On maximizing monotone or non-monotone k-submodular functions with the intersection of knapsack and matroid constraints
A k -submodular function is a generalization of a submodular function. The definition domain of a k -submodular function is a collection of k -disjoint subsets instead of simple subsets of ground set. In this paper, we consider the maximization of a k -submodular function with the intersection of a...
Uloženo v:
| Vydáno v: | Journal of combinatorial optimization Ročník 45; číslo 3; s. 93 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.04.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 1382-6905, 1573-2886 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A
k
-submodular function is a generalization of a submodular function. The definition domain of a
k
-submodular function is a collection of
k
-disjoint subsets instead of simple subsets of ground set. In this paper, we consider the maximization of a
k
-submodular function with the intersection of a knapsack and
m
matroid constraints. When the
k
-submodular function is monotone, we use a special analytical method to get an approximation ratio
1
m
+
2
(
1
-
e
-
(
m
+
2
)
)
for a nested greedy and local search algorithm. For non-monotone case, we can obtain an approximate ratio
1
m
+
3
(
1
-
e
-
(
m
+
3
)
)
. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1382-6905 1573-2886 |
| DOI: | 10.1007/s10878-023-01021-w |