Multi-kernel optimized relevance vector machine for probabilistic prediction of concrete dam displacement
The observation data of dam displacement can reflect the dam’s actual service behavior intuitively. Therefore, the establishment of a precise data-driven model to realize accurate and reliable safety monitoring of dam deformation is necessary. This study proposes a novel probabilistic prediction app...
Saved in:
| Published in: | Engineering with computers Vol. 37; no. 3; pp. 1943 - 1959 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Springer London
01.07.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0177-0667, 1435-5663 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The observation data of dam displacement can reflect the dam’s actual service behavior intuitively. Therefore, the establishment of a precise data-driven model to realize accurate and reliable safety monitoring of dam deformation is necessary. This study proposes a novel probabilistic prediction approach for concrete dam displacement based on optimized relevance vector machine (ORVM). A practical optimization framework for parameters estimation using the parallel Jaya algorithm (PJA) is developed, and various simple kernel/multi-kernel functions of relevance vector machine (RVM) are tested to obtain the optimal selection. The proposed model is tested on radial displacement measurements of a concrete arch dam to mine the effect of hydrostatic, seasonal and irreversible time components on dam deformation. Four algorithms, including support vector regression (SVR), radial basis function neural network (RBF-NN), extreme learning machine (ELM) and the HST-based multiple linear regression (HST-MLR), are used for comparison with the ORVM model. The simulation results demonstrate that the proposed multi-kernel ORVM model has the best performance for predicting the displacement out of range of the used measurements dataset. Meanwhile, the ORVM model has the advantages of probabilistic output and can provide reasonable confidence interval (CI) for dam safety monitoring. This study lays the foundation for the application of RVM in the field of dam health monitoring. |
|---|---|
| AbstractList | The observation data of dam displacement can reflect the dam’s actual service behavior intuitively. Therefore, the establishment of a precise data-driven model to realize accurate and reliable safety monitoring of dam deformation is necessary. This study proposes a novel probabilistic prediction approach for concrete dam displacement based on optimized relevance vector machine (ORVM). A practical optimization framework for parameters estimation using the parallel Jaya algorithm (PJA) is developed, and various simple kernel/multi-kernel functions of relevance vector machine (RVM) are tested to obtain the optimal selection. The proposed model is tested on radial displacement measurements of a concrete arch dam to mine the effect of hydrostatic, seasonal and irreversible time components on dam deformation. Four algorithms, including support vector regression (SVR), radial basis function neural network (RBF-NN), extreme learning machine (ELM) and the HST-based multiple linear regression (HST-MLR), are used for comparison with the ORVM model. The simulation results demonstrate that the proposed multi-kernel ORVM model has the best performance for predicting the displacement out of range of the used measurements dataset. Meanwhile, the ORVM model has the advantages of probabilistic output and can provide reasonable confidence interval (CI) for dam safety monitoring. This study lays the foundation for the application of RVM in the field of dam health monitoring. |
| Author | Gu, Chongshi Chen, Siyu Lin, Chaoning Zhang, Kang Zhu, Yantao |
| Author_xml | – sequence: 1 givenname: Siyu orcidid: 0000-0003-1070-9761 surname: Chen fullname: Chen, Siyu organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, College of Water Conservancy and Hydropower Engineering, Hohai University, National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University – sequence: 2 givenname: Chongshi orcidid: 0000-0002-0782-7196 surname: Gu fullname: Gu, Chongshi email: csgu@hhu.edu.cn organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, College of Water Conservancy and Hydropower Engineering, Hohai University, National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University – sequence: 3 givenname: Chaoning orcidid: 0000-0001-5615-308X surname: Lin fullname: Lin, Chaoning email: linchaoning@hhu.edu.cn organization: College of Water Conservancy and Hydropower Engineering, Hohai University – sequence: 4 givenname: Kang surname: Zhang fullname: Zhang, Kang organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, College of Water Conservancy and Hydropower Engineering, Hohai University, National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University – sequence: 5 givenname: Yantao surname: Zhu fullname: Zhu, Yantao organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, College of Water Conservancy and Hydropower Engineering, Hohai University, National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University |
| BookMark | eNp9kMFvFSEQxompia_Vf8ATSc_osLAsHE3TqkmbXvRMgJ1V6i68Aq-J_vVSn0mTHnqameT7zXzznZKTlBMS8p7DBw4wfawAQikG3DAAM0hmXpEdl2Jko1LihOyATxMDpaY35LTWOwAuunBH4s1hbZH9wpJwpXnf4hb_4EwLrvjgUkD6gKHlQjcXfsaEdOn9vmTvfFxjbTH0CecYWsyJ5oWGnELBhnR2G51j3a8u4IapvSWvF7dWfPe_npHvV5ffLr6w69vPXy8-XbMguGlMLlKNQ5jELJWe_cQBlQmT10JopTnnQXrlBzNoGLheloDKo0AxmdmDRC_OyPlxb3d5f8Da7F0-lNRP2mGUWhs1guwqfVSFkmstuNgQm3t8ohUXV8vBPgZrj8HaHqz9F6w1HR2eofsSN1d-vwyJI1S7OP3A8uTqBeov1Z2Osw |
| CitedBy_id | crossref_primary_10_1155_2021_6950538 crossref_primary_10_1007_s00366_022_01675_w crossref_primary_10_1007_s11581_024_06049_4 crossref_primary_10_1038_s41598_024_84556_0 crossref_primary_10_1177_14759217241282738 crossref_primary_10_1089_big_2022_0125 crossref_primary_10_1016_j_measurement_2023_113579 crossref_primary_10_1016_j_aei_2022_101863 crossref_primary_10_1016_j_autcon_2025_106079 crossref_primary_10_1155_2020_6404819 crossref_primary_10_1016_j_ndteint_2024_103271 crossref_primary_10_1088_1361_6501_ad2e68 crossref_primary_10_3390_w16030395 crossref_primary_10_1016_j_jmapro_2022_10_072 crossref_primary_10_1007_s10706_023_02643_x crossref_primary_10_1088_1361_6501_ad850d crossref_primary_10_3390_jcs8030096 crossref_primary_10_1109_ACCESS_2024_3383016 crossref_primary_10_1080_19648189_2022_2090445 crossref_primary_10_1007_s12652_025_04960_w crossref_primary_10_1109_ACCESS_2021_3056588 crossref_primary_10_1007_s00366_021_01594_2 crossref_primary_10_1016_j_compgeo_2023_105611 crossref_primary_10_1049_cit2_12111 crossref_primary_10_3390_buildings15030357 crossref_primary_10_1007_s13349_021_00538_0 crossref_primary_10_1016_j_engappai_2023_106813 crossref_primary_10_1016_j_aei_2024_102367 crossref_primary_10_1016_j_engappai_2024_108586 crossref_primary_10_3390_app10165700 crossref_primary_10_1002_stc_2809 crossref_primary_10_1016_j_istruc_2024_108094 crossref_primary_10_1016_j_oceaneng_2023_113969 crossref_primary_10_14796_JWMM_H554 crossref_primary_10_1007_s00366_020_00956_6 crossref_primary_10_1007_s13349_023_00733_1 crossref_primary_10_1016_j_eswa_2022_117272 crossref_primary_10_1007_s12665_023_11214_5 crossref_primary_10_1016_j_asoc_2024_112321 crossref_primary_10_1111_mice_12654 crossref_primary_10_1016_j_engstruct_2022_114686 crossref_primary_10_3390_w16192755 crossref_primary_10_3390_app132212457 crossref_primary_10_1016_j_aei_2024_102574 crossref_primary_10_1007_s00366_021_01515_3 crossref_primary_10_3390_w17182766 crossref_primary_10_1002_nag_3812 crossref_primary_10_1177_01423312211018305 crossref_primary_10_1016_j_istruc_2024_107072 crossref_primary_10_1016_j_eswa_2025_129135 crossref_primary_10_1007_s40996_022_00906_w crossref_primary_10_1109_TIM_2023_3326232 crossref_primary_10_1007_s10661_020_08724_1 crossref_primary_10_3390_app13031456 crossref_primary_10_1016_j_aei_2022_101615 crossref_primary_10_1007_s41939_023_00264_8 crossref_primary_10_1007_s11440_023_02048_3 crossref_primary_10_1007_s00366_021_01331_9 crossref_primary_10_1155_2022_8711607 crossref_primary_10_32604_cmes_2022_018325 crossref_primary_10_3390_geosciences15030110 crossref_primary_10_1016_j_istruc_2021_11_048 crossref_primary_10_1061__ASCE_GM_1943_5622_0002401 crossref_primary_10_1177_14759217221142006 |
| Cites_doi | 10.1155/2018/1712653 10.1016/j.camwa.2011.09.057 10.1002/stc.2074 10.1007/s00521-016-2666-0 10.1007/s11431-016-0213-y 10.1016/0167-2789(86)90240-X 10.1162/neco.1992.4.3.415 10.1007/s00366-016-0483-9 10.1016/j.strusafe.2014.02.004 10.1016/j.gloplacha.2017.12.018 10.1016/j.engstruct.2018.11.065 10.1007/s00521-014-1690-1 10.1162/15324430152748236 10.1016/j.neucom.2005.12.126 10.1016/j.strusafe.2015.05.001 10.1007/s11431-010-0053-0 10.1016/j.apm.2018.12.014 10.1007/s13369-019-04095-z 10.1016/j.acme.2017.09.003 10.1002/stc.2304 10.1061/(ASCE)ST.1943-541X.0002467 10.1007/s00366-016-0484-8 10.1016/j.engstruct.2019.109657 10.1016/j.engstruct.2019.109631 10.1016/j.soildyn.2017.09.016 10.1007/s11431-011-4573-z 10.1016/j.advengsoft.2013.06.019 10.1162/neco.1989.1.2.281 10.1016/j.engstruct.2010.12.011 10.1109/Tpel.2015.2393373 10.1007/s00521-019-04375-7 10.1016/j.ymssp.2019.06.029 10.1080/0305215X.2016.1164855 10.1007/s10898-007-9149-x 10.1016/j.ymssp.2019.03.023 10.1002/stc.1997 10.1002/stc.1767 10.1007/s11831-015-9157-9 10.1007/s11227-019-02759-z 10.1002/stc.1575 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2020 Springer-Verlag London Ltd., part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2020 – notice: Springer-Verlag London Ltd., part of Springer Nature 2020. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
| DOI | 10.1007/s00366-019-00924-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1435-5663 |
| EndPage | 1959 |
| ExternalDocumentID | 10_1007_s00366_019_00924_9 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: Grant No. 51739003; Grant No. 51779086 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Key R&D Program of Guangxi grantid: AB17195074 – fundername: Special Project Funded of National Key Laboratory grantid: 20165042112 – fundername: National Key R&D Program of China grantid: 2018YFC0407104; 2016YFC0401601 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9O PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR Z45 Z5O Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z8W Z92 ZMTXR ZY4 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7TB 7XB 8AL 8FD 8FK AEUYN FR3 JQ2 KR7 L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-4f4652c73d468db710e69c7b833868111c4b6b29280218ffce6be3e379db04eb3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 84 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000574106400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0177-0667 |
| IngestDate | Tue Dec 02 15:55:48 EST 2025 Tue Nov 18 20:57:54 EST 2025 Sat Nov 29 06:25:17 EST 2025 Fri Feb 21 02:48:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Multi-kernel Jaya optimization algorithm Optimized relevance vector machine Prediction model Dam health monitoring |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-4f4652c73d468db710e69c7b833868111c4b6b29280218ffce6be3e379db04eb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5615-308X 0000-0002-0782-7196 0000-0003-1070-9761 |
| PQID | 2548896504 |
| PQPubID | 326339 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2548896504 crossref_citationtrail_10_1007_s00366_019_00924_9 crossref_primary_10_1007_s00366_019_00924_9 springer_journals_10_1007_s00366_019_00924_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20210700 2021-07-00 20210701 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 7 year: 2021 text: 20210700 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationSubtitle | An International Journal for Simulation-Based Engineering |
| PublicationTitle | Engineering with computers |
| PublicationTitleAbbrev | Engineering with Computers |
| PublicationYear | 2021 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | GuCSLiBXuGLYuHBack analysis of mechanical parameters of roller compacted concrete damScience China-Technological Sciences201053384885310.1007/s11431-010-0053-01383.74027 Hariri-ArdebiliMABarakSA series of forecasting models for seismic evaluation of dams based on ground motion meta-featuresEngineering Structures201910.1016/j.engstruct.2019.109657 SalazarFToledoMAOnateEMoranRAn empirical comparison of machine learning techniques for dam behaviour modellingStruct Saf20155691710.1016/j.strusafe.2015.05.001 SalazarFMoránRToledoMAOñateEData-Based Models for the Prediction of Dam Behaviour: A Review and Some Methodological ConsiderationsArchives of Computational Methods in Engineering201524112110.1007/s11831-015-9157-91360.74017 Hariri-ArdebiliMASudretBPolynomial chaos expansion for uncertainty quantification of dam engineering problemsEngineering Structures201910.1016/j.engstruct.2019.109631 Hariri-ArdebiliMAPourkamali-AnarakiFSupport vector machine based reliability analysis of concrete damsSoil Dynamics and Earthquake Engineering201810427629510.1016/j.soildyn.2017.09.016 Eberhart R, Kennedy J A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. Ieee, pp 39-43 HollandJHAdaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artificial intelligence1975Ann ArborUniversity of Michigan Press0317.68006 Li XL (2003) A new intelligent optimization-artificial fish swarm algorithm. PhD Dissertation, Zhejiang University SuHZChenZXWenZPPerformance improvement method of support vector machine-based model monitoring dam safetyStructural Control & Health Monitoring201623225226610.1002/stc.1767 KangFLiuJLiJJLiSJConcrete dam deformation prediction model for health monitoring based on extreme learning machineStructural Control & Health Monitoring201710.1002/stc.1997 BuiK-TTTien BuiDZouJVan DoanCRevhaugIA novel hybrid artificial intelligent approach based on neural fuzzy inference model and particle swarm optimization for horizontal displacement modeling of hydropower damNeural Computing and Applications201629121495150610.1007/s00521-016-2666-0 Gu CS, Wu ZR (2006) Safety monitoring of dams and dam foundations-theories & methods and their application. Hohai University Press Hariri-ArdebiliMAPourkamali-AnarakiFSimplified reliability analysis of multi hazard risk in gravity dams via machine learning techniquesArch Civ Mech Eng201818259261010.1016/j.acme.2017.09.003 Hariri-ArdebiliMAPourkamali-AnarakiFMatrix completion for cost reduction in finite element simulations under hybrid uncertaintiesApplied Mathematical Modelling201969164180389423810.1016/j.apm.2018.12.01407186521 HuangGBZhuQYSiewCKExtreme learning machine: Theory and applicationsNeurocomputing2006701–348950110.1016/j.neucom.2005.12.126 LiuCGGuCSChenBZoned elasticity modulus inversion analysis method of a high arch dam based on unconstrained Lagrange support vector regression (support vector regression arch dam)Engineering with Computers201733344345610.1007/s00366-016-0483-9 GuCSWangYCPengYXuBSIll-conditioned problems of dam safety monitoring models and their processing methodsScience China-Technological Sciences201154123275328010.1007/s11431-011-4573-z1239.74099 ChenSYGuCSLinCNZhaoEFSongJTSafety Monitoring Model of a Super-High Concrete Dam by Using RBF Neural Network Coupled with Kernel Principal Component AnalysisMathematical Problems in Engineering2018201811310.1155/2018/1712653 ImaniMKaoHCLanWHKuoCYDaily sea level prediction at Chiayi coast, Taiwan using extreme learning machine and relevance vector machineGlobal Planet Change201816121122110.1016/j.gloplacha.2017.12.018 WuZRSafety monitoring theory and its application of hydraulic structures2003BeijingHigher Education SunPMBaoTFGuCSJiangMWangTShiZWParameter sensitivity and inversion analysis of a concrete faced rock-fill dam based on HS-BPNN algorithmScience China-Technological Sciences20165991442145110.1007/s11431-016-0213-y KangFLiJJDisplacement Model for Concrete Dam Safety Monitoring via Gaussian Process Regression Considering Extreme Air TemperatureJournal of Structural Engineering201914610501900110.1061/(ASCE)ST.1943-541X.0002467 MoodyJDarkenCJFast Learning in Networks of Locally-Tuned Processing UnitsNeural Computation19891228129410.1162/neco.1989.1.2.281 RaoRJaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problemsInternational Journal of Industrial Engineering Computations2016711934 TippingMESparse Bayesian learning and the relevance vector machineJournal of Machine Learning Research200113211244187583810.1162/153244301527482360997.68109 Berger JO (2013) Statistical decision theory and Bayesian analysis. Springer Science & Business Media KangFLiJJZhaoSZWangYJStructural health monitoring of concrete dams using long-term air temperature for thermal effect simulationEngineering Structures201918064265310.1016/j.engstruct.2018.11.065 RankovicVGrujovicNDivacDMilivojevicNDevelopment of support vector regression identification model for prediction of dam structural behaviourStruct Saf201448333910.1016/j.strusafe.2014.02.004 KongDDChenYJLiNDuanCQLuLXChenDXRelevance vector machine for tool wear predictionMechanical Systems and Signal Processing201912757359410.1016/j.ymssp.2019.03.023 DingZHLiJHaoHStructural damage identification using improved Jaya algorithm based on sparse regularization and Bayesian inferenceMechanical Systems and Signal Processing201913221123110.1016/j.ymssp.2019.06.029 KangFLiuXLiJConcrete Dam Behavior Prediction Using Multivariate Adaptive Regression Splines with Measured Air TemperatureArabian Journal for Science and Engineering201910.1007/s13369-019-04095-z ShiYQYangJJWuJLHeJPA statistical model of deformation during the construction of a concrete face rockfill damStructural Control & Health Monitoring201810.1002/stc.2074 VapnikVGolowichSESmolaASupport vector method for function approximation, regression estimation, and signal processingAdv Neur In19979281287 RaoRWaghmareGGA new optimization algorithm for solving complex constrained design optimization problemsEngineering Optimization2017491608310.1080/0305215X.2016.1164855 KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJournal of global optimization2007393459471234617810.1007/s10898-007-9149-x MacKay DJJNc (1992) Bayesian interpolation. 4 (3):415-447 LinCNLiTCLiuXQZhaoLHChenSYQiHJA deformation separation method for gravity dam body and foundation based on the observed displacementsStructural Control & Health Monitoring201910.1002/stc.2304 Zhao EF (2018) Dam Safety Monitoring Data Analysis Theory & Assessment Methods. Hohai University Press FarmerJDPackardNHPerelsonASThe Immune-System, Adaptation, and Machine LearningPhysica D1986221–318720487816010.1016/0167-2789(86)90240-X MigallonHJimeno-MorenillaASanchez-RomeroJLRicoHRaoRVMultipopulation-based multi-level parallel enhanced Jaya algorithmsJ Supercomput20197531697171610.1007/s11227-019-02759-z XiGYYueJPZhouBXTangPApplication of an artificial immune algorithm on a statistical model of dam displacementComputers & Mathematics with Applications2011621039803986285211510.1016/j.camwa.2011.09.0571236.62166 StojanovicBMilivojevicMIvanovicMMilivojevicNDivacDAdaptive system for dam behavior modeling based on linear regression and genetic algorithmsAdvances in Engineering Software20136518219010.1016/j.advengsoft.2013.06.019 AbhishekKKumarVRDattaSMahapatraSSApplication of JAYA algorithm for the optimization of machining performance characteristics during the turning of CFRP (epoxy) composites: comparison with TLBO, GA, and ICAEngineering with Computers201733345747510.1007/s00366-016-0484-8 LinCNLiTCChenSYLiuXQLinCLiangSLGaussian process regression-based forecasting model of dam deformationNeural Comput Appl201931128503851810.1007/s00521-019-04375-7 MataJInterpretation of concrete dam behaviour with artificial neural network and multiple linear regression modelsEngineering Structures201133390391010.1016/j.engstruct.2010.12.011 ZhangZFLiuZBZhengLFZhangYDevelopment of an adaptive relevance vector machine approach for slope stability inferenceNeural Comput Appl2014257–82025203510.1007/s00521-014-1690-1 MataJde CastroATda CostaJSConstructing statistical models for arch dam deformationStructural Control & Health Monitoring201421342343710.1002/stc.1575 WangTZXuHHanJGElbouchikhiEBenbouzidMEHCascaded H-Bridge Multilevel Inverter System Fault Diagnosis Using a PCA and Multiclass Relevance Vector Machine ApproachIeee T Power Electr201530127006701810.1109/Tpel.2015.2393373 924_CR41 924_CR2 924_CR42 PM Sun (924_CR9) 2016; 59 K Abhishek (924_CR45) 2017; 33 924_CR46 924_CR47 GB Huang (924_CR25) 2006; 70 GY Xi (924_CR13) 2011; 62 MA Hariri-Ardebili (924_CR17) 2019 D Karaboga (924_CR43) 2007; 39 MA Hariri-Ardebili (924_CR18) 2019; 69 B Stojanovic (924_CR11) 2013; 65 K-TT Bui (924_CR29) 2016; 29 ZH Ding (924_CR44) 2019; 132 J Moody (924_CR20) 1989; 1 ME Tipping (924_CR33) 2001; 1 JD Farmer (924_CR40) 1986; 22 F Kang (924_CR23) 2019; 180 CN Lin (924_CR8) 2019 YQ Shi (924_CR3) 2018 HZ Su (924_CR27) 2016; 23 924_CR4 MA Hariri-Ardebili (924_CR15) 2018; 18 F Kang (924_CR30) 2019 R Rao (924_CR48) 2017; 49 F Salazar (924_CR5) 2015; 56 J Mata (924_CR7) 2014; 21 V Rankovic (924_CR28) 2014; 48 SY Chen (924_CR22) 2018; 2018 R Rao (924_CR38) 2016; 7 DD Kong (924_CR37) 2019; 127 CN Lin (924_CR31) 2019; 31 F Kang (924_CR24) 2017 F Kang (924_CR32) 2019; 146 TZ Wang (924_CR36) 2015; 30 JH Holland (924_CR39) 1975 CS Gu (924_CR12) 2010; 53 MA Hariri-Ardebili (924_CR19) 2019 F Salazar (924_CR6) 2015; 24 ZR Wu (924_CR1) 2003 V Vapnik (924_CR21) 1997; 9 ZF Zhang (924_CR35) 2014; 25 J Mata (924_CR10) 2011; 33 H Migallon (924_CR49) 2019; 75 CG Liu (924_CR26) 2017; 33 M Imani (924_CR34) 2018; 161 CS Gu (924_CR14) 2011; 54 MA Hariri-Ardebili (924_CR16) 2018; 104 |
| References_xml | – reference: Berger JO (2013) Statistical decision theory and Bayesian analysis. Springer Science & Business Media, – reference: Hariri-ArdebiliMAPourkamali-AnarakiFSupport vector machine based reliability analysis of concrete damsSoil Dynamics and Earthquake Engineering201810427629510.1016/j.soildyn.2017.09.016 – reference: KangFLiJJZhaoSZWangYJStructural health monitoring of concrete dams using long-term air temperature for thermal effect simulationEngineering Structures201918064265310.1016/j.engstruct.2018.11.065 – reference: Li XL (2003) A new intelligent optimization-artificial fish swarm algorithm. PhD Dissertation, Zhejiang University – reference: SalazarFToledoMAOnateEMoranRAn empirical comparison of machine learning techniques for dam behaviour modellingStruct Saf20155691710.1016/j.strusafe.2015.05.001 – reference: KangFLiJJDisplacement Model for Concrete Dam Safety Monitoring via Gaussian Process Regression Considering Extreme Air TemperatureJournal of Structural Engineering201914610501900110.1061/(ASCE)ST.1943-541X.0002467 – reference: DingZHLiJHaoHStructural damage identification using improved Jaya algorithm based on sparse regularization and Bayesian inferenceMechanical Systems and Signal Processing201913221123110.1016/j.ymssp.2019.06.029 – reference: SalazarFMoránRToledoMAOñateEData-Based Models for the Prediction of Dam Behaviour: A Review and Some Methodological ConsiderationsArchives of Computational Methods in Engineering201524112110.1007/s11831-015-9157-91360.74017 – reference: Gu CS, Wu ZR (2006) Safety monitoring of dams and dam foundations-theories & methods and their application. Hohai University Press, – reference: StojanovicBMilivojevicMIvanovicMMilivojevicNDivacDAdaptive system for dam behavior modeling based on linear regression and genetic algorithmsAdvances in Engineering Software20136518219010.1016/j.advengsoft.2013.06.019 – reference: LinCNLiTCChenSYLiuXQLinCLiangSLGaussian process regression-based forecasting model of dam deformationNeural Comput Appl201931128503851810.1007/s00521-019-04375-7 – reference: MataJde CastroATda CostaJSConstructing statistical models for arch dam deformationStructural Control & Health Monitoring201421342343710.1002/stc.1575 – reference: GuCSWangYCPengYXuBSIll-conditioned problems of dam safety monitoring models and their processing methodsScience China-Technological Sciences201154123275328010.1007/s11431-011-4573-z1239.74099 – reference: HuangGBZhuQYSiewCKExtreme learning machine: Theory and applicationsNeurocomputing2006701–348950110.1016/j.neucom.2005.12.126 – reference: KangFLiuJLiJJLiSJConcrete dam deformation prediction model for health monitoring based on extreme learning machineStructural Control & Health Monitoring201710.1002/stc.1997 – reference: RankovicVGrujovicNDivacDMilivojevicNDevelopment of support vector regression identification model for prediction of dam structural behaviourStruct Saf201448333910.1016/j.strusafe.2014.02.004 – reference: GuCSLiBXuGLYuHBack analysis of mechanical parameters of roller compacted concrete damScience China-Technological Sciences201053384885310.1007/s11431-010-0053-01383.74027 – reference: SunPMBaoTFGuCSJiangMWangTShiZWParameter sensitivity and inversion analysis of a concrete faced rock-fill dam based on HS-BPNN algorithmScience China-Technological Sciences20165991442145110.1007/s11431-016-0213-y – reference: TippingMESparse Bayesian learning and the relevance vector machineJournal of Machine Learning Research200113211244187583810.1162/153244301527482360997.68109 – reference: AbhishekKKumarVRDattaSMahapatraSSApplication of JAYA algorithm for the optimization of machining performance characteristics during the turning of CFRP (epoxy) composites: comparison with TLBO, GA, and ICAEngineering with Computers201733345747510.1007/s00366-016-0484-8 – reference: VapnikVGolowichSESmolaASupport vector method for function approximation, regression estimation, and signal processingAdv Neur In19979281287 – reference: MigallonHJimeno-MorenillaASanchez-RomeroJLRicoHRaoRVMultipopulation-based multi-level parallel enhanced Jaya algorithmsJ Supercomput20197531697171610.1007/s11227-019-02759-z – reference: XiGYYueJPZhouBXTangPApplication of an artificial immune algorithm on a statistical model of dam displacementComputers & Mathematics with Applications2011621039803986285211510.1016/j.camwa.2011.09.0571236.62166 – reference: RaoRJaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problemsInternational Journal of Industrial Engineering Computations2016711934 – reference: WuZRSafety monitoring theory and its application of hydraulic structures2003BeijingHigher Education – reference: Hariri-ArdebiliMASudretBPolynomial chaos expansion for uncertainty quantification of dam engineering problemsEngineering Structures201910.1016/j.engstruct.2019.109631 – reference: ShiYQYangJJWuJLHeJPA statistical model of deformation during the construction of a concrete face rockfill damStructural Control & Health Monitoring201810.1002/stc.2074 – reference: Hariri-ArdebiliMABarakSA series of forecasting models for seismic evaluation of dams based on ground motion meta-featuresEngineering Structures201910.1016/j.engstruct.2019.109657 – reference: KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJournal of global optimization2007393459471234617810.1007/s10898-007-9149-x – reference: KangFLiuXLiJConcrete Dam Behavior Prediction Using Multivariate Adaptive Regression Splines with Measured Air TemperatureArabian Journal for Science and Engineering201910.1007/s13369-019-04095-z – reference: MacKay DJJNc (1992) Bayesian interpolation. 4 (3):415-447 – reference: ChenSYGuCSLinCNZhaoEFSongJTSafety Monitoring Model of a Super-High Concrete Dam by Using RBF Neural Network Coupled with Kernel Principal Component AnalysisMathematical Problems in Engineering2018201811310.1155/2018/1712653 – reference: Eberhart R, Kennedy J A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. Ieee, pp 39-43 – reference: WangTZXuHHanJGElbouchikhiEBenbouzidMEHCascaded H-Bridge Multilevel Inverter System Fault Diagnosis Using a PCA and Multiclass Relevance Vector Machine ApproachIeee T Power Electr201530127006701810.1109/Tpel.2015.2393373 – reference: RaoRWaghmareGGA new optimization algorithm for solving complex constrained design optimization problemsEngineering Optimization2017491608310.1080/0305215X.2016.1164855 – reference: ImaniMKaoHCLanWHKuoCYDaily sea level prediction at Chiayi coast, Taiwan using extreme learning machine and relevance vector machineGlobal Planet Change201816121122110.1016/j.gloplacha.2017.12.018 – reference: BuiK-TTTien BuiDZouJVan DoanCRevhaugIA novel hybrid artificial intelligent approach based on neural fuzzy inference model and particle swarm optimization for horizontal displacement modeling of hydropower damNeural Computing and Applications201629121495150610.1007/s00521-016-2666-0 – reference: Hariri-ArdebiliMAPourkamali-AnarakiFMatrix completion for cost reduction in finite element simulations under hybrid uncertaintiesApplied Mathematical Modelling201969164180389423810.1016/j.apm.2018.12.01407186521 – reference: Hariri-ArdebiliMAPourkamali-AnarakiFSimplified reliability analysis of multi hazard risk in gravity dams via machine learning techniquesArch Civ Mech Eng201818259261010.1016/j.acme.2017.09.003 – reference: HollandJHAdaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artificial intelligence1975Ann ArborUniversity of Michigan Press0317.68006 – reference: FarmerJDPackardNHPerelsonASThe Immune-System, Adaptation, and Machine LearningPhysica D1986221–318720487816010.1016/0167-2789(86)90240-X – reference: MoodyJDarkenCJFast Learning in Networks of Locally-Tuned Processing UnitsNeural Computation19891228129410.1162/neco.1989.1.2.281 – reference: MataJInterpretation of concrete dam behaviour with artificial neural network and multiple linear regression modelsEngineering Structures201133390391010.1016/j.engstruct.2010.12.011 – reference: ZhangZFLiuZBZhengLFZhangYDevelopment of an adaptive relevance vector machine approach for slope stability inferenceNeural Comput Appl2014257–82025203510.1007/s00521-014-1690-1 – reference: SuHZChenZXWenZPPerformance improvement method of support vector machine-based model monitoring dam safetyStructural Control & Health Monitoring201623225226610.1002/stc.1767 – reference: LiuCGGuCSChenBZoned elasticity modulus inversion analysis method of a high arch dam based on unconstrained Lagrange support vector regression (support vector regression arch dam)Engineering with Computers201733344345610.1007/s00366-016-0483-9 – reference: LinCNLiTCLiuXQZhaoLHChenSYQiHJA deformation separation method for gravity dam body and foundation based on the observed displacementsStructural Control & Health Monitoring201910.1002/stc.2304 – reference: KongDDChenYJLiNDuanCQLuLXChenDXRelevance vector machine for tool wear predictionMechanical Systems and Signal Processing201912757359410.1016/j.ymssp.2019.03.023 – reference: Zhao EF (2018) Dam Safety Monitoring Data Analysis Theory & Assessment Methods. Hohai University Press, – volume: 2018 start-page: 1 year: 2018 ident: 924_CR22 publication-title: Mathematical Problems in Engineering doi: 10.1155/2018/1712653 – volume: 62 start-page: 3980 issue: 10 year: 2011 ident: 924_CR13 publication-title: Computers & Mathematics with Applications doi: 10.1016/j.camwa.2011.09.057 – year: 2018 ident: 924_CR3 publication-title: Structural Control & Health Monitoring doi: 10.1002/stc.2074 – volume: 29 start-page: 1495 issue: 12 year: 2016 ident: 924_CR29 publication-title: Neural Computing and Applications doi: 10.1007/s00521-016-2666-0 – ident: 924_CR4 – volume: 59 start-page: 1442 issue: 9 year: 2016 ident: 924_CR9 publication-title: Science China-Technological Sciences doi: 10.1007/s11431-016-0213-y – volume: 22 start-page: 187 issue: 1–3 year: 1986 ident: 924_CR40 publication-title: Physica D doi: 10.1016/0167-2789(86)90240-X – ident: 924_CR47 doi: 10.1162/neco.1992.4.3.415 – volume: 33 start-page: 443 issue: 3 year: 2017 ident: 924_CR26 publication-title: Engineering with Computers doi: 10.1007/s00366-016-0483-9 – volume: 48 start-page: 33 year: 2014 ident: 924_CR28 publication-title: Struct Saf doi: 10.1016/j.strusafe.2014.02.004 – volume: 161 start-page: 211 year: 2018 ident: 924_CR34 publication-title: Global Planet Change doi: 10.1016/j.gloplacha.2017.12.018 – volume: 7 start-page: 19 issue: 1 year: 2016 ident: 924_CR38 publication-title: International Journal of Industrial Engineering Computations – volume: 180 start-page: 642 year: 2019 ident: 924_CR23 publication-title: Engineering Structures doi: 10.1016/j.engstruct.2018.11.065 – volume: 25 start-page: 2025 issue: 7–8 year: 2014 ident: 924_CR35 publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1690-1 – volume: 1 start-page: 211 issue: 3 year: 2001 ident: 924_CR33 publication-title: Journal of Machine Learning Research doi: 10.1162/15324430152748236 – volume: 70 start-page: 489 issue: 1–3 year: 2006 ident: 924_CR25 publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume-title: Adaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artificial intelligence year: 1975 ident: 924_CR39 – volume: 56 start-page: 9 year: 2015 ident: 924_CR5 publication-title: Struct Saf doi: 10.1016/j.strusafe.2015.05.001 – volume: 53 start-page: 848 issue: 3 year: 2010 ident: 924_CR12 publication-title: Science China-Technological Sciences doi: 10.1007/s11431-010-0053-0 – volume: 69 start-page: 164 year: 2019 ident: 924_CR18 publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2018.12.014 – year: 2019 ident: 924_CR30 publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-019-04095-z – volume-title: Safety monitoring theory and its application of hydraulic structures year: 2003 ident: 924_CR1 – volume: 18 start-page: 592 issue: 2 year: 2018 ident: 924_CR15 publication-title: Arch Civ Mech Eng doi: 10.1016/j.acme.2017.09.003 – year: 2019 ident: 924_CR8 publication-title: Structural Control & Health Monitoring doi: 10.1002/stc.2304 – volume: 146 start-page: 05019001 issue: 1 year: 2019 ident: 924_CR32 publication-title: Journal of Structural Engineering doi: 10.1061/(ASCE)ST.1943-541X.0002467 – volume: 33 start-page: 457 issue: 3 year: 2017 ident: 924_CR45 publication-title: Engineering with Computers doi: 10.1007/s00366-016-0484-8 – year: 2019 ident: 924_CR17 publication-title: Engineering Structures doi: 10.1016/j.engstruct.2019.109657 – year: 2019 ident: 924_CR19 publication-title: Engineering Structures doi: 10.1016/j.engstruct.2019.109631 – volume: 104 start-page: 276 year: 2018 ident: 924_CR16 publication-title: Soil Dynamics and Earthquake Engineering doi: 10.1016/j.soildyn.2017.09.016 – volume: 54 start-page: 3275 issue: 12 year: 2011 ident: 924_CR14 publication-title: Science China-Technological Sciences doi: 10.1007/s11431-011-4573-z – volume: 65 start-page: 182 year: 2013 ident: 924_CR11 publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.06.019 – volume: 1 start-page: 281 issue: 2 year: 1989 ident: 924_CR20 publication-title: Neural Computation doi: 10.1162/neco.1989.1.2.281 – volume: 33 start-page: 903 issue: 3 year: 2011 ident: 924_CR10 publication-title: Engineering Structures doi: 10.1016/j.engstruct.2010.12.011 – ident: 924_CR2 – volume: 30 start-page: 7006 issue: 12 year: 2015 ident: 924_CR36 publication-title: Ieee T Power Electr doi: 10.1109/Tpel.2015.2393373 – volume: 31 start-page: 8503 issue: 12 year: 2019 ident: 924_CR31 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04375-7 – ident: 924_CR41 – volume: 132 start-page: 211 year: 2019 ident: 924_CR44 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2019.06.029 – volume: 49 start-page: 60 issue: 1 year: 2017 ident: 924_CR48 publication-title: Engineering Optimization doi: 10.1080/0305215X.2016.1164855 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 924_CR43 publication-title: Journal of global optimization doi: 10.1007/s10898-007-9149-x – volume: 127 start-page: 573 year: 2019 ident: 924_CR37 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2019.03.023 – year: 2017 ident: 924_CR24 publication-title: Structural Control & Health Monitoring doi: 10.1002/stc.1997 – volume: 23 start-page: 252 issue: 2 year: 2016 ident: 924_CR27 publication-title: Structural Control & Health Monitoring doi: 10.1002/stc.1767 – ident: 924_CR46 – volume: 24 start-page: 1 issue: 1 year: 2015 ident: 924_CR6 publication-title: Archives of Computational Methods in Engineering doi: 10.1007/s11831-015-9157-9 – volume: 75 start-page: 1697 issue: 3 year: 2019 ident: 924_CR49 publication-title: J Supercomput doi: 10.1007/s11227-019-02759-z – ident: 924_CR42 – volume: 21 start-page: 423 issue: 3 year: 2014 ident: 924_CR7 publication-title: Structural Control & Health Monitoring doi: 10.1002/stc.1575 – volume: 9 start-page: 281 year: 1997 ident: 924_CR21 publication-title: Adv Neur In |
| SSID | ssj0013009 |
| Score | 2.522845 |
| Snippet | The observation data of dam displacement can reflect the dam’s actual service behavior intuitively. Therefore, the establishment of a precise data-driven model... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1943 |
| SubjectTerms | Algorithms Arch dams Artificial neural networks CAE) and Design Calculus of Variations and Optimal Control; Optimization Classical Mechanics Computer Science Computer-Aided Engineering (CAD Concrete dams Confidence intervals Control Dam safety Dams Deformation effects Detention dams Displacement Kernel functions Machine learning Math. Applications in Chemistry Mathematical and Computational Engineering Model testing Neural networks Optimization Original Article Parameter estimation Performance prediction Radial basis function Statistical analysis Support vector machines Systems Theory |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60etCD9Yn1RQ7eNNjuxmxyEhGLIBQPCt6W5rFQtN3arR789c6kqauCXjwuuwkLX2byzeTLDMBxIpwqjFbcKmm5kMbwvnSGG22EaFu0wUKFZhNZr6ceH_VdTLhVUVY594nBUbvSUo78DAMZpTTyCXExfuHUNYpOV2MLjUVY6iRJh9b5bcbrU4T2TOLRyUjiJbN4aSZcnaNCLBRLa05lhwTX3zemmm3-OCAN-063-d8_Xoe1yDjZ5WyJbMCCH21CM7JPFm272oTVL6UJt2AQbubyJz8Z-WdWomMZDt7xe-qxElQD7C3k-9kwqDE9Q_LLqDtNqNhLxZ_xiQ6BCHhWFgzjbiSoU89cf8jcoApiMEpNbsND9_r-6obHtgzcor1OuSiEPE9sljohlTNIUbzUNjMKo12p0HdaYaRJdKKIPxSF9dL41KeZdqYtMHjfgcaoHPldYBklNFQfWV2KziTV_UKbdopjvUv8eSpb0JljkttYs5xaZzznn9WWA4454pgHHHPdgpPPMeNZxY4_vz6Yg5dH663yGrkWnM7hr1__Ptve37Ptw0pCkpig9j2AxnTy6g9h2b5NB9XkKKzdD_-98-U priority: 102 providerName: ProQuest |
| Title | Multi-kernel optimized relevance vector machine for probabilistic prediction of concrete dam displacement |
| URI | https://link.springer.com/article/10.1007/s00366-019-00924-9 https://www.proquest.com/docview/2548896504 |
| Volume | 37 |
| WOSCitedRecordID | wos000574106400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1435-5663 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013009 issn: 0177-0667 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o5kEPTqfidI4cvGlga7M0OapsCMIYm8rwUpY0heF-yFp38K_3JWs3FRX0UmiahJLkvXwv-d57AOcei0SspKBacE0ZV4oOeaSokoqxukYZjIVLNhF0OmIwkN3MKSzJ2e75laTT1CtnNxs6xVq_ktpAQYzKTSjidiesOPb6j-u7g_qS2NEILLGLB5mrzPd9fN6O1hjzy7Wo223apf_95x7sZuiSXC2Xwz5smGkZShnSJJkcJ1iUJ3PIy8qw8yEy4QGMnGMufTbzqRmTGeqVyegNu7ApVhxpgCzccT-ZODKmIYh9iU1O4wL22tjP-GbvgOy8k1lM0OxGfJoaEg0nJBoljgtmTyYP4aHdur-5pVlWBqpRXFPKYsabng78iHERKUQohksdKIHGLheoOjVTXHnSExY-xLE2XBnf-IGMVJ2h7X4Ehelsao6BBPY8QwwR1PmoS3w5jKWq-9jWRJ5p-rwCjXxyQp2FLLeZM8bhKtiyG-wQBzt0gx3KClys2rwsA3b8Wruaz3mYCW8Sos0shEToyipwmc_x-vPPvZ38rfopbHuWIePIv1UopPNXcwZbepGOknkNitetTrdXg827gNYsJ7WPz27zqeaW-zvHfPTP |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7xqAQ9lEepSMtjD_TUrkjsZR-HqqoKCBSIegCJm5t9WIpKbIgDVfuj-hs7s7FJqQQ3Dhwte1ey_c1rZ-YbgJ1EeJ1bo7nT0nEhreV96S23xgrRdiiDuY7DJlSvpy8uzLcZ-NP0wlBZZaMTo6L2paMz8l0MZLQ26E-Iz1fXnKZGUXa1GaExgUU3_PqJIVv16Xgf_-_7JDk8OPt6xOupAtwh3MZc5ELuJU6lXkjtLVrYII1TVmOwJjWKvhNW2sQkmsxfnrsgbUhDqoy3bYGxJ-47C_Mi1Yq4-ruKT7MW7UlJSUdRSZlUdZNObNUj4heK3Q0nmiPBzX1DOPVu_0vIRjt3uPTcvtAyvKo9avZlIgIrMBOKVViqvWtW665qFV7-Q734Ggax85j_CKMiXLISFedw8BufpxkysSqC3cZ8BhvGatPA0LlnNH0nMhITuTVeUZKLgM3KnLmyQAd8HJjvD5kfVLHYjY5e1-D8SV7_DcwVZRHWgSk6sNF99FpTVJap6efGtlNcG3wS9lLZgk6DgczVnOw0GuQyu2OTjrjJEDdZxE1mWvDhbs3VhJHk0ac3GrBktXaqsilSWvCxgdv09sO7vX18t21YODo7PclOjnvdd7CYUPlPrGzegLnx6CZswgt3Ox5Uo60oNwy-PzUM_wKrj0-l |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5RQFU58EYNj3YP7amsCPZmvXtACAFRUVDEASRubvZhKYLYNE5B8NP4dcxsbFKQyo1Dj5a9K9n-5rXzzQzAt0g4lRmtuFXSciGN4T3pDDfaCNG0KIOZCsMmkm5XXV7qsyl4rGthiFZZ68SgqF1h6Yx8BwMZpTT6E2Inq2gRZ0ft_ZvfnCZIUaa1HqcxhkjH399h-FbunRzhv_4eRe3j88OfvJowwC1Cb8RFJmQrsknshFTOoLX1UtvEKAzcpEI1YIWRJtKRIlOYZdZL42MfJ9qZpsA4FPf9ADNohVskY52ETzIYzTG9ZDcheplMqoKdULZHTWAojtecWh4Jrl8axYmn-yo5G2xee-F__lqLMF952uxgLBpLMOXzZViovG5W6bRyGeb-asm4Av1Qkcyv_DD316xAhTroP-DzNFsmsCXYbchzsEFgoXqGTj-jqTyhUzE1vcYrSn4R4FmRMVvk6JiPPHO9AXP9MpDg6Eh2FS7e5fXXYDovcv8ZWEIHOaqH3myMSjTWvUybZoxrvYt8K5YN2K3xkNqqVzuNDLlOn7tMBwyliKE0YCjVDfjxvOZm3Knkzac3a-CkldYq0wlqGrBdQ29y-9-7rb-921f4iOhLT0-6nQ34FBErKBCeN2F6NPzjt2DW3o765fBLECEGv94bhU_Gmlhf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-kernel+optimized+relevance+vector+machine+for+probabilistic+prediction+of+concrete+dam+displacement&rft.jtitle=Engineering+with+computers&rft.au=Chen%2C+Siyu&rft.au=Gu%2C+Chongshi&rft.au=Lin%2C+Chaoning&rft.au=Zhang%2C+Kang&rft.date=2021-07-01&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=37&rft.issue=3&rft.spage=1943&rft.epage=1959&rft_id=info:doi/10.1007%2Fs00366-019-00924-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00366_019_00924_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon |