracy in different damage states. Experimental results demonstrate that the comprehensive performance of IWOA-BPNN is better than other compared models. The relative error of the predicted results obtained by IWOA-BPNN is less than 2.2% when evaluating the damage location and degree for 12 randomly selected test samples, indicating the superiority of the proposed method. The proposed method has broad application prospects in modern industries.
AbstractList With the advantages of high economy and large transportation capacity, pipeline transportation is commonly used in industrial production. Pipeline damage induced by various factors will result in changes of physical properties, further leading to changes of dynamic parameters such as natural frequency and vibration mode. Recently, as a new type of tool, artificial intelligence is widely used for pipeline damage identification. In this study, to promote the accuracy of pipeline damage identification, a novel method that employs the artificial neural network (ANN) and swarm intelligence algorithm is proposed. In detail, based on the original whale optimization algorithm (WOA), an improved WOA (IWOA) is presented in which an adaptive coefficient strategy and a stochastic optimal substitution strategy are introduced. Then, the IWOA and back-propagation neural network (BPNN) are hybridized into IWOA-BPNN. Subsequently, a damage location detector and a damage degree detector are established based on the proposed IWOA-BPNN. By taking a pipeline fixed at both ends and its curvature and displacement modes, the proposed damage identification method is verified to confirm its effectiveness and accuracy in different damage states. Experimental results demonstrate that the comprehensive performance of IWOA-BPNN is better than other compared models. The relative error of the predicted results obtained by IWOA-BPNN is less than 2.2% when evaluating the damage location and degree for 12 randomly selected test samples, indicating the superiority of the proposed method. The proposed method has broad application prospects in modern industries.
Author Wu, Lei
Zhao, Shuo
Mei, Jiangtao
Author_xml – sequence: 1
  givenname: Lei
  surname: Wu
  fullname: Wu, Lei
  email: wuleiupc@163.com
  organization: School of Petroleum Engineering, China University of Petroleum, National Engineering Research Center of Offshore Geophysical & Exploration Equipment, China University of Petroleum, School of Civil and Environmental Engineering, Maritime Institute @NTU, Nanyang Technological University
– sequence: 2
  givenname: Jiangtao
  surname: Mei
  fullname: Mei, Jiangtao
  organization: National Engineering Research Center of Offshore Geophysical & Exploration Equipment, China University of Petroleum, College of Mechanical and Electrical Engineering, China University of Petroleum
– sequence: 3
  givenname: Shuo
  surname: Zhao
  fullname: Zhao, Shuo
  organization: School of Petroleum Engineering, China University of Petroleum
BookMark eNp9kE1LHTEUhkNR8PrxB1wNuI7N5ySzLNJqQWgXFdyFcyfJvdGZzDTJrVjofzfXsRS6cHUSzvPknLzH6CBO0SF0TsklJUR9zJQI3WHCGCaCao3VB7SiUnGsRKcO0Ip0TOC27e6P0HHOD4QQzgldoT_fw-yGEF1jYYSNa4J1sQQfeihhis0asrNNPUBsprmEMfyu9zX0j3hO0wybBYtul2CopTxN6bEJY23-2oPPzdMWBvfXXWgYNlMKZTueokMPQ3Znb_UE3X35_OPqBt9-u_569ekW95x2BQuv296CbmlPiQJqNfNcEqGk00TaVnHwwtpuzSxILay0tOWdAOkV960n_ARdLO_WtX7uXC7mYdqlWEcapmnLOJdMVootVJ-mnJPzZk5hhPRsKDH7mM0Ss6kxm9eYjaqS_k_qQ3n9ZkkQhvdVvqi5zokbl_5t9Y71AukFlr8
CitedBy_id crossref_primary_10_1007_s12206_025_0848_3
crossref_primary_10_1142_S0219455425500713
crossref_primary_10_1038_s41598_025_92588_3
crossref_primary_10_1016_j_est_2025_116388
crossref_primary_10_1016_j_engfailanal_2024_108769
crossref_primary_10_1016_j_aei_2024_102847
crossref_primary_10_3390_met15010027
crossref_primary_10_1038_s41598_025_01159_z
crossref_primary_10_1061_JPSEA2_PSENG_1793
crossref_primary_10_1080_10589759_2024_2402887
crossref_primary_10_1038_s41598_023_51135_8
crossref_primary_10_1016_j_renene_2023_119873
crossref_primary_10_1016_j_mtcomm_2025_113603
crossref_primary_10_1007_s00170_025_16128_z
Cites_doi 10.1080/09349847.2019.1634226
10.1109/TFUZZ.2022.3155275
10.1016/j.asoc.2018.09.018
10.1016/j.apm.2020.09.012
10.1016/j.asoc.2022.108630
10.1016/j.jclepro.2015.04.097
10.1007/s13042-022-01518-6
10.1016/j.jsv.2019.115069
10.1016/j.ymssp.2019.106445
10.1007/s00500-020-05250-7
10.1016/j.jobe.2017.04.001
10.1016/j.jclepro.2020.123583
10.1016/j.engstruct.2013.02.031
10.1016/j.apenergy.2015.03.017
10.1016/j.jestch.2020.07.001
10.1007/s10489-018-1362-4
10.1088/1361-665X/ab351e
10.1016/j.oceaneng.2020.107423
10.1007/s11053-020-09710-7
10.1016/j.marstruc.2018.05.006
10.1016/j.apenergy.2014.07.104
10.1016/j.ymssp.2021.107728
10.1002/stc.2347
10.1155/2021/3835083
10.1109/TCAD.2018.2834436
10.1016/j.measurement.2020.107700
10.1784/insi.2011.53.10.552
10.1016/j.jngse.2020.103716
10.1177/1475921710365419
10.1016/j.jterra.2020.02.003
10.3390/s19030545
10.1080/02331934.2021.2010078
10.1016/j.advengsoft.2017.06.015
10.1016/j.neucom.2017.04.053
10.1016/j.eswa.2022.117949
10.1016/j.engappai.2021.104291
10.1016/j.advengsoft.2016.01.008
10.1007/s10098-020-02003-w
10.1021/acs.energyfuels.0c03663
10.1016/j.asoc.2012.03.050
10.1016/j.eswa.2019.113018
10.1016/j.compscitech.2005.07.043
10.1016/j.biortech.2010.03.136
10.1080/0305215X.2020.1746294
10.1007/s12597-022-00587-z
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-022-04188-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
Proquest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 12954
ExternalDocumentID 10_1007_s10489_022_04188_7
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2020QE300
  funderid: http://dx.doi.org/10.13039/501100007129
– fundername: Ministry of Industry and Information Technology of the People's Republic of China
  grantid: CJ09N20
  funderid: http://dx.doi.org/10.13039/501100006579
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 20CX06012A
  funderid: http://dx.doi.org/10.13039/501100012226
– fundername: Taishan Scholar Foundation of Shandong Province
  grantid: tsqn201909067
  funderid: http://dx.doi.org/10.13039/501100010029
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-4f86cda861c107a1d82f350475e805d673af4dd9b2da584d5d16394a5f73f6f03
IEDL.DBID RSV
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000863800900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 14:44:34 EST 2025
Tue Nov 18 21:55:29 EST 2025
Sat Nov 29 05:33:33 EST 2025
Fri Feb 21 02:44:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Back-propagation neural network
Whale optimization algorithm
Damage location and degree
Pipeline damage identification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-4f86cda861c107a1d82f350475e805d673af4dd9b2da584d5d16394a5f73f6f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2816233525
PQPubID 326365
PageCount 18
ParticipantIDs proquest_journals_2816233525
crossref_primary_10_1007_s10489_022_04188_7
crossref_citationtrail_10_1007_s10489_022_04188_7
springer_journals_10_1007_s10489_022_04188_7
PublicationCentury 2000
PublicationDate 20230500
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 5
  year: 2023
  text: 20230500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Bagherkhani, Baghlani (CR20) 2021; 53
Rios-Mercado, Borraz-Sanchez (CR3) 2015; 147
Xiang, Gou, He, Xia, Wang (CR36) 2018; 73
Wang, Zhang (CR40) 2021; 2021
Zou, Xue, Gai (CR37) 2020; 89
Chen, Yu (CR22) 2017; 63
Wang, Gu, Chen (CR10) 2020; 159
Luo, Shi (CR49) 2019; 49
Qing, Li, Wang (CR14) 2019; 19
Turkoglu, Uymaz, Kaya (CR28) 2022; 13
Mirjalili, Lewis (CR41) 2016; 95
Sun, Xu (CR32) 2016; 112
Zhang, Kim, Goi (CR17) 2021; 28
Turkoglu, Kaya (CR38) 2020; 23
Crall, Laney, Keller (CR13) 2019; 28
Yahaghi, Movafeghi, Rokrok, Mirzapour (CR9) 2020; 31
Dinh-Cong, Vo-Duy, Ho-Huu, Dang-Trung, Nguyen-Thoi (CR21) 2017; 112
Kang, Li, Xu (CR23) 2012; 12
Vazirizade, Nozhati, Zadeh (CR35) 2017; 11
Nguyen, Bui, Choi, Lee, Armaghani (CR43) 2021; 30
Kaur, Arora (CR45) 2018; 5
Liu, Wang, Zhao (CR5) 2021; 35
Chen, Li, Reniers (CR1) 2021; 279
Turkoglu, Uymaz, Kaya (CR27) 2022; 120
Wu, Li, Liu (CR26) 2021; 103
Yang, Hu, Zhang (CR39) 2021; 25
Du, Zhou, Jing (CR7) 2020; 141
Yu, Xu (CR50) 2014; 134
Fan, Qiao (CR15) 2011; 10
Chen, Yang, Heidari (CR47) 2020; 154
Tufan, Akalp (CR16) 2019; 26
Wong, Wang, Koh, Tui, Tan, Xu (CR11) 2011; 53
Cai, Jiang, Lodewijks (CR4) 2018; 61
CR51
Dehcheshmeh, Hosseinzadeh, Amiri (CR44) 2020; 25
Ala, Simic, Pamucar (CR24) 2022; 207
Pootakham, Kumar (CR2) 2010; 101
Peng, Zhang, Liu (CR6) 2021; 85
Padil, Bakhary, Abdulkareem, Li, Hao (CR30) 2020; 467
Liu, Li, Wang, Men, Xu (CR33) 2021; 158
Cao, Sha, Gao, Ostachowicz (CR18) 2017; 26
Mafarja, Mirjalili (CR48) 2017; 260
Tsuda (CR12) 2006; 66
CR29
Chen, Yu (CR46) 2020; 75
CR25
Kumar, Ismail, Zhao, Noori, Yadav, Chen, Singh, Altabey, Silik, Kumar, Kumar, Balodi (CR8) 2021; 23
Kim, Jin, Kim, Kim (CR34) 2020; 208
Pooya, Massumi (CR19) 2021; 91
Li, Li, Xu (CR42) 2021; 113
Shu, Zhang, Gonzalez (CR31) 2013; 52
Wen, Xiao, Yang (CR52) 2019; 38
B Turkoglu (4188_CR28) 2022; 13
MM Dehcheshmeh (4188_CR44) 2020; 25
FL Zhang (4188_CR17) 2021; 28
SP Wen (4188_CR52) 2019; 38
G Kaur (4188_CR45) 2018; 5
S Mirjalili (4188_CR41) 2016; 95
EB Liu (4188_CR5) 2021; 35
Y Xiang (4188_CR36) 2018; 73
MD Crall (4188_CR13) 2019; 28
HL Chen (4188_CR47) 2020; 154
J Yang (4188_CR39) 2021; 25
F Yu (4188_CR50) 2014; 134
Y Liu (4188_CR33) 2021; 158
SM Vazirizade (4188_CR35) 2017; 11
W Sun (4188_CR32) 2016; 112
ZX Chen (4188_CR46) 2020; 75
ZY Li (4188_CR42) 2021; 113
W Fan (4188_CR15) 2011; 10
MS Cao (4188_CR18) 2017; 26
ZP Chen (4188_CR22) 2017; 63
C Chen (4188_CR1) 2021; 279
H Kim (4188_CR34) 2020; 208
F Kang (4188_CR23) 2012; 12
4188_CR51
M Zou (4188_CR37) 2020; 89
J Cai (4188_CR4) 2018; 61
JP Shu (4188_CR31) 2013; 52
J Luo (4188_CR49) 2019; 49
L Wu (4188_CR26) 2021; 103
XL Qing (4188_CR14) 2019; 19
AL Ala (4188_CR24) 2022; 207
H Nguyen (4188_CR43) 2021; 30
B Turkoglu (4188_CR38) 2020; 23
R Kumar (4188_CR8) 2021; 23
SB Peng (4188_CR6) 2021; 85
Y Du (4188_CR7) 2020; 141
BS Wong (4188_CR11) 2011; 53
KH Padil (4188_CR30) 2020; 467
RZ Rios-Mercado (4188_CR3) 2015; 147
T Pootakham (4188_CR2) 2010; 101
D Dinh-Cong (4188_CR21) 2017; 112
B Turkoglu (4188_CR27) 2022; 120
XH Wang (4188_CR10) 2020; 159
H Tsuda (4188_CR12) 2006; 66
T Tufan (4188_CR16) 2019; 26
4188_CR25
MM Mafarja (4188_CR48) 2017; 260
E Yahaghi (4188_CR9) 2020; 31
SMH Pooya (4188_CR19) 2021; 91
A Bagherkhani (4188_CR20) 2021; 53
H Wang (4188_CR40) 2021; 2021
4188_CR29
References_xml – volume: 75
  start-page: 445
  issue: 4
  year: 2020
  end-page: 454
  ident: CR46
  article-title: A novel WOA-based structural damage identification using weighted modal data and flexibility assurance criterion
  publication-title: Struct Eng Mech
– volume: 23
  start-page: 561
  issue: 2
  year: 2021
  end-page: 580
  ident: CR8
  article-title: Damage detection of wind turbine system based on signal processing approach: a critical review
  publication-title: Clean Techn Environ Policy
– volume: 12
  start-page: 2329
  issue: 8
  year: 2012
  end-page: 2335
  ident: CR23
  article-title: Damage detection based on improved particle swarm optimization using vibration data
  publication-title: Appl Soft Comput
– volume: 28
  issue: 2
  year: 2021
  ident: CR17
  article-title: Efficient Bayesian FFT method for damage detection using ambient vibration data with consideration of uncertainty
  publication-title: Struct Control Health Monit
– ident: CR51
– volume: 38
  start-page: 1084
  issue: 6
  year: 2019
  end-page: 1094
  ident: CR52
  article-title: Adjusting learning rate of Memristor-based multilayer neural networks via fuzzy method
  publication-title: IEEE Trans Comput-Aided Des Integr Circuits Syst
– volume: 5
  start-page: 275
  issue: 3
  year: 2018
  end-page: 284
  ident: CR45
  article-title: Chaotic whale optimization algorithm
  publication-title: J Comput Des Eng
– volume: 154
  start-page: 113018
  year: 2020
  ident: CR47
  article-title: An efficient double adaptive random spare reinforced whale optimization algorithm
  publication-title: Expert Syst Appl
– volume: 260
  start-page: 302
  year: 2017
  end-page: 312
  ident: CR48
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
– ident: CR29
– volume: 31
  start-page: 107
  issue: 2
  year: 2020
  end-page: 115
  ident: CR9
  article-title: Defects detection of digital radiographic images of aircraft structure materials via geometric locally adaptive sharpening
  publication-title: Res Nondestruct Eval
– volume: 147
  start-page: 536
  year: 2015
  end-page: 555
  ident: CR3
  article-title: Optimization problems in natural gas transportation systems: a state-of-the-art review
  publication-title: Appl Energy
– volume: 113
  start-page: 1029
  issue: 3–4
  year: 2021
  end-page: 1043
  ident: CR42
  article-title: Temperature-sensitive point selection and thermal error modeling of spindle based on synthetical temperature information
  publication-title: Int J Adv Manuf Technol
– ident: CR25
– volume: 28
  start-page: 105002
  issue: 10
  year: 2019
  ident: CR13
  article-title: Giant magnetoresistance scanning of magnetic self-sensing composites
  publication-title: Smart Mater Struct
– volume: 141
  start-page: 106445
  year: 2020
  ident: CR7
  article-title: Damage detection techniques for wind turbine blades: a review
  publication-title: Mech Syst Signal Process
– volume: 208
  start-page: 107423
  year: 2020
  ident: CR34
  article-title: Damage detection of bottom-set gillnet using artificial neural network
  publication-title: Ocean Eng
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: CR41
  article-title: The whale optimization algorithm
  publication-title: Adv Eng Softw
– volume: 91
  start-page: 670
  year: 2021
  end-page: 694
  ident: CR19
  article-title: A novel and efficient method for damage detection in beam-like structures solely based on damaged structure data and using mode shape curvature estimation
  publication-title: Appl Math Model
– volume: 66
  start-page: 676
  issue: 5
  year: 2006
  end-page: 683
  ident: CR12
  article-title: Ultrasound and damage detection in CFRP using fiber Bragg grating sensors
  publication-title: Compos Sci Technol
– volume: 279
  start-page: 123583
  year: 2021
  ident: CR1
  article-title: Safety and security of oil and gas pipeline transportation: a systematic analysis of research trends and future needs using WoS
  publication-title: J Clean Prod
– volume: 30
  start-page: 191
  issue: 1
  year: 2021
  end-page: 207
  ident: CR43
  article-title: A novel combination of whale optimization algorithm and support vector machine with different kernel functions for prediction of blasting-induced Fly-rock in quarry mines
  publication-title: Nat Resour Res
– volume: 2021
  start-page: 3835083
  year: 2021
  ident: CR40
  article-title: Visual mechanism characteristics of static painting based on PSO-BP neural network
  publication-title: Comput Intell Neurosci
– volume: 73
  start-page: 874
  year: 2018
  end-page: 883
  ident: CR36
  article-title: A SVR–ANN combined model based on ensemble EMD for rainfall prediction
  publication-title: Appl Soft Comput
– volume: 467
  start-page: 115069
  year: 2020
  ident: CR30
  article-title: Non-probabilistic method to consider uncertainties in frequency response function for vibration-based damage detection using artificial neural network
  publication-title: J Sound Vib
– volume: 207
  start-page: 117949
  year: 2022
  ident: CR24
  article-title: Appointment scheduling problem under fairness policy in healthcare services: fuzzy ant lion optimizer
  publication-title: Expert Syst Appl
– volume: 85
  start-page: 103716
  year: 2021
  ident: CR6
  article-title: A new hybrid algorithm model for prediction of internal corrosion rate of multiphase pipeline
  publication-title: J Nat Gas Sci Eng
– volume: 159
  start-page: 107700
  year: 2020
  ident: CR10
  article-title: A new technology for steel pipeline damage detecting without removing cladding
  publication-title: Measurement
– volume: 19
  start-page: 545
  issue: 3
  year: 2019
  ident: CR14
  article-title: Piezoelectric transducer-based structural health monitoring for aircraft applications
  publication-title: Sensors
– volume: 53
  start-page: 683
  issue: 4
  year: 2021
  end-page: 701
  ident: CR20
  article-title: Enhancing the curvature mode shape method for structural damage severity estimation by means of the distributed genetic algorithm
  publication-title: Eng Optim
– volume: 26
  issue: 5
  year: 2019
  ident: CR16
  article-title: Modal plot-system identification and fault detection
  publication-title: Struct Control Health Monit
– volume: 63
  start-page: 825
  issue: 6
  year: 2017
  end-page: 835
  ident: CR22
  article-title: A novel PSO-based algorithm for structural damage detection using Bayesian multi-sample objective function
  publication-title: Struct Eng Mech
– volume: 103
  start-page: 104291
  year: 2021
  ident: CR26
  article-title: NHACR: a novel heuristic approach for 2D rectangle packing area minimization problem with central rectangle
  publication-title: Eng Appl Artif Intell
– volume: 112
  start-page: 1282
  year: 2016
  end-page: 1291
  ident: CR32
  article-title: Using a back propagation neural network based on improved particle swarm optimization to study the influential factors of carbon dioxide emissions in Hebei Province, China
  publication-title: J Clean Prod
– volume: 112
  start-page: 76
  year: 2017
  end-page: 87
  ident: CR21
  article-title: An efficient multi-stage optimization approach for damage detection in plate structures
  publication-title: Adv Eng Softw
– volume: 134
  start-page: 102
  year: 2014
  end-page: 113
  ident: CR50
  article-title: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network
  publication-title: Appl Energy
– volume: 25
  start-page: 47
  issue: 1
  year: 2020
  end-page: 56
  ident: CR44
  article-title: Feasibility study on model-based damage detection in shear frames using pseudo modal strain energy
  publication-title: Smart Struct Syst
– volume: 10
  start-page: 83
  issue: 1
  year: 2011
  end-page: 111
  ident: CR15
  article-title: Vibration-based damage identification methods: a review and comparative study
  publication-title: Struct Health an Monit Int J
– volume: 49
  start-page: 1982
  issue: 5
  year: 2019
  end-page: 2000
  ident: CR49
  article-title: A hybrid whale optimization algorithm based on modified differential evolution for global optimization problems
  publication-title: Appl Intell
– volume: 26
  issue: 4
  year: 2017
  ident: CR18
  article-title: Structural damage identification using damping: a compendium of uses and features
  publication-title: Smart Mater Struct
– volume: 23
  start-page: 1342
  issue: 6
  year: 2020
  end-page: 1350
  ident: CR38
  article-title: Training multi-layer perceptron with artificial algae algorithm
  publication-title: Eng Sci Technol an Int J-Jestech
– volume: 52
  start-page: 408
  year: 2013
  end-page: 421
  ident: CR31
  article-title: The application of a damage detection method using artificial neural network and train-induced vibrations on a simplified railway bridge model
  publication-title: Eng Struct
– volume: 25
  start-page: 1751
  issue: 3
  year: 2021
  end-page: 1776
  ident: CR39
  article-title: An improved evolution algorithm using population competition genetic algorithm and self-correction BP neural network based on fitness landscape
  publication-title: Soft Comput
– volume: 120
  start-page: 108630
  year: 2022
  ident: CR27
  article-title: Binary artificial algae algorithm for feature selection
  publication-title: Appl Soft Comput
– volume: 35
  start-page: 479
  issue: 1
  year: 2021
  end-page: 492
  ident: CR5
  article-title: Analysis and research on pipeline vibration of a natural gas Compressor Station and vibration reduction measures
  publication-title: Energy Fuel
– volume: 158
  start-page: 107728
  year: 2021
  ident: CR33
  article-title: Damage detection of tunnel based on the high-density cross-sectional curvature obtained using strain data from BOTDA sensors
  publication-title: Mech Syst Signal Process
– volume: 13
  start-page: 1179
  issue: 4
  year: 2022
  end-page: 1196
  ident: CR28
  article-title: Clustering analysis through artificial algae algorithm
  publication-title: Int J Mach Learn Cybern
– volume: 89
  start-page: 21
  year: 2020
  end-page: 29
  ident: CR37
  article-title: Identification of the shear parameters for lunar regolith based on a GA-BP neural network
  publication-title: J Terrramech
– volume: 53
  start-page: 552
  issue: 10
  year: 2011
  end-page: 556
  ident: CR11
  article-title: Crack detection using image processing techniques for radiographic inspection of aircraft wing spar
  publication-title: Insight
– volume: 101
  start-page: 7137
  issue: 18
  year: 2010
  end-page: 7143
  ident: CR2
  article-title: Bio-oil transport by pipeline: a techno-economic assessment
  publication-title: Bioresour Technol
– volume: 11
  start-page: 230
  year: 2017
  end-page: 235
  ident: CR35
  article-title: Seismic reliability assessment of structures using artificial neural network
  publication-title: J Build Eng
– volume: 61
  start-page: 188
  year: 2018
  end-page: 201
  ident: CR4
  article-title: Residual ultimate strength of damaged seamless metallic pipelines with combined dent and metal loss
  publication-title: Mar Struct
– volume: 31
  start-page: 107
  issue: 2
  year: 2020
  ident: 4188_CR9
  publication-title: Res Nondestruct Eval
  doi: 10.1080/09349847.2019.1634226
– ident: 4188_CR29
  doi: 10.1109/TFUZZ.2022.3155275
– volume: 73
  start-page: 874
  year: 2018
  ident: 4188_CR36
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.09.018
– volume: 91
  start-page: 670
  year: 2021
  ident: 4188_CR19
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2020.09.012
– volume: 63
  start-page: 825
  issue: 6
  year: 2017
  ident: 4188_CR22
  publication-title: Struct Eng Mech
– volume: 120
  start-page: 108630
  year: 2022
  ident: 4188_CR27
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.108630
– volume: 28
  issue: 2
  year: 2021
  ident: 4188_CR17
  publication-title: Struct Control Health Monit
– volume: 112
  start-page: 1282
  year: 2016
  ident: 4188_CR32
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2015.04.097
– volume: 13
  start-page: 1179
  issue: 4
  year: 2022
  ident: 4188_CR28
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-022-01518-6
– volume: 467
  start-page: 115069
  year: 2020
  ident: 4188_CR30
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2019.115069
– volume: 141
  start-page: 106445
  year: 2020
  ident: 4188_CR7
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2019.106445
– volume: 25
  start-page: 1751
  issue: 3
  year: 2021
  ident: 4188_CR39
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05250-7
– volume: 11
  start-page: 230
  year: 2017
  ident: 4188_CR35
  publication-title: J Build Eng
  doi: 10.1016/j.jobe.2017.04.001
– volume: 279
  start-page: 123583
  year: 2021
  ident: 4188_CR1
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.123583
– volume: 52
  start-page: 408
  year: 2013
  ident: 4188_CR31
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2013.02.031
– volume: 5
  start-page: 275
  issue: 3
  year: 2018
  ident: 4188_CR45
  publication-title: J Comput Des Eng
– volume: 147
  start-page: 536
  year: 2015
  ident: 4188_CR3
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.03.017
– volume: 23
  start-page: 1342
  issue: 6
  year: 2020
  ident: 4188_CR38
  publication-title: Eng Sci Technol an Int J-Jestech
  doi: 10.1016/j.jestch.2020.07.001
– volume: 49
  start-page: 1982
  issue: 5
  year: 2019
  ident: 4188_CR49
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1362-4
– volume: 28
  start-page: 105002
  issue: 10
  year: 2019
  ident: 4188_CR13
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/ab351e
– volume: 208
  start-page: 107423
  year: 2020
  ident: 4188_CR34
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2020.107423
– volume: 30
  start-page: 191
  issue: 1
  year: 2021
  ident: 4188_CR43
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-020-09710-7
– volume: 61
  start-page: 188
  year: 2018
  ident: 4188_CR4
  publication-title: Mar Struct
  doi: 10.1016/j.marstruc.2018.05.006
– volume: 134
  start-page: 102
  year: 2014
  ident: 4188_CR50
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.07.104
– volume: 158
  start-page: 107728
  year: 2021
  ident: 4188_CR33
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.107728
– volume: 26
  issue: 5
  year: 2019
  ident: 4188_CR16
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.2347
– volume: 2021
  start-page: 3835083
  year: 2021
  ident: 4188_CR40
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2021/3835083
– volume: 75
  start-page: 445
  issue: 4
  year: 2020
  ident: 4188_CR46
  publication-title: Struct Eng Mech
– volume: 38
  start-page: 1084
  issue: 6
  year: 2019
  ident: 4188_CR52
  publication-title: IEEE Trans Comput-Aided Des Integr Circuits Syst
  doi: 10.1109/TCAD.2018.2834436
– volume: 159
  start-page: 107700
  year: 2020
  ident: 4188_CR10
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107700
– volume: 53
  start-page: 552
  issue: 10
  year: 2011
  ident: 4188_CR11
  publication-title: Insight
  doi: 10.1784/insi.2011.53.10.552
– volume: 85
  start-page: 103716
  year: 2021
  ident: 4188_CR6
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2020.103716
– volume: 10
  start-page: 83
  issue: 1
  year: 2011
  ident: 4188_CR15
  publication-title: Struct Health an Monit Int J
  doi: 10.1177/1475921710365419
– volume: 89
  start-page: 21
  year: 2020
  ident: 4188_CR37
  publication-title: J Terrramech
  doi: 10.1016/j.jterra.2020.02.003
– volume: 19
  start-page: 545
  issue: 3
  year: 2019
  ident: 4188_CR14
  publication-title: Sensors
  doi: 10.3390/s19030545
– ident: 4188_CR25
  doi: 10.1080/02331934.2021.2010078
– volume: 112
  start-page: 76
  year: 2017
  ident: 4188_CR21
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.06.015
– volume: 25
  start-page: 47
  issue: 1
  year: 2020
  ident: 4188_CR44
  publication-title: Smart Struct Syst
– volume: 260
  start-page: 302
  year: 2017
  ident: 4188_CR48
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– volume: 207
  start-page: 117949
  year: 2022
  ident: 4188_CR24
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117949
– volume: 26
  issue: 4
  year: 2017
  ident: 4188_CR18
  publication-title: Smart Mater Struct
– volume: 103
  start-page: 104291
  year: 2021
  ident: 4188_CR26
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2021.104291
– volume: 95
  start-page: 51
  year: 2016
  ident: 4188_CR41
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 113
  start-page: 1029
  issue: 3–4
  year: 2021
  ident: 4188_CR42
  publication-title: Int J Adv Manuf Technol
– volume: 23
  start-page: 561
  issue: 2
  year: 2021
  ident: 4188_CR8
  publication-title: Clean Techn Environ Policy
  doi: 10.1007/s10098-020-02003-w
– volume: 35
  start-page: 479
  issue: 1
  year: 2021
  ident: 4188_CR5
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.0c03663
– volume: 12
  start-page: 2329
  issue: 8
  year: 2012
  ident: 4188_CR23
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.03.050
– volume: 154
  start-page: 113018
  year: 2020
  ident: 4188_CR47
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.113018
– volume: 66
  start-page: 676
  issue: 5
  year: 2006
  ident: 4188_CR12
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2005.07.043
– volume: 101
  start-page: 7137
  issue: 18
  year: 2010
  ident: 4188_CR2
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2010.03.136
– volume: 53
  start-page: 683
  issue: 4
  year: 2021
  ident: 4188_CR20
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2020.1746294
– ident: 4188_CR51
  doi: 10.1007/s12597-022-00587-z
SSID ssj0003301
Score 2.4081335
Snippet With the advantages of high economy and large transportation capacity, pipeline transportation is commonly used in industrial production. Pipeline damage...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12937
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
Back propagation
Back propagation networks
Computer Science
Damage assessment
Damage detection
Identification methods
Machines
Manufacturing
Mechanical Engineering
Neural networks
Optimization
Optimization algorithms
Physical properties
Processes
Resonant frequencies
Swarm intelligence
Transportation
Vibration mode
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6efDi_MTplBy8abEfaZueRGXDg4whCruVNB9a3Lq5VUXB_92XNl1RcBdvLX1JA-87eXk_hE6478skdCLLZUmoIcxsiyagjzwi0lEEvsqC07dhv0-Hw2hgNtzmpqyysomFoRYTrvfIz13qgKfWzTsvpi-WRo3Sp6sGQmMVNXWnMpDz5lW3P7hb2GLI1gvMPMgyrCCIhubajLk8R3S5ECRjNnFAXsKfrqmON38dkRaep9f675o30YaJOfFlKSRbaEVm26hV4Tlgo9476GuQTvX1dIkFG4OdwakwtUQF-7D2eALDA8vwBEzNOP2E94TxZwsWBpapJNMtMuF3WVlgjtNi20ITfuD3J_BH1diSmo0eYcn503gXPfS699c3loFnsDjobW4RRQMuGA0cDjkkcwR1lefbJPQltX0RhB5TRIgocQWDMEf4AmK_iDBfhZ4KlO3toUY2yeQ-woknCI9s6biBgPjMZgrCroS6wtfI41S1kVNxJuamd7mG0BjFdddlzc0YuBkX3IzDNjpdjJmWnTuWUncqFsZGi-dxzb82OquEoP7892wHy2c7ROsatb6sm-ygRj57lUdojb_l6Xx2bGT4Gxcm-Mg
  priority: 102
  providerName: ProQuest
Title Pipeline damage identification based on an optimized back-propagation neural network improved by whale optimization algorithm
URI https://link.springer.com/article/10.1007/s10489-022-04188-7
https://www.proquest.com/docview/2816233525
Volume 53
WOSCitedRecordID wos000863800900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw9Il1O-xCgW2iUCofuLFI-bBj5ziqTkhAVTHYyi6R448tYk2rtgOBxH_n2UlWhgBpu1iJ_OxYfn5f8fsAeKkYMwWPsiCWBXclzMJAFEiPKqMmshR7jcf0Oz4ei-k0mzRBYavW2729kvSc-rdgN-rce9B4CmmE-OVbsM1cthlno5-c3vBftNB9nTy0LII0zaZNqMzf57gtjjY65h_Xol7aHHfvt85H8LDRLslRfRwewwNTPYFuW7mBNIS8Bz8n5cIFohui5Qw5Cil14zXkEUWcbNMEH2RF5shUZuUPfC-k-hLg4pEH1WAuGSZ-rqpdyUnpf1A4wO_k2yVKnnZsDS2vLubLcn0524dPx6OPwzdBU4ghUEih64BakSotRRoptBZlpEVsExZSzowImU55Ii3VOitiLVGh0UyjlpdRySxPbGrD5AA61bwyT4EUiaYqC00Upxo1sVBaVLAKEWvmaowL24OoxUeumizlrljGVb7Jr-z2N8f9zf3-5rwHr27GLOocHf-F7rdozht6XeWxiFAPdKlhe3DYonXT_e_Znt0N_Dnsunr1tcdkHzrr5bV5ATvq67pcLQewxc8-D2D79Wg8-YBvb3mA7ftw6Fp-gu2EnQ_8af8FG4bz7g
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9wwFH5iqUQvZa06QMGH9tRGOI6TOAeEKhaBGEYcqDS34HhhojKZgZmCqNS_xG_kOQsjkODGgVui2I70_L3NfgvANxWGJov9xGMyi10LM-qJDPlRJdz4luNXU-50O-50RLebnE7BfZML48IqG5lYCmo9UO6MfIsJHzW1K965M7zyXNcod7vatNCoYHFs7m7RZRttH-3h_n5n7GD_bPfQq7sKeArhNva4FZHSUkS-QtdH-lowG4SUx6ERNNRRHEjLtU4ypiVqZx1qNFkSLkMbBzayNMB1p2GWo-Pl-OqE7j5K_iAo2y1T9Gm8KEq6dZJOnarHXXASun6U-4jO-KkinFi3zy5kSz13MP_eKLQAn2qLmvyqWGARpkyxBPNNtwpSC69l-H-aD13yvSFa9lGKklzXkVIlOInT55rggyzIAAVpP_-H75lUfzwkBMrdapgrAIq_K6rweZKXhzJu4B257aG2beZWo-XlBZJo3OuvwO83IcJnmCkGhfkCJAs0Vwk1Pos0Wp9UWjQqM8F06PqqC9sCv0FCqurK7K5ByGU6qSnt0JMietISPWncgh-Pc4ZVXZJXR683kElrGTVKJ3hpwc8GdJPPL6-2-vpqmzB3eHbSTttHneM1-MiQT6oI0XWYGV__NV_hg7oZ56PrjZJ7CJy_NRgfAELVU48
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RWlW9QJ_qFmh9aE9tROLYsXNAqCqsikCrPbTSqpfU8QOistktu4BA4o_x6xgnDqtWKjcOvSXK2JHGn-dhzwPgvebcliLJI6pK4VuYxZEscT_qnNnEMfxqm5U-EIOBHI3y4RJcd7kwPqyyk4mNoDYT7c_IN6lMUFP74p2bLoRFDHf629Pfke8g5W9au3YaLUT27cU5um-zrb0dXOsPlPZ3v335GoUOA5FG6M0j5mSmjZJZotENUomR1KU8ZoJbGXOTiVQ5ZkxeUqNQUxtu0HzJmeJOpC5zcYrzPoCHgmXSh5MN-Y9bLZCmTevlGP2bKMvyUUjYCWl7zAcqoRsYswSRKv5UigtL96_L2Ubn9Vf_Z249hZVgaZPP7dZ4Bku2fg6rXRcLEoTaC7gaVlOflG-JUWOUrqQyIYKqAS3xet4QfFA1maCAHVeX-F4q_StCpqA8bsl8YVD8Xd2G1ZOqOazxhBfk_Ai1cDe2pVbHh8ii-dH4JXy_Fya8guV6UtvXQMrUMJ3HNqGZQas0Vg6NzVJSw32_del6kHSoKHSo2O4bhxwXi1rTHkkFIqlokFSIHny8HTNt65XcSb3ewacIsmtWLLDTg08dABef_z3bm7tnewePEYPFwd5gfw2eUDQW28DRdVien5zaDXikz-bV7ORts5EI_LxvLN4AXolcnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pipeline+damage+identification+based+on+an+optimized+back-propagation+neural+network+improved+by+whale+optimization+algorithm&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Wu%2C+Lei&rft.au=Mei%2C+Jiangtao&rft.au=Zhao%2C+Shuo&rft.date=2023-05-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=53&rft.issue=10&rft.spage=12937&rft.epage=12954&rft_id=info:doi/10.1007%2Fs10489-022-04188-7&rft.externalDocID=10_1007_s10489_022_04188_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon