A truly self-starting implicit family of integration algorithms with dissipation control for nonlinear dynamics

In this paper, a novel implicit family of composite two sub-step algorithms with controllable dissipations is developed to effectively solve nonlinear structural dynamic problems. The primary superiority of the present method over other existing integration methods lies that it is truly self-startin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nonlinear dynamics Ročník 102; číslo 4; s. 2503 - 2530
Hlavní autoři: Li, Jinze, Yu, Kaiping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.12.2020
Springer Nature B.V
Témata:
ISSN:0924-090X, 1573-269X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, a novel implicit family of composite two sub-step algorithms with controllable dissipations is developed to effectively solve nonlinear structural dynamic problems. The primary superiority of the present method over other existing integration methods lies that it is truly self-starting and so the computation of initial acceleration vector is avoided, but the second-order accurate acceleration responses can be provided. Besides, the present method also achieves other desired numerical characteristics, such as the second-order accuracy of three primary variables, unconditional stability and no overshoots. Particularly, the novel method achieves adjustable numerical dissipations in the low and high frequency by controlling its two algorithmic parameters ( γ and ρ ∞ ). The classical dissipative parameter ρ ∞ determines numerical dissipations in the high-frequency while γ adjusts numerical dissipations in the low-frequency. Linear and nonlinear numerical examples are given to show the superiority of the novel method over existing integration methods with respect to accuracy and overshoot.
AbstractList In this paper, a novel implicit family of composite two sub-step algorithms with controllable dissipations is developed to effectively solve nonlinear structural dynamic problems. The primary superiority of the present method over other existing integration methods lies that it is truly self-starting and so the computation of initial acceleration vector is avoided, but the second-order accurate acceleration responses can be provided. Besides, the present method also achieves other desired numerical characteristics, such as the second-order accuracy of three primary variables, unconditional stability and no overshoots. Particularly, the novel method achieves adjustable numerical dissipations in the low and high frequency by controlling its two algorithmic parameters (γ and ρ∞). The classical dissipative parameter ρ∞ determines numerical dissipations in the high-frequency while γ adjusts numerical dissipations in the low-frequency. Linear and nonlinear numerical examples are given to show the superiority of the novel method over existing integration methods with respect to accuracy and overshoot.
In this paper, a novel implicit family of composite two sub-step algorithms with controllable dissipations is developed to effectively solve nonlinear structural dynamic problems. The primary superiority of the present method over other existing integration methods lies that it is truly self-starting and so the computation of initial acceleration vector is avoided, but the second-order accurate acceleration responses can be provided. Besides, the present method also achieves other desired numerical characteristics, such as the second-order accuracy of three primary variables, unconditional stability and no overshoots. Particularly, the novel method achieves adjustable numerical dissipations in the low and high frequency by controlling its two algorithmic parameters ( γ and ρ ∞ ). The classical dissipative parameter ρ ∞ determines numerical dissipations in the high-frequency while γ adjusts numerical dissipations in the low-frequency. Linear and nonlinear numerical examples are given to show the superiority of the novel method over existing integration methods with respect to accuracy and overshoot.
Author Li, Jinze
Yu, Kaiping
Author_xml – sequence: 1
  givenname: Jinze
  orcidid: 0000-0003-2563-1223
  surname: Li
  fullname: Li, Jinze
  organization: Department of Astronautic Science and Mechanics, Harbin Institute of Technology
– sequence: 2
  givenname: Kaiping
  orcidid: 0000-0002-7722-0138
  surname: Yu
  fullname: Yu, Kaiping
  email: kaipingyu1968@gmail.com
  organization: Department of Astronautic Science and Mechanics, Harbin Institute of Technology
BookMark eNp9kEtLQzEQhYMo2Kp_wFXAdXSS2_vIUsQXFNwodBemuUmN3CY1SZH-e2OvILjoahZzvjNzzpQc--ANIZccrjlAe5M4h5YzEMCg4cBZd0QmvG4rJhq5OCYTkGLGQMLilExT-gCASkA3IeGW5rgddjSZwbKUMWbnV9StN4PTLlOLa1e2wVLns1lFzC54isMqRJff14l-lUF7l5LbjDsdfI5hoDZEWr4cnDcYab_zxUmnc3JicUjm4neekbeH-9e7JzZ_eXy-u50zXXGZ2cw2s75fAgoheNsvbYXS1sA7bRo0DfAaZSu0XLYSddfU2KPm2GFXmKavl9UZuRp9NzF8bk3K6iNsoy8nlZi1lSjhZV1U3ajSMaQUjVUl8z5GjugGxUH91KvGelWpV-3rVV1BxT90E90a4-4wVI1QKmK_MvHvqwPUN4a5klY
CitedBy_id crossref_primary_10_1002_nme_7639
crossref_primary_10_1016_j_cma_2021_114274
crossref_primary_10_1016_j_istruc_2025_109232
crossref_primary_10_1002_nme_7291
crossref_primary_10_1007_s00419_024_02637_y
crossref_primary_10_1016_j_euromechsol_2022_104829
crossref_primary_10_1016_j_apm_2022_10_012
crossref_primary_10_1007_s00419_022_02286_z
crossref_primary_10_1007_s11071_021_06202_y
crossref_primary_10_1016_j_cma_2022_114945
crossref_primary_10_1016_j_compstruc_2022_106921
Cites_doi 10.1002/nme.1620151011
10.1002/eqe.4290010305
10.1016/j.cja.2020.05.005
10.1016/0045-7949(89)90315-5
10.1002/nme.1620372303
10.1016/j.compstruc.2018.03.006
10.1016/j.compstruc.2013.02.006
10.1002/eqe.4290150710
10.1016/j.cma.2014.08.007
10.1016/0045-7825(76)90008-6
10.1016/j.jcp.2009.12.028
10.1007/s00419-019-01637-7
10.1016/j.compstruc.2018.11.001
10.1061/JMCEA3.0000098
10.1016/j.apm.2019.11.033
10.1002/cnm.1630040211
10.1002/9781119965893
10.2514/6.1992-2330
10.1016/j.compstruc.2018.10.008
10.1002/nme.5329
10.1016/j.compstruc.2006.09.004
10.1016/j.compstruc.2019.05.015
10.1016/j.compstruc.2013.07.001
10.1007/s11071-019-04936-4
10.1007/s11071-014-1765-7
10.1115/1.2900803
10.1016/j.apm.2015.10.027
10.1115/1.3423600
10.1002/eqe.4290050306
10.1002/nme.6064
10.1016/j.apm.2018.12.027
10.1016/0045-7949(89)90314-3
10.1002/9781118375938
10.1016/j.apm.2019.08.022
10.1016/j.compstruc.2005.08.001
10.1002/nme.873
10.1002/nme.4715
10.1002/eqe.4290060111
10.1155/2018/1985907
ContentType Journal Article
Copyright Springer Nature B.V. 2020
Springer Nature B.V. 2020.
Copyright_xml – notice: Springer Nature B.V. 2020
– notice: Springer Nature B.V. 2020.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11071-020-06101-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 2530
ExternalDocumentID 10_1007_s11071_020_06101_8
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11372084
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-4f64ddb0a22217dbf3a9f5018ce6ae6015a972c9b79ac865adac1a8a8db06d5b3
IEDL.DBID RSV
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000592562400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-090X
IngestDate Wed Nov 05 00:44:35 EST 2025
Sat Nov 29 03:06:27 EST 2025
Tue Nov 18 22:06:50 EST 2025
Fri Feb 21 02:32:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Structural dynamics
Two sub-step scheme
Truly self-starting
Implicit integration algorithm
Controllable dissipation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-4f64ddb0a22217dbf3a9f5018ce6ae6015a972c9b79ac865adac1a8a8db06d5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2563-1223
0000-0002-7722-0138
PQID 2473220895
PQPubID 2043746
PageCount 28
ParticipantIDs proquest_journals_2473220895
crossref_citationtrail_10_1007_s11071_020_06101_8
crossref_primary_10_1007_s11071_020_06101_8
springer_journals_10_1007_s11071_020_06101_8
PublicationCentury 2000
PublicationDate 20201200
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References LiJYuKA novel family of composite sub-step algorithms with desired numerical dissipations for structural dynamicsArch. Appl. Mech.201990737772
SubbarajKDokainishMAA survey of direct time-integration methods in computational structural dynamics-II. implicit methods.Comput. Struct.19893261387140110179860702.73073
NickellRNonlinear dynamics by mode superpositionComput. Methods Appl. Mech. Eng.1976711071294554900316.73068
ZhouXTammaKKDesign, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamicsInt. J. Numer. Methods Eng.200459559766820316201068.74616
BenítezJMMontánsFJThe value of numerical amplification matrices in time integration methodsComput. Struct.20131285243250
MalakiyehMMShojaeeSBatheKJThe Bathe time integration method revisited for prescribing desired numerical dissipationComput. Struct.2019212289298
ChangSYDissipative, noniterative integration algorithms with unconditional stability for mildly nonlinear structural dynamic problemsNonlinear Dyn.201579216251649
ShimadaMHoitinkATammaKKThe fundamentals underlying the computations of acceleration for general dynamic applications: issues and noteworthy perspectivesCMES Comput. Model. Eng. Sci.20151042133158
de BorstRCrisfieldMANon-Linear Finite Element Analysis of Solids and Structures2012New YorkWiley Series in Computational Mechanics. Wiley1300.74002
NohGBatheKJThe Bathe time integration method with controllable spectral radius: the ρ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _\infty $$\end{document}-Bathe methodComput. Struct.2019212299310
HarJTammaKKAdvances in Computational Dynamics of Particles, Materials and Structures2012New YorkWiley1248.74001
LiJYuKNoniterative integration algorithms with controllable numerical dissipations for structural dynamicsInt. J. Comput. Methods20181531850111398522307086729
FernandesWLVasconcellosDBGrecoMDynamic instability in shallow arches under transversal forces and plane frames with semirigid connectionsMath. Probl. Eng.20182018114382524110.1155/2018/19859071426.74181
NewmarkNMA method of computation for structural dynamicsJ. Eng. Mech. Div.19598536794
LiJYuKAn alternative to the Bathe algorithmAppl. Math. Modell.201969255272389506007186525
BatheKJFinite Element Procedures20142Englewood CliffsPrentice-Hall1326.65002
ShaoHCaiCA three parameters algorithm for numerical integration of structural dynamic equationsChin. J. Appl. Mech.1988547681
ChungJHulbertGMA time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} methodJ. Appl. Mech.199360237137512239710775.73337
ZhangHMXingYFOptimization of a class of composite method for structural dynamicsComput. Struct.20182026073
Namburu, R.R., Tamma, K.K.: A generalized γs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _s$$\end{document}-family of self-starting algorithms for computational structural dynamics. In: AIAA Journal (1992)
ButcherJCThe Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods1987New JerseyJohn Wiley and Sons0616.65072
HilberHMHughesTJRTaylorRLImproved numerical dissipation for time integration algorithms in structural dynamicsEarthq. Eng. Struct. Dyn.197753283292
NohGBatheKJFor direct time integrations: a comparison of the Newmark and ρ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _\infty $$\end{document}-Bathe schemesComput. Struct.2019225106079
LiJYuKHeHA second-order accurate three sub-step composite algorithm for structural dynamicsAppl. Math. Modell.20207713911412402869307193034
LiJLiXYuKEnhanced studies on the composite sub-step algorithm for structural dynamics: the Bathe-like algorithmAppl. Math. Modell.2020803364404269107193114
WoodWLOduorMEStability properties of some algorithms for the solution of nonlinear dynamic vibration equationsCommun. Appl. Numer. Methods1988422052120643.65044
ShimadaMMasuriSTammaKKA novel design of an isochronous integration [iIntegration] framework for first/second order multidisciplinary transient systemsInt. J. Numer. Methods Eng.20151023–48678911352.65371
SoaresDJrA simple and effective new family of time marching procedures for dynamicsComput. Methods Appl. Mech. Eng.20142831138116632838041425.65077
WoodWBossakMZienkiewiczOAn alpha modification of Newmark’s methodInt. J. Numer. Methods Eng.19801510156215665953730441.73106
NohGHamSBatheKJPerformance of an implicit time integration scheme in the analysis of wave propagationsComput. Struct.201312393105
ChungJLeeJMA new family of explicit time integration methods for linear and non-linear structural dynamicsInt. J. Numer. Methods Eng.199437233961397613111450814.73074
HughesTJRThe Finite Element Method: Linear Static and Dynamic Finite Element Analysis2000DoverDover Publications, Dover Civil and Mechanical Engineering1191.74002
BatheKJBaigMMIOn a composite implicit time integration procedure for nonlinear dynamicsComput. Struct.20058331–32251325242174999
WilsonELFarhoomandIBatheKJNonlinear dynamic analysis of complex structuresEarthq. Eng. Struct. Dyn.197213241252
SoaresDJrA simple and effective single-step time marching technique based on adaptive time integratorsInt. J. Numer. Methods Eng.2016109134413683602565
BatheKJConserving energy and momentum in nonlinear dynamics: A simple implicit time integration schemeComputers & Structures2007857–84374452303506
HulbertGMHughesTJRAn error analysis of truncated starting conditions in step-by-step time integration: consequences for structural dynamicsEarthq. Eng. Struct. Dyn.1987157901910
LiJYuKLiXA novel family of controllably dissipative composite integration algorithms for structural dynamic analysisNonlinear Dyn.201996424752507
HeHTangHYuKLiJYangNZhangXNonlinear aeroelastic analysis of the folding fin with freeplay under thermal environmentChin. J. Aeronaut.202033923572371
DokainishMASubbarajKA survey of direct time-integration methods in computational structural dynamics-I. explicit methods.Comput. Struct.19893261371138610179850702.73072
HilberHMHughesTJRCollocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamicsEarthq. Eng. Struct. Dyn.19786199117
DongSBDF-like methods for nonlinear dynamic analysisJ. Comput. Phys.201022983019304525958061307.74069
ParkKCAn improved stiffly stable method for direct integration of nonlinear structural dynamic equationsJ. Appl. Mech.19754224644703759150342.65046
SoaresDAn implicit family of time marching procedures with adaptive dissipation controlAppl. Math. Modell.201640433253341345453007159254
SoaresDJrA model/solution-adaptive explicit-implicit time marching technique for wave propagation analysisInt. J. Numer. Methods Eng.20191195906173988562
J Li (6101_CR37) 2018; 15
W Wood (6101_CR13) 1980; 15
R de Borst (6101_CR12) 2012
K Subbaraj (6101_CR11) 1989; 32
J Li (6101_CR33) 2019; 96
D Soares Jr (6101_CR20) 2014; 283
X Zhou (6101_CR36) 2004; 59
JM Benítez (6101_CR18) 2013; 128
J Li (6101_CR31) 2020; 80
MA Dokainish (6101_CR10) 1989; 32
J Chung (6101_CR45) 1994; 37
GM Hulbert (6101_CR16) 1987; 15
6101_CR19
D Soares Jr (6101_CR23) 2019; 119
M Shimada (6101_CR15) 2015; 102
J Har (6101_CR7) 2012
J Li (6101_CR28) 2019; 90
EL Wilson (6101_CR5) 1972; 1
KJ Bathe (6101_CR2) 2014
NM Newmark (6101_CR4) 1959; 85
J Li (6101_CR40) 2020; 77
WL Fernandes (6101_CR43) 2018; 2018
R Nickell (6101_CR42) 1976; 7
G Noh (6101_CR32) 2013; 123
MM Malakiyeh (6101_CR29) 2019; 212
SY Chang (6101_CR34) 2015; 79
G Noh (6101_CR39) 2019; 225
H He (6101_CR44) 2020; 33
M Shimada (6101_CR17) 2015; 104
KJ Bathe (6101_CR25) 2007; 85
KC Park (6101_CR6) 1975; 42
TJR Hughes (6101_CR1) 2000
HM Hilber (6101_CR14) 1977; 5
G Noh (6101_CR30) 2019; 212
J Chung (6101_CR9) 1993; 60
S Dong (6101_CR27) 2010; 229
D Soares (6101_CR21) 2016; 40
H Shao (6101_CR8) 1988; 5
J Li (6101_CR26) 2019; 69
KJ Bathe (6101_CR24) 2005; 83
HM Hilber (6101_CR35) 1978; 6
HM Zhang (6101_CR38) 2018; 202
JC Butcher (6101_CR3) 1987
D Soares Jr (6101_CR22) 2016; 109
WL Wood (6101_CR41) 1988; 4
References_xml – reference: BatheKJConserving energy and momentum in nonlinear dynamics: A simple implicit time integration schemeComputers & Structures2007857–84374452303506
– reference: WilsonELFarhoomandIBatheKJNonlinear dynamic analysis of complex structuresEarthq. Eng. Struct. Dyn.197213241252
– reference: LiJYuKA novel family of composite sub-step algorithms with desired numerical dissipations for structural dynamicsArch. Appl. Mech.201990737772
– reference: HeHTangHYuKLiJYangNZhangXNonlinear aeroelastic analysis of the folding fin with freeplay under thermal environmentChin. J. Aeronaut.202033923572371
– reference: HulbertGMHughesTJRAn error analysis of truncated starting conditions in step-by-step time integration: consequences for structural dynamicsEarthq. Eng. Struct. Dyn.1987157901910
– reference: ShimadaMMasuriSTammaKKA novel design of an isochronous integration [iIntegration] framework for first/second order multidisciplinary transient systemsInt. J. Numer. Methods Eng.20151023–48678911352.65371
– reference: MalakiyehMMShojaeeSBatheKJThe Bathe time integration method revisited for prescribing desired numerical dissipationComput. Struct.2019212289298
– reference: HilberHMHughesTJRCollocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamicsEarthq. Eng. Struct. Dyn.19786199117
– reference: ChangSYDissipative, noniterative integration algorithms with unconditional stability for mildly nonlinear structural dynamic problemsNonlinear Dyn.201579216251649
– reference: NickellRNonlinear dynamics by mode superpositionComput. Methods Appl. Mech. Eng.1976711071294554900316.73068
– reference: NohGBatheKJThe Bathe time integration method with controllable spectral radius: the ρ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _\infty $$\end{document}-Bathe methodComput. Struct.2019212299310
– reference: SoaresDJrA model/solution-adaptive explicit-implicit time marching technique for wave propagation analysisInt. J. Numer. Methods Eng.20191195906173988562
– reference: SoaresDJrA simple and effective new family of time marching procedures for dynamicsComput. Methods Appl. Mech. Eng.20142831138116632838041425.65077
– reference: LiJYuKHeHA second-order accurate three sub-step composite algorithm for structural dynamicsAppl. Math. Modell.20207713911412402869307193034
– reference: NohGBatheKJFor direct time integrations: a comparison of the Newmark and ρ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _\infty $$\end{document}-Bathe schemesComput. Struct.2019225106079
– reference: LiJLiXYuKEnhanced studies on the composite sub-step algorithm for structural dynamics: the Bathe-like algorithmAppl. Math. Modell.2020803364404269107193114
– reference: LiJYuKLiXA novel family of controllably dissipative composite integration algorithms for structural dynamic analysisNonlinear Dyn.201996424752507
– reference: SubbarajKDokainishMAA survey of direct time-integration methods in computational structural dynamics-II. implicit methods.Comput. Struct.19893261387140110179860702.73073
– reference: HilberHMHughesTJRTaylorRLImproved numerical dissipation for time integration algorithms in structural dynamicsEarthq. Eng. Struct. Dyn.197753283292
– reference: FernandesWLVasconcellosDBGrecoMDynamic instability in shallow arches under transversal forces and plane frames with semirigid connectionsMath. Probl. Eng.20182018114382524110.1155/2018/19859071426.74181
– reference: de BorstRCrisfieldMANon-Linear Finite Element Analysis of Solids and Structures2012New YorkWiley Series in Computational Mechanics. Wiley1300.74002
– reference: Namburu, R.R., Tamma, K.K.: A generalized γs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _s$$\end{document}-family of self-starting algorithms for computational structural dynamics. In: AIAA Journal (1992)
– reference: WoodWBossakMZienkiewiczOAn alpha modification of Newmark’s methodInt. J. Numer. Methods Eng.19801510156215665953730441.73106
– reference: BatheKJFinite Element Procedures20142Englewood CliffsPrentice-Hall1326.65002
– reference: BenítezJMMontánsFJThe value of numerical amplification matrices in time integration methodsComput. Struct.20131285243250
– reference: WoodWLOduorMEStability properties of some algorithms for the solution of nonlinear dynamic vibration equationsCommun. Appl. Numer. Methods1988422052120643.65044
– reference: DokainishMASubbarajKA survey of direct time-integration methods in computational structural dynamics-I. explicit methods.Comput. Struct.19893261371138610179850702.73072
– reference: SoaresDJrA simple and effective single-step time marching technique based on adaptive time integratorsInt. J. Numer. Methods Eng.2016109134413683602565
– reference: ShimadaMHoitinkATammaKKThe fundamentals underlying the computations of acceleration for general dynamic applications: issues and noteworthy perspectivesCMES Comput. Model. Eng. Sci.20151042133158
– reference: LiJYuKAn alternative to the Bathe algorithmAppl. Math. Modell.201969255272389506007186525
– reference: HarJTammaKKAdvances in Computational Dynamics of Particles, Materials and Structures2012New YorkWiley1248.74001
– reference: ShaoHCaiCA three parameters algorithm for numerical integration of structural dynamic equationsChin. J. Appl. Mech.1988547681
– reference: ParkKCAn improved stiffly stable method for direct integration of nonlinear structural dynamic equationsJ. Appl. Mech.19754224644703759150342.65046
– reference: ZhouXTammaKKDesign, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamicsInt. J. Numer. Methods Eng.200459559766820316201068.74616
– reference: LiJYuKNoniterative integration algorithms with controllable numerical dissipations for structural dynamicsInt. J. Comput. Methods20181531850111398522307086729
– reference: NewmarkNMA method of computation for structural dynamicsJ. Eng. Mech. Div.19598536794
– reference: ButcherJCThe Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods1987New JerseyJohn Wiley and Sons0616.65072
– reference: ChungJHulbertGMA time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} methodJ. Appl. Mech.199360237137512239710775.73337
– reference: ZhangHMXingYFOptimization of a class of composite method for structural dynamicsComput. Struct.20182026073
– reference: ChungJLeeJMA new family of explicit time integration methods for linear and non-linear structural dynamicsInt. J. Numer. Methods Eng.199437233961397613111450814.73074
– reference: NohGHamSBatheKJPerformance of an implicit time integration scheme in the analysis of wave propagationsComput. Struct.201312393105
– reference: SoaresDAn implicit family of time marching procedures with adaptive dissipation controlAppl. Math. Modell.201640433253341345453007159254
– reference: DongSBDF-like methods for nonlinear dynamic analysisJ. Comput. Phys.201022983019304525958061307.74069
– reference: HughesTJRThe Finite Element Method: Linear Static and Dynamic Finite Element Analysis2000DoverDover Publications, Dover Civil and Mechanical Engineering1191.74002
– reference: BatheKJBaigMMIOn a composite implicit time integration procedure for nonlinear dynamicsComput. Struct.20058331–32251325242174999
– volume: 15
  start-page: 1562
  issue: 10
  year: 1980
  ident: 6101_CR13
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620151011
– volume: 1
  start-page: 241
  issue: 3
  year: 1972
  ident: 6101_CR5
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.4290010305
– volume: 33
  start-page: 2357
  issue: 9
  year: 2020
  ident: 6101_CR44
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2020.05.005
– volume: 32
  start-page: 1387
  issue: 6
  year: 1989
  ident: 6101_CR11
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(89)90315-5
– volume: 37
  start-page: 3961
  issue: 23
  year: 1994
  ident: 6101_CR45
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620372303
– volume: 202
  start-page: 60
  year: 2018
  ident: 6101_CR38
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2018.03.006
– volume: 123
  start-page: 93
  year: 2013
  ident: 6101_CR32
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2013.02.006
– volume: 104
  start-page: 133
  issue: 2
  year: 2015
  ident: 6101_CR17
  publication-title: CMES Comput. Model. Eng. Sci.
– volume: 15
  start-page: 901
  issue: 7
  year: 1987
  ident: 6101_CR16
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.4290150710
– volume: 283
  start-page: 1138
  year: 2014
  ident: 6101_CR20
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.08.007
– volume: 7
  start-page: 107
  issue: 1
  year: 1976
  ident: 6101_CR42
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(76)90008-6
– volume-title: Finite Element Procedures
  year: 2014
  ident: 6101_CR2
– volume: 229
  start-page: 3019
  issue: 8
  year: 2010
  ident: 6101_CR27
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.12.028
– volume: 90
  start-page: 737
  year: 2019
  ident: 6101_CR28
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-019-01637-7
– volume: 5
  start-page: 76
  issue: 4
  year: 1988
  ident: 6101_CR8
  publication-title: Chin. J. Appl. Mech.
– volume: 212
  start-page: 299
  year: 2019
  ident: 6101_CR30
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2018.11.001
– volume: 85
  start-page: 67
  issue: 3
  year: 1959
  ident: 6101_CR4
  publication-title: J. Eng. Mech. Div.
  doi: 10.1061/JMCEA3.0000098
– volume: 80
  start-page: 33
  year: 2020
  ident: 6101_CR31
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2019.11.033
– volume: 4
  start-page: 205
  issue: 2
  year: 1988
  ident: 6101_CR41
  publication-title: Commun. Appl. Numer. Methods
  doi: 10.1002/cnm.1630040211
– volume-title: Advances in Computational Dynamics of Particles, Materials and Structures
  year: 2012
  ident: 6101_CR7
  doi: 10.1002/9781119965893
– ident: 6101_CR19
  doi: 10.2514/6.1992-2330
– volume: 212
  start-page: 289
  year: 2019
  ident: 6101_CR29
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2018.10.008
– volume: 109
  start-page: 1344
  year: 2016
  ident: 6101_CR22
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.5329
– volume: 85
  start-page: 437
  issue: 7–8
  year: 2007
  ident: 6101_CR25
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2006.09.004
– volume: 225
  start-page: 106079
  year: 2019
  ident: 6101_CR39
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2019.05.015
– volume-title: The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods
  year: 1987
  ident: 6101_CR3
– volume: 128
  start-page: 243
  issue: 5
  year: 2013
  ident: 6101_CR18
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2013.07.001
– volume: 96
  start-page: 2475
  issue: 4
  year: 2019
  ident: 6101_CR33
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-04936-4
– volume: 79
  start-page: 1625
  issue: 2
  year: 2015
  ident: 6101_CR34
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1765-7
– volume: 60
  start-page: 371
  issue: 2
  year: 1993
  ident: 6101_CR9
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2900803
– volume: 40
  start-page: 3325
  issue: 4
  year: 2016
  ident: 6101_CR21
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2015.10.027
– volume: 42
  start-page: 464
  issue: 2
  year: 1975
  ident: 6101_CR6
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3423600
– volume: 15
  start-page: 1850111
  issue: 3
  year: 2018
  ident: 6101_CR37
  publication-title: Int. J. Comput. Methods
– volume: 5
  start-page: 283
  issue: 3
  year: 1977
  ident: 6101_CR14
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.4290050306
– volume: 119
  start-page: 590
  year: 2019
  ident: 6101_CR23
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.6064
– volume: 69
  start-page: 255
  year: 2019
  ident: 6101_CR26
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2018.12.027
– volume: 32
  start-page: 1371
  issue: 6
  year: 1989
  ident: 6101_CR10
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(89)90314-3
– volume-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
  year: 2000
  ident: 6101_CR1
– volume-title: Non-Linear Finite Element Analysis of Solids and Structures
  year: 2012
  ident: 6101_CR12
  doi: 10.1002/9781118375938
– volume: 77
  start-page: 1391
  year: 2020
  ident: 6101_CR40
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2019.08.022
– volume: 83
  start-page: 2513
  issue: 31–32
  year: 2005
  ident: 6101_CR24
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2005.08.001
– volume: 59
  start-page: 597
  issue: 5
  year: 2004
  ident: 6101_CR36
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.873
– volume: 102
  start-page: 867
  issue: 3–4
  year: 2015
  ident: 6101_CR15
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4715
– volume: 6
  start-page: 99
  issue: 1
  year: 1978
  ident: 6101_CR35
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.4290060111
– volume: 2018
  start-page: 1
  year: 2018
  ident: 6101_CR43
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2018/1985907
SSID ssj0003208
Score 2.3716826
Snippet In this paper, a novel implicit family of composite two sub-step algorithms with controllable dissipations is developed to effectively solve nonlinear...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2503
SubjectTerms Algorithms
Automotive Engineering
Classical Mechanics
Control
Dynamical Systems
Engineering
Mechanical Engineering
Nonlinear control
Nonlinear dynamics
Original Paper
Parameters
Stability
Vibration
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509aAH3-L6IgdvWuwjTdOTqCieFhGFvZVJ2ujCurtuq-C_d9Kmrgp68VZokwa-yWRe-QbgyE9UwFVktZ8UHpex72GA9BQbbjRGHH1TN5tIej3Z76e3LuBWurLKVifWijofaxsjPw15QrLnyzQ-m7x4tmuUza66FhrzsGCZyngHFi6uerd3n7o4CuuedD55GTYi0XfXZprLc-T5kCsd2sYrJJie_H40zezNHynS-uS5Xv3vmtdgxdmc7LwRknWYK0YbsOrsT-Z2d7kBy1_ICTdhfM6q6evwnZXF0HhkRFq-gUc2qEvQBxVrQiNsbFhLOUEQMxw-0gqqp-eS2RAvs_l-V7XNXFk8IzuZjRqKDpyy_H1EM-lyCx6ur-4vbzzXnsHTtG8rjxvB81z5SCZGkOTKRJgayw-oC4EFOXoxpkmoU5WkqKWIMUcdoERJY0Qeq2gbOvSzYgdYpIROeaQMoiIREaj8RKAUiKEwQqguBC0ymXbc5baFxjCbsS5bNDNCM6vRzGQXjj_HTBrmjj-_3m8hzNwuLrMZfl04aYVg9vr32Xb_nm0PlkIrd3VVzD50CM3iABb1WzUop4dOhj8AsfX5lw
  priority: 102
  providerName: ProQuest
Title A truly self-starting implicit family of integration algorithms with dissipation control for nonlinear dynamics
URI https://link.springer.com/article/10.1007/s11071-020-06101-8
https://www.proquest.com/docview/2473220895
Volume 102
WOSCitedRecordID wos000592562400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Core Collection
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-o86AHv8X5MXLwpoV-pulRZcPTGE5lt_KSNnMwN1mr4H_vS5c6FRX0VmiSlrzvvJffAzh1Y-mFMjDaT3AnFJHroIf0FOlQKwxCdHXVbCLudsVgkPTspbCirnavU5KVpl5cdqNIhUJf3zRKIUZyxDI0yNwJI443_ft3_Rv4VR86lyILcwoxsFdlvl_jszla-Jhf0qKVtels_u8_t2DDepfsYs4O27CUT3Zg03qazMpxsQPrH2AId2F6wcrZ8_iVFflYO-QuGmSBIRtVxeajks0PQdhUsxpcgojJcDyczkblw2PBzGEuM5l9W5_NbAE8I4-YTeZgHDhj2euEVlLFHtx12rdX145txOAoktDSCTUPs0y6SM6EF2dSB5hogwSoco45hXQRJrGvEhknqASPMEPloUBBc3gWyWAfVuhj-QGwQHKVhIHUiJKYgaN0Y46CI_pccy6b4NX0SJVFKTfNMsbpAl_Z7G9K-5tW-5uKJpy9z3maY3T8Ovq4JnNq5bVI_TAmzeaKJGrCeU3WxeufVzv82_AjWPMNZ1T1MMewQtTNT2BVvZSjYtaCxmW727tpmQLUfqvi6jd8ifCl
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQcKBQQCwXmACeIyIfjOAeEKqBq1bJCokh7C2MnListu2UTQPun-I2MHacLSPTWA7dISSaK_WY8Mx6_AXgSFzoROnPWT8lIqDyOKCG-yq2whjJBsfXNJorxWE0m5fsN-DmchXFllYNN9Ia6XhiXI3-RioKxF6syf3X6NXJdo9zu6tBCo4fFYbP6wSFb-_LgDc_v0zTde3v8ej8KXQUiw3DrImGlqGsdE6-MSVFrm1FpHa2daSQ1HJ_kVBapKXVRklEyp5pMQooUvyPrXGcs9xJcFs76-1LBD2eWP0t9B7yYYxqX_5iEQzr9UT2OszhwT12bF1aDSP25EK692782ZP06t7f1v43QTbgRPGrc7VXgFmw0823YCt41BtvVbsP136gXb8NiF7vlt9kK22ZmI3aRHZvCCU59gf20wz7xgwuLA6EGAxhpdsJ_3H3-0qJLYKOrZgg16RiK_pGjAJz3BCS0xHo1Z0mmvQMfL2QQ7sImf6y5B5hpaUqRaUukWQEk6biQpCRRKq2UegTJgITKBGZ21yBkVq05pR16KkZP5dFTqRE8O3vntOclOffpnQEyVbBRbbXGywieD6Bb3_63tPvnS3sMV_eP3x1VRwfjwwdwLXWY9_U_O7DJM9s8hCvmezdtl4-89iB8umgw_gLzYFeZ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_WrJT1oVmzjabNOj30bTP1hyzLj6Vt2FgJgX2QN3OSrTaQJSF2B_3vd7LlJCvdYOzNYOlsdCfpPn8HcOYnKuAqsqefFB6Xse9hgPQUG240Rhx9UzebSEYjOZmk460q_jrbvQ1JNjUNFqVpXp0vc3O-KXwjq4XM4NA2TSGh8uQOPOe2aZC11798X5_FUVj3pPPJyrAeiYkrm3maxu9X00bffBQirW-eYff___klHDitk100YnIIz4p5D7pOA2Vuf5c92N-CJ3wFiwtWre5nD6wsZsYjNdIiDtyyaZ2EPq1Y4xxhC8Na0AliMsPZ7WI1re5-lMw6eZmN-Lu8beYS4xlpymzegHTgiuUPc6Kky9fwbXj99fKj5xo0eJp2buVxI3ieKx9JyQiSXJkIU2MRAnUhsCBTL8Y0CXWqkhS1FDHmqAOUKGmOyGMVvYEOfaw4AhYpoVMeKYOoSEgEKj8RKAViKIwQqg9By5tMO_Ry20Rjlm1wl-36ZrS-Wb2-mezD-_WcZYPd8dfRg5blmdvHZRbyhE48X6ZxHz60LN68_jO1438b_g72xlfD7ObT6PMJvAitkNQpMwPoEKOLt7Crf1bTcnVai_cvhaz52w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+truly+self-starting+implicit+family+of+integration+algorithms+with+dissipation+control+for+nonlinear+dynamics&rft.jtitle=Nonlinear+dynamics&rft.au=Li%2C+Jinze&rft.au=Yu%2C+Kaiping&rft.date=2020-12-01&rft.pub=Springer+Netherlands&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=102&rft.issue=4&rft.spage=2503&rft.epage=2530&rft_id=info:doi/10.1007%2Fs11071-020-06101-8&rft.externalDocID=10_1007_s11071_020_06101_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon