On maximizing monotone or non-monotone k-submodular functions with the intersection of knapsack and matroid constraints

A k -submodular function is a generalization of a submodular function. The definition domain of a k -submodular function is a collection of k -disjoint subsets instead of simple subsets of ground set. In this paper, we consider the maximization of a k -submodular function with the intersection of a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of combinatorial optimization Vol. 45; no. 3; p. 93
Main Authors: Yu, Kemin, Li, Min, Zhou, Yang, Liu, Qian
Format: Journal Article
Language:English
Published: New York Springer US 01.04.2023
Springer Nature B.V
Subjects:
ISSN:1382-6905, 1573-2886
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A k -submodular function is a generalization of a submodular function. The definition domain of a k -submodular function is a collection of k -disjoint subsets instead of simple subsets of ground set. In this paper, we consider the maximization of a k -submodular function with the intersection of a knapsack and m matroid constraints. When the k -submodular function is monotone, we use a special analytical method to get an approximation ratio 1 m + 2 ( 1 - e - ( m + 2 ) ) for a nested greedy and local search algorithm. For non-monotone case, we can obtain an approximate ratio 1 m + 3 ( 1 - e - ( m + 3 ) ) .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-023-01021-w