Radius theorems for subregularity in infinite dimensions
The paper continues our previous work (Dontchev et al. in Set-Valued Var Anal 28:451–473, 2020) on the radius of subregularity that was initiated by Asen Dontchev. We extend the results of (Dontchev et al. in Set-Valued Var Anal 28:451–473, 2020) to general Banach/Asplund spaces and to other classes...
Saved in:
| Published in: | Computational optimization and applications Vol. 86; no. 3; pp. 1117 - 1158 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.12.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0926-6003, 1573-2894 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The paper continues our previous work (Dontchev et al. in Set-Valued Var Anal 28:451–473, 2020) on the radius of subregularity that was initiated by Asen Dontchev. We extend the results of (Dontchev et al. in Set-Valued Var Anal 28:451–473, 2020) to general Banach/Asplund spaces and to other classes of perturbations, and sharpen the coderivative tools used in the analysis of the robustness of
well-posedness
of mathematical problems and related
regularity
properties of mappings involved in the statements. We also expand the selection of classes of perturbations, for which the formula for the radius of strong subregularity is valid. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0926-6003 1573-2894 |
| DOI: | 10.1007/s10589-022-00431-6 |