Multi-kernel optimized relevance vector machine for probabilistic prediction of concrete dam displacement

The observation data of dam displacement can reflect the dam’s actual service behavior intuitively. Therefore, the establishment of a precise data-driven model to realize accurate and reliable safety monitoring of dam deformation is necessary. This study proposes a novel probabilistic prediction app...

Full description

Saved in:
Bibliographic Details
Published in:Engineering with computers Vol. 37; no. 3; pp. 1943 - 1959
Main Authors: Chen, Siyu, Gu, Chongshi, Lin, Chaoning, Zhang, Kang, Zhu, Yantao
Format: Journal Article
Language:English
Published: London Springer London 01.07.2021
Springer Nature B.V
Subjects:
ISSN:0177-0667, 1435-5663
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The observation data of dam displacement can reflect the dam’s actual service behavior intuitively. Therefore, the establishment of a precise data-driven model to realize accurate and reliable safety monitoring of dam deformation is necessary. This study proposes a novel probabilistic prediction approach for concrete dam displacement based on optimized relevance vector machine (ORVM). A practical optimization framework for parameters estimation using the parallel Jaya algorithm (PJA) is developed, and various simple kernel/multi-kernel functions of relevance vector machine (RVM) are tested to obtain the optimal selection. The proposed model is tested on radial displacement measurements of a concrete arch dam to mine the effect of hydrostatic, seasonal and irreversible time components on dam deformation. Four algorithms, including support vector regression (SVR), radial basis function neural network (RBF-NN), extreme learning machine (ELM) and the HST-based multiple linear regression (HST-MLR), are used for comparison with the ORVM model. The simulation results demonstrate that the proposed multi-kernel ORVM model has the best performance for predicting the displacement out of range of the used measurements dataset. Meanwhile, the ORVM model has the advantages of probabilistic output and can provide reasonable confidence interval (CI) for dam safety monitoring. This study lays the foundation for the application of RVM in the field of dam health monitoring.
AbstractList The observation data of dam displacement can reflect the dam’s actual service behavior intuitively. Therefore, the establishment of a precise data-driven model to realize accurate and reliable safety monitoring of dam deformation is necessary. This study proposes a novel probabilistic prediction approach for concrete dam displacement based on optimized relevance vector machine (ORVM). A practical optimization framework for parameters estimation using the parallel Jaya algorithm (PJA) is developed, and various simple kernel/multi-kernel functions of relevance vector machine (RVM) are tested to obtain the optimal selection. The proposed model is tested on radial displacement measurements of a concrete arch dam to mine the effect of hydrostatic, seasonal and irreversible time components on dam deformation. Four algorithms, including support vector regression (SVR), radial basis function neural network (RBF-NN), extreme learning machine (ELM) and the HST-based multiple linear regression (HST-MLR), are used for comparison with the ORVM model. The simulation results demonstrate that the proposed multi-kernel ORVM model has the best performance for predicting the displacement out of range of the used measurements dataset. Meanwhile, the ORVM model has the advantages of probabilistic output and can provide reasonable confidence interval (CI) for dam safety monitoring. This study lays the foundation for the application of RVM in the field of dam health monitoring.
Author Gu, Chongshi
Chen, Siyu
Lin, Chaoning
Zhang, Kang
Zhu, Yantao
Author_xml – sequence: 1
  givenname: Siyu
  orcidid: 0000-0003-1070-9761
  surname: Chen
  fullname: Chen, Siyu
  organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, College of Water Conservancy and Hydropower Engineering, Hohai University, National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University
– sequence: 2
  givenname: Chongshi
  orcidid: 0000-0002-0782-7196
  surname: Gu
  fullname: Gu, Chongshi
  email: csgu@hhu.edu.cn
  organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, College of Water Conservancy and Hydropower Engineering, Hohai University, National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University
– sequence: 3
  givenname: Chaoning
  orcidid: 0000-0001-5615-308X
  surname: Lin
  fullname: Lin, Chaoning
  email: linchaoning@hhu.edu.cn
  organization: College of Water Conservancy and Hydropower Engineering, Hohai University
– sequence: 4
  givenname: Kang
  surname: Zhang
  fullname: Zhang, Kang
  organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, College of Water Conservancy and Hydropower Engineering, Hohai University, National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University
– sequence: 5
  givenname: Yantao
  surname: Zhu
  fullname: Zhu, Yantao
  organization: State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, College of Water Conservancy and Hydropower Engineering, Hohai University, National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University
BookMark eNp9kMFvFSEQxompia_Vf8ATSc_osLAsHE3TqkmbXvRMgJ1V6i68Aq-J_vVSn0mTHnqameT7zXzznZKTlBMS8p7DBw4wfawAQikG3DAAM0hmXpEdl2Jko1LihOyATxMDpaY35LTWOwAuunBH4s1hbZH9wpJwpXnf4hb_4EwLrvjgUkD6gKHlQjcXfsaEdOn9vmTvfFxjbTH0CecYWsyJ5oWGnELBhnR2G51j3a8u4IapvSWvF7dWfPe_npHvV5ffLr6w69vPXy8-XbMguGlMLlKNQ5jELJWe_cQBlQmT10JopTnnQXrlBzNoGLheloDKo0AxmdmDRC_OyPlxb3d5f8Da7F0-lNRP2mGUWhs1guwqfVSFkmstuNgQm3t8ohUXV8vBPgZrj8HaHqz9F6w1HR2eofsSN1d-vwyJI1S7OP3A8uTqBeov1Z2Osw
CitedBy_id crossref_primary_10_1155_2021_6950538
crossref_primary_10_1007_s00366_022_01675_w
crossref_primary_10_1007_s11581_024_06049_4
crossref_primary_10_1038_s41598_024_84556_0
crossref_primary_10_1177_14759217241282738
crossref_primary_10_1089_big_2022_0125
crossref_primary_10_1016_j_measurement_2023_113579
crossref_primary_10_1016_j_aei_2022_101863
crossref_primary_10_1016_j_autcon_2025_106079
crossref_primary_10_1155_2020_6404819
crossref_primary_10_1016_j_ndteint_2024_103271
crossref_primary_10_1088_1361_6501_ad2e68
crossref_primary_10_3390_w16030395
crossref_primary_10_1016_j_jmapro_2022_10_072
crossref_primary_10_1007_s10706_023_02643_x
crossref_primary_10_1088_1361_6501_ad850d
crossref_primary_10_3390_jcs8030096
crossref_primary_10_1109_ACCESS_2024_3383016
crossref_primary_10_1080_19648189_2022_2090445
crossref_primary_10_1007_s12652_025_04960_w
crossref_primary_10_1109_ACCESS_2021_3056588
crossref_primary_10_1007_s00366_021_01594_2
crossref_primary_10_1016_j_compgeo_2023_105611
crossref_primary_10_1049_cit2_12111
crossref_primary_10_3390_buildings15030357
crossref_primary_10_1007_s13349_021_00538_0
crossref_primary_10_1016_j_engappai_2023_106813
crossref_primary_10_1016_j_aei_2024_102367
crossref_primary_10_1016_j_engappai_2024_108586
crossref_primary_10_3390_app10165700
crossref_primary_10_1002_stc_2809
crossref_primary_10_1016_j_istruc_2024_108094
crossref_primary_10_1016_j_oceaneng_2023_113969
crossref_primary_10_14796_JWMM_H554
crossref_primary_10_1007_s00366_020_00956_6
crossref_primary_10_1007_s13349_023_00733_1
crossref_primary_10_1016_j_eswa_2022_117272
crossref_primary_10_1007_s12665_023_11214_5
crossref_primary_10_1016_j_asoc_2024_112321
crossref_primary_10_1111_mice_12654
crossref_primary_10_1016_j_engstruct_2022_114686
crossref_primary_10_3390_w16192755
crossref_primary_10_3390_app132212457
crossref_primary_10_1016_j_aei_2024_102574
crossref_primary_10_1007_s00366_021_01515_3
crossref_primary_10_3390_w17182766
crossref_primary_10_1002_nag_3812
crossref_primary_10_1177_01423312211018305
crossref_primary_10_1016_j_istruc_2024_107072
crossref_primary_10_1016_j_eswa_2025_129135
crossref_primary_10_1007_s40996_022_00906_w
crossref_primary_10_1109_TIM_2023_3326232
crossref_primary_10_1007_s10661_020_08724_1
crossref_primary_10_3390_app13031456
crossref_primary_10_1016_j_aei_2022_101615
crossref_primary_10_1007_s41939_023_00264_8
crossref_primary_10_1007_s11440_023_02048_3
crossref_primary_10_1007_s00366_021_01331_9
crossref_primary_10_1155_2022_8711607
crossref_primary_10_32604_cmes_2022_018325
crossref_primary_10_3390_geosciences15030110
crossref_primary_10_1016_j_istruc_2021_11_048
crossref_primary_10_1061__ASCE_GM_1943_5622_0002401
crossref_primary_10_1177_14759217221142006
Cites_doi 10.1155/2018/1712653
10.1016/j.camwa.2011.09.057
10.1002/stc.2074
10.1007/s00521-016-2666-0
10.1007/s11431-016-0213-y
10.1016/0167-2789(86)90240-X
10.1162/neco.1992.4.3.415
10.1007/s00366-016-0483-9
10.1016/j.strusafe.2014.02.004
10.1016/j.gloplacha.2017.12.018
10.1016/j.engstruct.2018.11.065
10.1007/s00521-014-1690-1
10.1162/15324430152748236
10.1016/j.neucom.2005.12.126
10.1016/j.strusafe.2015.05.001
10.1007/s11431-010-0053-0
10.1016/j.apm.2018.12.014
10.1007/s13369-019-04095-z
10.1016/j.acme.2017.09.003
10.1002/stc.2304
10.1061/(ASCE)ST.1943-541X.0002467
10.1007/s00366-016-0484-8
10.1016/j.engstruct.2019.109657
10.1016/j.engstruct.2019.109631
10.1016/j.soildyn.2017.09.016
10.1007/s11431-011-4573-z
10.1016/j.advengsoft.2013.06.019
10.1162/neco.1989.1.2.281
10.1016/j.engstruct.2010.12.011
10.1109/Tpel.2015.2393373
10.1007/s00521-019-04375-7
10.1016/j.ymssp.2019.06.029
10.1080/0305215X.2016.1164855
10.1007/s10898-007-9149-x
10.1016/j.ymssp.2019.03.023
10.1002/stc.1997
10.1002/stc.1767
10.1007/s11831-015-9157-9
10.1007/s11227-019-02759-z
10.1002/stc.1575
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s00366-019-00924-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1435-5663
EndPage 1959
ExternalDocumentID 10_1007_s00366_019_00924_9
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: Grant No. 51739003; Grant No. 51779086
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Key R&D Program of Guangxi
  grantid: AB17195074
– fundername: Special Project Funded of National Key Laboratory
  grantid: 20165042112
– fundername: National Key R&D Program of China
  grantid: 2018YFC0407104; 2016YFC0401601
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8AL
8FD
8FK
AEUYN
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-4f4652c73d468db710e69c7b833868111c4b6b29280218ffce6be3e379db04eb3
IEDL.DBID RSV
ISICitedReferencesCount 84
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000574106400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0177-0667
IngestDate Tue Dec 02 15:55:48 EST 2025
Tue Nov 18 20:57:54 EST 2025
Sat Nov 29 06:25:17 EST 2025
Fri Feb 21 02:48:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Multi-kernel
Jaya optimization algorithm
Optimized relevance vector machine
Prediction model
Dam health monitoring
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-4f4652c73d468db710e69c7b833868111c4b6b29280218ffce6be3e379db04eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5615-308X
0000-0002-0782-7196
0000-0003-1070-9761
PQID 2548896504
PQPubID 326339
PageCount 17
ParticipantIDs proquest_journals_2548896504
crossref_citationtrail_10_1007_s00366_019_00924_9
crossref_primary_10_1007_s00366_019_00924_9
springer_journals_10_1007_s00366_019_00924_9
PublicationCentury 2000
PublicationDate 20210700
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 7
  year: 2021
  text: 20210700
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationSubtitle An International Journal for Simulation-Based Engineering
PublicationTitle Engineering with computers
PublicationTitleAbbrev Engineering with Computers
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References GuCSLiBXuGLYuHBack analysis of mechanical parameters of roller compacted concrete damScience China-Technological Sciences201053384885310.1007/s11431-010-0053-01383.74027
Hariri-ArdebiliMABarakSA series of forecasting models for seismic evaluation of dams based on ground motion meta-featuresEngineering Structures201910.1016/j.engstruct.2019.109657
SalazarFToledoMAOnateEMoranRAn empirical comparison of machine learning techniques for dam behaviour modellingStruct Saf20155691710.1016/j.strusafe.2015.05.001
SalazarFMoránRToledoMAOñateEData-Based Models for the Prediction of Dam Behaviour: A Review and Some Methodological ConsiderationsArchives of Computational Methods in Engineering201524112110.1007/s11831-015-9157-91360.74017
Hariri-ArdebiliMASudretBPolynomial chaos expansion for uncertainty quantification of dam engineering problemsEngineering Structures201910.1016/j.engstruct.2019.109631
Hariri-ArdebiliMAPourkamali-AnarakiFSupport vector machine based reliability analysis of concrete damsSoil Dynamics and Earthquake Engineering201810427629510.1016/j.soildyn.2017.09.016
Eberhart R, Kennedy J A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. Ieee, pp 39-43
HollandJHAdaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artificial intelligence1975Ann ArborUniversity of Michigan Press0317.68006
Li XL (2003) A new intelligent optimization-artificial fish swarm algorithm. PhD Dissertation, Zhejiang University
SuHZChenZXWenZPPerformance improvement method of support vector machine-based model monitoring dam safetyStructural Control & Health Monitoring201623225226610.1002/stc.1767
KangFLiuJLiJJLiSJConcrete dam deformation prediction model for health monitoring based on extreme learning machineStructural Control & Health Monitoring201710.1002/stc.1997
BuiK-TTTien BuiDZouJVan DoanCRevhaugIA novel hybrid artificial intelligent approach based on neural fuzzy inference model and particle swarm optimization for horizontal displacement modeling of hydropower damNeural Computing and Applications201629121495150610.1007/s00521-016-2666-0
Gu CS, Wu ZR (2006) Safety monitoring of dams and dam foundations-theories & methods and their application. Hohai University Press
Hariri-ArdebiliMAPourkamali-AnarakiFSimplified reliability analysis of multi hazard risk in gravity dams via machine learning techniquesArch Civ Mech Eng201818259261010.1016/j.acme.2017.09.003
Hariri-ArdebiliMAPourkamali-AnarakiFMatrix completion for cost reduction in finite element simulations under hybrid uncertaintiesApplied Mathematical Modelling201969164180389423810.1016/j.apm.2018.12.01407186521
HuangGBZhuQYSiewCKExtreme learning machine: Theory and applicationsNeurocomputing2006701–348950110.1016/j.neucom.2005.12.126
LiuCGGuCSChenBZoned elasticity modulus inversion analysis method of a high arch dam based on unconstrained Lagrange support vector regression (support vector regression arch dam)Engineering with Computers201733344345610.1007/s00366-016-0483-9
GuCSWangYCPengYXuBSIll-conditioned problems of dam safety monitoring models and their processing methodsScience China-Technological Sciences201154123275328010.1007/s11431-011-4573-z1239.74099
ChenSYGuCSLinCNZhaoEFSongJTSafety Monitoring Model of a Super-High Concrete Dam by Using RBF Neural Network Coupled with Kernel Principal Component AnalysisMathematical Problems in Engineering2018201811310.1155/2018/1712653
ImaniMKaoHCLanWHKuoCYDaily sea level prediction at Chiayi coast, Taiwan using extreme learning machine and relevance vector machineGlobal Planet Change201816121122110.1016/j.gloplacha.2017.12.018
WuZRSafety monitoring theory and its application of hydraulic structures2003BeijingHigher Education
SunPMBaoTFGuCSJiangMWangTShiZWParameter sensitivity and inversion analysis of a concrete faced rock-fill dam based on HS-BPNN algorithmScience China-Technological Sciences20165991442145110.1007/s11431-016-0213-y
KangFLiJJDisplacement Model for Concrete Dam Safety Monitoring via Gaussian Process Regression Considering Extreme Air TemperatureJournal of Structural Engineering201914610501900110.1061/(ASCE)ST.1943-541X.0002467
MoodyJDarkenCJFast Learning in Networks of Locally-Tuned Processing UnitsNeural Computation19891228129410.1162/neco.1989.1.2.281
RaoRJaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problemsInternational Journal of Industrial Engineering Computations2016711934
TippingMESparse Bayesian learning and the relevance vector machineJournal of Machine Learning Research200113211244187583810.1162/153244301527482360997.68109
Berger JO (2013) Statistical decision theory and Bayesian analysis. Springer Science & Business Media
KangFLiJJZhaoSZWangYJStructural health monitoring of concrete dams using long-term air temperature for thermal effect simulationEngineering Structures201918064265310.1016/j.engstruct.2018.11.065
RankovicVGrujovicNDivacDMilivojevicNDevelopment of support vector regression identification model for prediction of dam structural behaviourStruct Saf201448333910.1016/j.strusafe.2014.02.004
KongDDChenYJLiNDuanCQLuLXChenDXRelevance vector machine for tool wear predictionMechanical Systems and Signal Processing201912757359410.1016/j.ymssp.2019.03.023
DingZHLiJHaoHStructural damage identification using improved Jaya algorithm based on sparse regularization and Bayesian inferenceMechanical Systems and Signal Processing201913221123110.1016/j.ymssp.2019.06.029
KangFLiuXLiJConcrete Dam Behavior Prediction Using Multivariate Adaptive Regression Splines with Measured Air TemperatureArabian Journal for Science and Engineering201910.1007/s13369-019-04095-z
ShiYQYangJJWuJLHeJPA statistical model of deformation during the construction of a concrete face rockfill damStructural Control & Health Monitoring201810.1002/stc.2074
VapnikVGolowichSESmolaASupport vector method for function approximation, regression estimation, and signal processingAdv Neur In19979281287
RaoRWaghmareGGA new optimization algorithm for solving complex constrained design optimization problemsEngineering Optimization2017491608310.1080/0305215X.2016.1164855
KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJournal of global optimization2007393459471234617810.1007/s10898-007-9149-x
MacKay DJJNc (1992) Bayesian interpolation. 4 (3):415-447
LinCNLiTCLiuXQZhaoLHChenSYQiHJA deformation separation method for gravity dam body and foundation based on the observed displacementsStructural Control & Health Monitoring201910.1002/stc.2304
Zhao EF (2018) Dam Safety Monitoring Data Analysis Theory & Assessment Methods. Hohai University Press
FarmerJDPackardNHPerelsonASThe Immune-System, Adaptation, and Machine LearningPhysica D1986221–318720487816010.1016/0167-2789(86)90240-X
MigallonHJimeno-MorenillaASanchez-RomeroJLRicoHRaoRVMultipopulation-based multi-level parallel enhanced Jaya algorithmsJ Supercomput20197531697171610.1007/s11227-019-02759-z
XiGYYueJPZhouBXTangPApplication of an artificial immune algorithm on a statistical model of dam displacementComputers & Mathematics with Applications2011621039803986285211510.1016/j.camwa.2011.09.0571236.62166
StojanovicBMilivojevicMIvanovicMMilivojevicNDivacDAdaptive system for dam behavior modeling based on linear regression and genetic algorithmsAdvances in Engineering Software20136518219010.1016/j.advengsoft.2013.06.019
AbhishekKKumarVRDattaSMahapatraSSApplication of JAYA algorithm for the optimization of machining performance characteristics during the turning of CFRP (epoxy) composites: comparison with TLBO, GA, and ICAEngineering with Computers201733345747510.1007/s00366-016-0484-8
LinCNLiTCChenSYLiuXQLinCLiangSLGaussian process regression-based forecasting model of dam deformationNeural Comput Appl201931128503851810.1007/s00521-019-04375-7
MataJInterpretation of concrete dam behaviour with artificial neural network and multiple linear regression modelsEngineering Structures201133390391010.1016/j.engstruct.2010.12.011
ZhangZFLiuZBZhengLFZhangYDevelopment of an adaptive relevance vector machine approach for slope stability inferenceNeural Comput Appl2014257–82025203510.1007/s00521-014-1690-1
MataJde CastroATda CostaJSConstructing statistical models for arch dam deformationStructural Control & Health Monitoring201421342343710.1002/stc.1575
WangTZXuHHanJGElbouchikhiEBenbouzidMEHCascaded H-Bridge Multilevel Inverter System Fault Diagnosis Using a PCA and Multiclass Relevance Vector Machine ApproachIeee T Power Electr201530127006701810.1109/Tpel.2015.2393373
924_CR41
924_CR2
924_CR42
PM Sun (924_CR9) 2016; 59
K Abhishek (924_CR45) 2017; 33
924_CR46
924_CR47
GB Huang (924_CR25) 2006; 70
GY Xi (924_CR13) 2011; 62
MA Hariri-Ardebili (924_CR17) 2019
D Karaboga (924_CR43) 2007; 39
MA Hariri-Ardebili (924_CR18) 2019; 69
B Stojanovic (924_CR11) 2013; 65
K-TT Bui (924_CR29) 2016; 29
ZH Ding (924_CR44) 2019; 132
J Moody (924_CR20) 1989; 1
ME Tipping (924_CR33) 2001; 1
JD Farmer (924_CR40) 1986; 22
F Kang (924_CR23) 2019; 180
CN Lin (924_CR8) 2019
YQ Shi (924_CR3) 2018
HZ Su (924_CR27) 2016; 23
924_CR4
MA Hariri-Ardebili (924_CR15) 2018; 18
F Kang (924_CR30) 2019
R Rao (924_CR48) 2017; 49
F Salazar (924_CR5) 2015; 56
J Mata (924_CR7) 2014; 21
V Rankovic (924_CR28) 2014; 48
SY Chen (924_CR22) 2018; 2018
R Rao (924_CR38) 2016; 7
DD Kong (924_CR37) 2019; 127
CN Lin (924_CR31) 2019; 31
F Kang (924_CR24) 2017
F Kang (924_CR32) 2019; 146
TZ Wang (924_CR36) 2015; 30
JH Holland (924_CR39) 1975
CS Gu (924_CR12) 2010; 53
MA Hariri-Ardebili (924_CR19) 2019
F Salazar (924_CR6) 2015; 24
ZR Wu (924_CR1) 2003
V Vapnik (924_CR21) 1997; 9
ZF Zhang (924_CR35) 2014; 25
J Mata (924_CR10) 2011; 33
H Migallon (924_CR49) 2019; 75
CG Liu (924_CR26) 2017; 33
M Imani (924_CR34) 2018; 161
CS Gu (924_CR14) 2011; 54
MA Hariri-Ardebili (924_CR16) 2018; 104
References_xml – reference: Berger JO (2013) Statistical decision theory and Bayesian analysis. Springer Science & Business Media,
– reference: Hariri-ArdebiliMAPourkamali-AnarakiFSupport vector machine based reliability analysis of concrete damsSoil Dynamics and Earthquake Engineering201810427629510.1016/j.soildyn.2017.09.016
– reference: KangFLiJJZhaoSZWangYJStructural health monitoring of concrete dams using long-term air temperature for thermal effect simulationEngineering Structures201918064265310.1016/j.engstruct.2018.11.065
– reference: Li XL (2003) A new intelligent optimization-artificial fish swarm algorithm. PhD Dissertation, Zhejiang University
– reference: SalazarFToledoMAOnateEMoranRAn empirical comparison of machine learning techniques for dam behaviour modellingStruct Saf20155691710.1016/j.strusafe.2015.05.001
– reference: KangFLiJJDisplacement Model for Concrete Dam Safety Monitoring via Gaussian Process Regression Considering Extreme Air TemperatureJournal of Structural Engineering201914610501900110.1061/(ASCE)ST.1943-541X.0002467
– reference: DingZHLiJHaoHStructural damage identification using improved Jaya algorithm based on sparse regularization and Bayesian inferenceMechanical Systems and Signal Processing201913221123110.1016/j.ymssp.2019.06.029
– reference: SalazarFMoránRToledoMAOñateEData-Based Models for the Prediction of Dam Behaviour: A Review and Some Methodological ConsiderationsArchives of Computational Methods in Engineering201524112110.1007/s11831-015-9157-91360.74017
– reference: Gu CS, Wu ZR (2006) Safety monitoring of dams and dam foundations-theories & methods and their application. Hohai University Press,
– reference: StojanovicBMilivojevicMIvanovicMMilivojevicNDivacDAdaptive system for dam behavior modeling based on linear regression and genetic algorithmsAdvances in Engineering Software20136518219010.1016/j.advengsoft.2013.06.019
– reference: LinCNLiTCChenSYLiuXQLinCLiangSLGaussian process regression-based forecasting model of dam deformationNeural Comput Appl201931128503851810.1007/s00521-019-04375-7
– reference: MataJde CastroATda CostaJSConstructing statistical models for arch dam deformationStructural Control & Health Monitoring201421342343710.1002/stc.1575
– reference: GuCSWangYCPengYXuBSIll-conditioned problems of dam safety monitoring models and their processing methodsScience China-Technological Sciences201154123275328010.1007/s11431-011-4573-z1239.74099
– reference: HuangGBZhuQYSiewCKExtreme learning machine: Theory and applicationsNeurocomputing2006701–348950110.1016/j.neucom.2005.12.126
– reference: KangFLiuJLiJJLiSJConcrete dam deformation prediction model for health monitoring based on extreme learning machineStructural Control & Health Monitoring201710.1002/stc.1997
– reference: RankovicVGrujovicNDivacDMilivojevicNDevelopment of support vector regression identification model for prediction of dam structural behaviourStruct Saf201448333910.1016/j.strusafe.2014.02.004
– reference: GuCSLiBXuGLYuHBack analysis of mechanical parameters of roller compacted concrete damScience China-Technological Sciences201053384885310.1007/s11431-010-0053-01383.74027
– reference: SunPMBaoTFGuCSJiangMWangTShiZWParameter sensitivity and inversion analysis of a concrete faced rock-fill dam based on HS-BPNN algorithmScience China-Technological Sciences20165991442145110.1007/s11431-016-0213-y
– reference: TippingMESparse Bayesian learning and the relevance vector machineJournal of Machine Learning Research200113211244187583810.1162/153244301527482360997.68109
– reference: AbhishekKKumarVRDattaSMahapatraSSApplication of JAYA algorithm for the optimization of machining performance characteristics during the turning of CFRP (epoxy) composites: comparison with TLBO, GA, and ICAEngineering with Computers201733345747510.1007/s00366-016-0484-8
– reference: VapnikVGolowichSESmolaASupport vector method for function approximation, regression estimation, and signal processingAdv Neur In19979281287
– reference: MigallonHJimeno-MorenillaASanchez-RomeroJLRicoHRaoRVMultipopulation-based multi-level parallel enhanced Jaya algorithmsJ Supercomput20197531697171610.1007/s11227-019-02759-z
– reference: XiGYYueJPZhouBXTangPApplication of an artificial immune algorithm on a statistical model of dam displacementComputers & Mathematics with Applications2011621039803986285211510.1016/j.camwa.2011.09.0571236.62166
– reference: RaoRJaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problemsInternational Journal of Industrial Engineering Computations2016711934
– reference: WuZRSafety monitoring theory and its application of hydraulic structures2003BeijingHigher Education
– reference: Hariri-ArdebiliMASudretBPolynomial chaos expansion for uncertainty quantification of dam engineering problemsEngineering Structures201910.1016/j.engstruct.2019.109631
– reference: ShiYQYangJJWuJLHeJPA statistical model of deformation during the construction of a concrete face rockfill damStructural Control & Health Monitoring201810.1002/stc.2074
– reference: Hariri-ArdebiliMABarakSA series of forecasting models for seismic evaluation of dams based on ground motion meta-featuresEngineering Structures201910.1016/j.engstruct.2019.109657
– reference: KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJournal of global optimization2007393459471234617810.1007/s10898-007-9149-x
– reference: KangFLiuXLiJConcrete Dam Behavior Prediction Using Multivariate Adaptive Regression Splines with Measured Air TemperatureArabian Journal for Science and Engineering201910.1007/s13369-019-04095-z
– reference: MacKay DJJNc (1992) Bayesian interpolation. 4 (3):415-447
– reference: ChenSYGuCSLinCNZhaoEFSongJTSafety Monitoring Model of a Super-High Concrete Dam by Using RBF Neural Network Coupled with Kernel Principal Component AnalysisMathematical Problems in Engineering2018201811310.1155/2018/1712653
– reference: Eberhart R, Kennedy J A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. Ieee, pp 39-43
– reference: WangTZXuHHanJGElbouchikhiEBenbouzidMEHCascaded H-Bridge Multilevel Inverter System Fault Diagnosis Using a PCA and Multiclass Relevance Vector Machine ApproachIeee T Power Electr201530127006701810.1109/Tpel.2015.2393373
– reference: RaoRWaghmareGGA new optimization algorithm for solving complex constrained design optimization problemsEngineering Optimization2017491608310.1080/0305215X.2016.1164855
– reference: ImaniMKaoHCLanWHKuoCYDaily sea level prediction at Chiayi coast, Taiwan using extreme learning machine and relevance vector machineGlobal Planet Change201816121122110.1016/j.gloplacha.2017.12.018
– reference: BuiK-TTTien BuiDZouJVan DoanCRevhaugIA novel hybrid artificial intelligent approach based on neural fuzzy inference model and particle swarm optimization for horizontal displacement modeling of hydropower damNeural Computing and Applications201629121495150610.1007/s00521-016-2666-0
– reference: Hariri-ArdebiliMAPourkamali-AnarakiFMatrix completion for cost reduction in finite element simulations under hybrid uncertaintiesApplied Mathematical Modelling201969164180389423810.1016/j.apm.2018.12.01407186521
– reference: Hariri-ArdebiliMAPourkamali-AnarakiFSimplified reliability analysis of multi hazard risk in gravity dams via machine learning techniquesArch Civ Mech Eng201818259261010.1016/j.acme.2017.09.003
– reference: HollandJHAdaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artificial intelligence1975Ann ArborUniversity of Michigan Press0317.68006
– reference: FarmerJDPackardNHPerelsonASThe Immune-System, Adaptation, and Machine LearningPhysica D1986221–318720487816010.1016/0167-2789(86)90240-X
– reference: MoodyJDarkenCJFast Learning in Networks of Locally-Tuned Processing UnitsNeural Computation19891228129410.1162/neco.1989.1.2.281
– reference: MataJInterpretation of concrete dam behaviour with artificial neural network and multiple linear regression modelsEngineering Structures201133390391010.1016/j.engstruct.2010.12.011
– reference: ZhangZFLiuZBZhengLFZhangYDevelopment of an adaptive relevance vector machine approach for slope stability inferenceNeural Comput Appl2014257–82025203510.1007/s00521-014-1690-1
– reference: SuHZChenZXWenZPPerformance improvement method of support vector machine-based model monitoring dam safetyStructural Control & Health Monitoring201623225226610.1002/stc.1767
– reference: LiuCGGuCSChenBZoned elasticity modulus inversion analysis method of a high arch dam based on unconstrained Lagrange support vector regression (support vector regression arch dam)Engineering with Computers201733344345610.1007/s00366-016-0483-9
– reference: LinCNLiTCLiuXQZhaoLHChenSYQiHJA deformation separation method for gravity dam body and foundation based on the observed displacementsStructural Control & Health Monitoring201910.1002/stc.2304
– reference: KongDDChenYJLiNDuanCQLuLXChenDXRelevance vector machine for tool wear predictionMechanical Systems and Signal Processing201912757359410.1016/j.ymssp.2019.03.023
– reference: Zhao EF (2018) Dam Safety Monitoring Data Analysis Theory & Assessment Methods. Hohai University Press,
– volume: 2018
  start-page: 1
  year: 2018
  ident: 924_CR22
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2018/1712653
– volume: 62
  start-page: 3980
  issue: 10
  year: 2011
  ident: 924_CR13
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2011.09.057
– year: 2018
  ident: 924_CR3
  publication-title: Structural Control & Health Monitoring
  doi: 10.1002/stc.2074
– volume: 29
  start-page: 1495
  issue: 12
  year: 2016
  ident: 924_CR29
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2666-0
– ident: 924_CR4
– volume: 59
  start-page: 1442
  issue: 9
  year: 2016
  ident: 924_CR9
  publication-title: Science China-Technological Sciences
  doi: 10.1007/s11431-016-0213-y
– volume: 22
  start-page: 187
  issue: 1–3
  year: 1986
  ident: 924_CR40
  publication-title: Physica D
  doi: 10.1016/0167-2789(86)90240-X
– ident: 924_CR47
  doi: 10.1162/neco.1992.4.3.415
– volume: 33
  start-page: 443
  issue: 3
  year: 2017
  ident: 924_CR26
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-016-0483-9
– volume: 48
  start-page: 33
  year: 2014
  ident: 924_CR28
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2014.02.004
– volume: 161
  start-page: 211
  year: 2018
  ident: 924_CR34
  publication-title: Global Planet Change
  doi: 10.1016/j.gloplacha.2017.12.018
– volume: 7
  start-page: 19
  issue: 1
  year: 2016
  ident: 924_CR38
  publication-title: International Journal of Industrial Engineering Computations
– volume: 180
  start-page: 642
  year: 2019
  ident: 924_CR23
  publication-title: Engineering Structures
  doi: 10.1016/j.engstruct.2018.11.065
– volume: 25
  start-page: 2025
  issue: 7–8
  year: 2014
  ident: 924_CR35
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1690-1
– volume: 1
  start-page: 211
  issue: 3
  year: 2001
  ident: 924_CR33
  publication-title: Journal of Machine Learning Research
  doi: 10.1162/15324430152748236
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 924_CR25
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume-title: Adaptation in natural and artificial systems : an introductory analysis with applications to biology, control, and artificial intelligence
  year: 1975
  ident: 924_CR39
– volume: 56
  start-page: 9
  year: 2015
  ident: 924_CR5
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2015.05.001
– volume: 53
  start-page: 848
  issue: 3
  year: 2010
  ident: 924_CR12
  publication-title: Science China-Technological Sciences
  doi: 10.1007/s11431-010-0053-0
– volume: 69
  start-page: 164
  year: 2019
  ident: 924_CR18
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2018.12.014
– year: 2019
  ident: 924_CR30
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-019-04095-z
– volume-title: Safety monitoring theory and its application of hydraulic structures
  year: 2003
  ident: 924_CR1
– volume: 18
  start-page: 592
  issue: 2
  year: 2018
  ident: 924_CR15
  publication-title: Arch Civ Mech Eng
  doi: 10.1016/j.acme.2017.09.003
– year: 2019
  ident: 924_CR8
  publication-title: Structural Control & Health Monitoring
  doi: 10.1002/stc.2304
– volume: 146
  start-page: 05019001
  issue: 1
  year: 2019
  ident: 924_CR32
  publication-title: Journal of Structural Engineering
  doi: 10.1061/(ASCE)ST.1943-541X.0002467
– volume: 33
  start-page: 457
  issue: 3
  year: 2017
  ident: 924_CR45
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-016-0484-8
– year: 2019
  ident: 924_CR17
  publication-title: Engineering Structures
  doi: 10.1016/j.engstruct.2019.109657
– year: 2019
  ident: 924_CR19
  publication-title: Engineering Structures
  doi: 10.1016/j.engstruct.2019.109631
– volume: 104
  start-page: 276
  year: 2018
  ident: 924_CR16
  publication-title: Soil Dynamics and Earthquake Engineering
  doi: 10.1016/j.soildyn.2017.09.016
– volume: 54
  start-page: 3275
  issue: 12
  year: 2011
  ident: 924_CR14
  publication-title: Science China-Technological Sciences
  doi: 10.1007/s11431-011-4573-z
– volume: 65
  start-page: 182
  year: 2013
  ident: 924_CR11
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.06.019
– volume: 1
  start-page: 281
  issue: 2
  year: 1989
  ident: 924_CR20
  publication-title: Neural Computation
  doi: 10.1162/neco.1989.1.2.281
– volume: 33
  start-page: 903
  issue: 3
  year: 2011
  ident: 924_CR10
  publication-title: Engineering Structures
  doi: 10.1016/j.engstruct.2010.12.011
– ident: 924_CR2
– volume: 30
  start-page: 7006
  issue: 12
  year: 2015
  ident: 924_CR36
  publication-title: Ieee T Power Electr
  doi: 10.1109/Tpel.2015.2393373
– volume: 31
  start-page: 8503
  issue: 12
  year: 2019
  ident: 924_CR31
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04375-7
– ident: 924_CR41
– volume: 132
  start-page: 211
  year: 2019
  ident: 924_CR44
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2019.06.029
– volume: 49
  start-page: 60
  issue: 1
  year: 2017
  ident: 924_CR48
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2016.1164855
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 924_CR43
  publication-title: Journal of global optimization
  doi: 10.1007/s10898-007-9149-x
– volume: 127
  start-page: 573
  year: 2019
  ident: 924_CR37
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2019.03.023
– year: 2017
  ident: 924_CR24
  publication-title: Structural Control & Health Monitoring
  doi: 10.1002/stc.1997
– volume: 23
  start-page: 252
  issue: 2
  year: 2016
  ident: 924_CR27
  publication-title: Structural Control & Health Monitoring
  doi: 10.1002/stc.1767
– ident: 924_CR46
– volume: 24
  start-page: 1
  issue: 1
  year: 2015
  ident: 924_CR6
  publication-title: Archives of Computational Methods in Engineering
  doi: 10.1007/s11831-015-9157-9
– volume: 75
  start-page: 1697
  issue: 3
  year: 2019
  ident: 924_CR49
  publication-title: J Supercomput
  doi: 10.1007/s11227-019-02759-z
– ident: 924_CR42
– volume: 21
  start-page: 423
  issue: 3
  year: 2014
  ident: 924_CR7
  publication-title: Structural Control & Health Monitoring
  doi: 10.1002/stc.1575
– volume: 9
  start-page: 281
  year: 1997
  ident: 924_CR21
  publication-title: Adv Neur In
SSID ssj0013009
Score 2.522845
Snippet The observation data of dam displacement can reflect the dam’s actual service behavior intuitively. Therefore, the establishment of a precise data-driven model...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1943
SubjectTerms Algorithms
Arch dams
Artificial neural networks
CAE) and Design
Calculus of Variations and Optimal Control; Optimization
Classical Mechanics
Computer Science
Computer-Aided Engineering (CAD
Concrete dams
Confidence intervals
Control
Dam safety
Dams
Deformation effects
Detention dams
Displacement
Kernel functions
Machine learning
Math. Applications in Chemistry
Mathematical and Computational Engineering
Model testing
Neural networks
Optimization
Original Article
Parameter estimation
Performance prediction
Radial basis function
Statistical analysis
Support vector machines
Systems Theory
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60etCD9Yn1RQ7eNNjuxmxyEhGLIBQPCt6W5rFQtN3arR789c6kqauCXjwuuwkLX2byzeTLDMBxIpwqjFbcKmm5kMbwvnSGG22EaFu0wUKFZhNZr6ceH_VdTLhVUVY594nBUbvSUo78DAMZpTTyCXExfuHUNYpOV2MLjUVY6iRJh9b5bcbrU4T2TOLRyUjiJbN4aSZcnaNCLBRLa05lhwTX3zemmm3-OCAN-063-d8_Xoe1yDjZ5WyJbMCCH21CM7JPFm272oTVL6UJt2AQbubyJz8Z-WdWomMZDt7xe-qxElQD7C3k-9kwqDE9Q_LLqDtNqNhLxZ_xiQ6BCHhWFgzjbiSoU89cf8jcoApiMEpNbsND9_r-6obHtgzcor1OuSiEPE9sljohlTNIUbzUNjMKo12p0HdaYaRJdKKIPxSF9dL41KeZdqYtMHjfgcaoHPldYBklNFQfWV2KziTV_UKbdopjvUv8eSpb0JljkttYs5xaZzznn9WWA4454pgHHHPdgpPPMeNZxY4_vz6Yg5dH663yGrkWnM7hr1__Ptve37Ptw0pCkpig9j2AxnTy6g9h2b5NB9XkKKzdD_-98-U
  priority: 102
  providerName: ProQuest
Title Multi-kernel optimized relevance vector machine for probabilistic prediction of concrete dam displacement
URI https://link.springer.com/article/10.1007/s00366-019-00924-9
https://www.proquest.com/docview/2548896504
Volume 37
WOSCitedRecordID wos000574106400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1435-5663
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013009
  issn: 0177-0667
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o5kEPTqfidI4cvGlga7M0OapsCMIYm8rwUpY0heF-yFp38K_3JWs3FRX0UmiahJLkvXwv-d57AOcei0SspKBacE0ZV4oOeaSokoqxukYZjIVLNhF0OmIwkN3MKSzJ2e75laTT1CtnNxs6xVq_ktpAQYzKTSjidiesOPb6j-u7g_qS2NEILLGLB5mrzPd9fN6O1hjzy7Wo223apf_95x7sZuiSXC2Xwz5smGkZShnSJJkcJ1iUJ3PIy8qw8yEy4QGMnGMufTbzqRmTGeqVyegNu7ApVhxpgCzccT-ZODKmIYh9iU1O4wL22tjP-GbvgOy8k1lM0OxGfJoaEg0nJBoljgtmTyYP4aHdur-5pVlWBqpRXFPKYsabng78iHERKUQohksdKIHGLheoOjVTXHnSExY-xLE2XBnf-IGMVJ2h7X4Ehelsao6BBPY8QwwR1PmoS3w5jKWq-9jWRJ5p-rwCjXxyQp2FLLeZM8bhKtiyG-wQBzt0gx3KClys2rwsA3b8Wruaz3mYCW8Sos0shEToyipwmc_x-vPPvZ38rfopbHuWIePIv1UopPNXcwZbepGOknkNitetTrdXg827gNYsJ7WPz27zqeaW-zvHfPTP
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7xqAQ9lEepSMtjD_TUrkjsZR-HqqoKCBSIegCJm5t9WIpKbIgDVfuj-hs7s7FJqQQ3Dhwte1ey_c1rZ-YbgJ1EeJ1bo7nT0nEhreV96S23xgrRdiiDuY7DJlSvpy8uzLcZ-NP0wlBZZaMTo6L2paMz8l0MZLQ26E-Iz1fXnKZGUXa1GaExgUU3_PqJIVv16Xgf_-_7JDk8OPt6xOupAtwh3MZc5ELuJU6lXkjtLVrYII1TVmOwJjWKvhNW2sQkmsxfnrsgbUhDqoy3bYGxJ-47C_Mi1Yq4-ruKT7MW7UlJSUdRSZlUdZNObNUj4heK3Q0nmiPBzX1DOPVu_0vIRjt3uPTcvtAyvKo9avZlIgIrMBOKVViqvWtW665qFV7-Q734Ggax85j_CKMiXLISFedw8BufpxkysSqC3cZ8BhvGatPA0LlnNH0nMhITuTVeUZKLgM3KnLmyQAd8HJjvD5kfVLHYjY5e1-D8SV7_DcwVZRHWgSk6sNF99FpTVJap6efGtlNcG3wS9lLZgk6DgczVnOw0GuQyu2OTjrjJEDdZxE1mWvDhbs3VhJHk0ac3GrBktXaqsilSWvCxgdv09sO7vX18t21YODo7PclOjnvdd7CYUPlPrGzegLnx6CZswgt3Ox5Uo60oNwy-PzUM_wKrj0-l
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5RQFU58EYNj3YP7amsCPZmvXtACAFRUVDEASRubvZhKYLYNE5B8NP4dcxsbFKQyo1Dj5a9K9n-5rXzzQzAt0g4lRmtuFXSciGN4T3pDDfaCNG0KIOZCsMmkm5XXV7qsyl4rGthiFZZ68SgqF1h6Yx8BwMZpTT6E2Inq2gRZ0ft_ZvfnCZIUaa1HqcxhkjH399h-FbunRzhv_4eRe3j88OfvJowwC1Cb8RFJmQrsknshFTOoLX1UtvEKAzcpEI1YIWRJtKRIlOYZdZL42MfJ9qZpsA4FPf9ADNohVskY52ETzIYzTG9ZDcheplMqoKdULZHTWAojtecWh4Jrl8axYmn-yo5G2xee-F__lqLMF952uxgLBpLMOXzZViovG5W6bRyGeb-asm4Av1Qkcyv_DD316xAhTroP-DzNFsmsCXYbchzsEFgoXqGTj-jqTyhUzE1vcYrSn4R4FmRMVvk6JiPPHO9AXP9MpDg6Eh2FS7e5fXXYDovcv8ZWEIHOaqH3myMSjTWvUybZoxrvYt8K5YN2K3xkNqqVzuNDLlOn7tMBwyliKE0YCjVDfjxvOZm3Knkzac3a-CkldYq0wlqGrBdQ29y-9-7rb-921f4iOhLT0-6nQ34FBErKBCeN2F6NPzjt2DW3o765fBLECEGv94bhU_Gmlhf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-kernel+optimized+relevance+vector+machine+for+probabilistic+prediction+of+concrete+dam+displacement&rft.jtitle=Engineering+with+computers&rft.au=Chen%2C+Siyu&rft.au=Gu%2C+Chongshi&rft.au=Lin%2C+Chaoning&rft.au=Zhang%2C+Kang&rft.date=2021-07-01&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=37&rft.issue=3&rft.spage=1943&rft.epage=1959&rft_id=info:doi/10.1007%2Fs00366-019-00924-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00366_019_00924_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon