On maximizing monotone or non-monotone k-submodular functions with the intersection of knapsack and matroid constraints

A k -submodular function is a generalization of a submodular function. The definition domain of a k -submodular function is a collection of k -disjoint subsets instead of simple subsets of ground set. In this paper, we consider the maximization of a k -submodular function with the intersection of a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of combinatorial optimization Ročník 45; číslo 3; s. 93
Hlavní autoři: Yu, Kemin, Li, Min, Zhou, Yang, Liu, Qian
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2023
Springer Nature B.V
Témata:
ISSN:1382-6905, 1573-2886
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A k -submodular function is a generalization of a submodular function. The definition domain of a k -submodular function is a collection of k -disjoint subsets instead of simple subsets of ground set. In this paper, we consider the maximization of a k -submodular function with the intersection of a knapsack and m matroid constraints. When the k -submodular function is monotone, we use a special analytical method to get an approximation ratio 1 m + 2 ( 1 - e - ( m + 2 ) ) for a nested greedy and local search algorithm. For non-monotone case, we can obtain an approximate ratio 1 m + 3 ( 1 - e - ( m + 3 ) ) .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-023-01021-w