Radius theorems for subregularity in infinite dimensions

The paper continues our previous work (Dontchev et al. in Set-Valued Var Anal 28:451–473, 2020) on the radius of subregularity that was initiated by Asen Dontchev. We extend the results of (Dontchev et al. in Set-Valued Var Anal 28:451–473, 2020) to general Banach/Asplund spaces and to other classes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications Jg. 86; H. 3; S. 1117 - 1158
Hauptverfasser: Gfrerer, Helmut, Kruger, Alexander Y.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.12.2023
Springer Nature B.V
Schlagworte:
ISSN:0926-6003, 1573-2894
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper continues our previous work (Dontchev et al. in Set-Valued Var Anal 28:451–473, 2020) on the radius of subregularity that was initiated by Asen Dontchev. We extend the results of (Dontchev et al. in Set-Valued Var Anal 28:451–473, 2020) to general Banach/Asplund spaces and to other classes of perturbations, and sharpen the coderivative tools used in the analysis of the robustness of well-posedness of mathematical problems and related regularity properties of mappings involved in the statements. We also expand the selection of classes of perturbations, for which the formula for the radius of strong subregularity is valid.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-022-00431-6