Forecasting Model for the Number of Breeding Sows Based on Pig’s Months of Age Transfer and Improved Flower Pollination Algorithm-Back Propagation Neural Network

Regulating the number of breeding sows (NBS) is crucial for pork supply–demand balance. Current forecasting methods for NBS fail to consider the principle of pig’s months of age (MOA) transfer and the impact of factors like diseases and policies on NBS fluctuations, leading to unsatisfactory accurac...

Full description

Saved in:
Bibliographic Details
Published in:Applied intelligence (Dordrecht, Netherlands) Vol. 54; no. 7; pp. 5826 - 5858
Main Authors: Song, Haohao, Zhang, Hongyu, Yang, Jingnan, Wang, Jiquan
Format: Journal Article
Language:English
Published: New York Springer US 01.04.2024
Springer Nature B.V
Subjects:
ISSN:0924-669X, 1573-7497
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Regulating the number of breeding sows (NBS) is crucial for pork supply–demand balance. Current forecasting methods for NBS fail to consider the principle of pig’s months of age (MOA) transfer and the impact of factors like diseases and policies on NBS fluctuations, leading to unsatisfactory accuracy. To bridge the research gap, a two-part forecasting model for the NBS was developed. In the first part, a recurrence forecasting model was established according to the growth characteristics of pigs and the principle of pig’s MOA transfer. In the second part, the random disturbance term was introduced to consider the influence of plague, policy and other factors on the NBS, and a forecasting method for random disturbance term based on Improved Flower Pollination Algorithm-Back Propagation Neural Network (IFPA-BPNN) was given. Subsequently, the proposed IFA and other newer optimization algorithms were evaluated on CEC 2017 test suite to verify the effectiveness and superiority of IFA. Lastly, the proposed model was employed to forecast the NBS in Heilongjiang Province and Anhui Province of China from 2009 to 2021. Compared to other time series forecasting models, the proposed model showed superior accuracy, confirming its scientific and effective nature. Relevant managerial insights were provided at the end of this paper.
AbstractList Regulating the number of breeding sows (NBS) is crucial for pork supply–demand balance. Current forecasting methods for NBS fail to consider the principle of pig’s months of age (MOA) transfer and the impact of factors like diseases and policies on NBS fluctuations, leading to unsatisfactory accuracy. To bridge the research gap, a two-part forecasting model for the NBS was developed. In the first part, a recurrence forecasting model was established according to the growth characteristics of pigs and the principle of pig’s MOA transfer. In the second part, the random disturbance term was introduced to consider the influence of plague, policy and other factors on the NBS, and a forecasting method for random disturbance term based on Improved Flower Pollination Algorithm-Back Propagation Neural Network (IFPA-BPNN) was given. Subsequently, the proposed IFA and other newer optimization algorithms were evaluated on CEC 2017 test suite to verify the effectiveness and superiority of IFA. Lastly, the proposed model was employed to forecast the NBS in Heilongjiang Province and Anhui Province of China from 2009 to 2021. Compared to other time series forecasting models, the proposed model showed superior accuracy, confirming its scientific and effective nature. Relevant managerial insights were provided at the end of this paper.
Author Yang, Jingnan
Wang, Jiquan
Song, Haohao
Zhang, Hongyu
Author_xml – sequence: 1
  givenname: Haohao
  surname: Song
  fullname: Song, Haohao
  organization: College of Engineering, Northeast Agricultural University
– sequence: 2
  givenname: Hongyu
  surname: Zhang
  fullname: Zhang, Hongyu
  organization: College of Engineering, Northeast Agricultural University
– sequence: 3
  givenname: Jingnan
  surname: Yang
  fullname: Yang, Jingnan
  organization: College of Engineering, Northeast Agricultural University
– sequence: 4
  givenname: Jiquan
  orcidid: 0000-0002-1498-2602
  surname: Wang
  fullname: Wang, Jiquan
  email: wang-jiquan@163.com
  organization: College of Engineering, Northeast Agricultural University
BookMark eNp9kctqGzEUhkVJoU7aF-hKkPUkulkaLe0QN4FcDEkgO3FmRjOeZCw5klzTXV-j675Zn6RyplDIItoc0Pk-nYP-Q3TgvLMIfaXkhBKiTiMlotQFYaIgU0F5QT-gCZ0qXiih1QGaEJ1bUurHT-gwxidCCOeETtDvhQ-2hph61-Fr39gBtz7gtLL4ZruubMC-xfNgbbMH7vwu4jlE22Dv8LLv_vz8FbPm0iruwVln8X0AF9ssgmvw5XoT_PeMLwa_y3dLPwy9g9RnfTZ0PvRptS7mUD_jZfAb6MbWjd0GGHJJOx-eP6OPLQzRfvlXj9DD4vz-7KK4uv12eTa7KmpOdSpEM62ogHwEA67qsppK3UpoK6YUE6VoNLOVVRXIRhDQEihTmiiqRElqyfgROh7fzTu_bG1M5slvg8sjDc-_ynQppcxUOVJ18DEG25q6T69rpwD9YCgx-0jMGInJkZjXSAzNKnujbkK_hvDjfYmPUsyw62z4v9U71l-__aMK
CitedBy_id crossref_primary_10_3390_su16166907
crossref_primary_10_3390_agriculture14091592
crossref_primary_10_3390_agriculture15141484
Cites_doi 10.25165/j.ijabe.20201302.5303
10.1016/j.uclim.2021.101078
10.1016/j.eswa.2021.115949
10.1016/j.matcom.2021.08.013
10.3389/fvets.2022.1028460
10.1016/j.enbuild.2021.111439
10.1016/j.asoc.2021.107574
10.1007/s00521-022-07530-9
10.1016/j.asej.2022.102095
10.37190/ord210307
10.1002/agr.21787
10.1002/for.2649
10.1016/j.eswa.2012.12.009
10.1088/1674-1056/28/2/024213
10.46234/ccdcw2023.134
10.2307/2967618
10.2307/1881734
10.2307/1240645
10.3390/agriculture10110513
10.3390/su151713130
10.1111/cjag.12236
10.2307/1239345
10.1016/j.apm.2020.02.023
10.1590/0103-8478cr20220197
10.3389/fvets.2023.1202811
10.1155/2023/6328119
10.1080/08839514.2023.2204600
10.1016/j.tics.2018.12.005
10.1007/s10489-021-03048-0
10.1049/ipr2.12662
10.1111/j.1467-9892.2009.00643.x
10.1016/j.compag.2022.107068
10.1016/j.neucom.2008.04.017
10.1016/j.eswa.2022.119002
10.1080/15567249.2023.2241455
10.48550/arXiv.1312.5673
10.1214/aoms/1177731944
10.1038/s43016-020-0057-2
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-024-05413-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Psychology
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 5858
ExternalDocumentID 10_1007_s10489_024_05413_1
GrantInformation_xml – fundername: National Social Science Fund of China
  grantid: 21BGL174
  funderid: http://dx.doi.org/10.13039/501100012456
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-4d5b14aaaa42a37c8b569f6afb2772484d92ebe7ba6d40a96a12790717480c623
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001210740800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 14:52:20 EST 2025
Sat Nov 29 05:33:40 EST 2025
Tue Nov 18 21:56:37 EST 2025
Fri Feb 21 02:40:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords IFPA-BPNN
Pork price
Forecasting
The principle of pig’s MOA transfer
The number of breeding sows
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-4d5b14aaaa42a37c8b569f6afb2772484d92ebe7ba6d40a96a12790717480c623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1498-2602
PQID 3054298666
PQPubID 326365
PageCount 33
ParticipantIDs proquest_journals_3054298666
crossref_citationtrail_10_1007_s10489_024_05413_1
crossref_primary_10_1007_s10489_024_05413_1
springer_journals_10_1007_s10489_024_05413_1
PublicationCentury 2000
PublicationDate 20240400
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 4
  year: 2024
  text: 20240400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Sun, Qin, Hou, Jing, He, Tan, Zhang, Zhang (CR25) 2019; 28
Jin, Li (CR11) 2024; 54
Song, Wang, Song, Zhang, Bei, Ni, Ye (CR32) 2022; 52
Dehkordi, Sadiq, Mirjalili, Ghafoor (CR35) 2021; 109
Zhang, Li, Li, Zu, Zhang (CR27) 2023; 2023
Khashei, Bijari, Ardali (CR20) 2009; 72
Box, Jenkins (CR19) 2010; 31
Ceylan (CR21) 2023; 18
CR14
Kaldor (CR1) 1934; 1
CR12
Wang, Bi (CR26) 2022; 187
CR33
Li, Fu, Fung, Qu, Lau (CR28) 2021; 253
CR31
CR30
Al-qaness, Ewees, Fan, Abualigah, Elsheikh, Abd Elaziz (CR41) 2023; 14
Whittington, Bogacz (CR22) 2019; 23
Tian, Liu, Zheng, Yin (CR23) 2022; 41
Hashim, Houssein, Hussain, Mabrouk, Al-Atabany (CR38) 2022; 192
Ling, Zhang, Chen, Mugera (CR5) 2020; 39
Wang, Jiang, You, Wang, Ma, Li, Hu, Yin (CR39) 2023; 5
Wang (CR9) 2023; 37
Wang, Wang, Yu (CR15) 2023; 39
Dixon, Martin (CR4) 1982; 64
Zhu, Xu, Deng (CR8) 2022; 198
Pang, Yin, Lu, Li (CR10) 2023; 15
Wang, Wang, Cui, Zhang (CR17) 2022; 9
CR29
Sharma, Saxena, Palwalia (CR37) 2023; 214
Ezugwu, Agushaka, Abualigah, Mirjalili, Gandomi (CR36) 2022; 34
Chuluunsaikhan, Ryu, Yoo, Rah, Nasridinov (CR6) 2020; 10
Yu, Yang, Mu (CR18) 2023; 10
Zielińska-Sitkiewicz, Chrzanowska (CR7) 2021; 31
Chen, Pi (CR34) 2020; 83
Ezekiel (CR2) 1938; 52
McEwan, Marchand, Shang, Bucknell (CR16) 2020; 68
Hao, Li, Pan, Yao, Liu (CR40) 2023; 17
Talpaz (CR3) 1974; 56
Lee, Choi (CR24) 2013; 40
Zhang, Wang (CR13) 2020; 13
M Khashei (5413_CR20) 2009; 72
L Hao (5413_CR40) 2023; 17
AE Ezugwu (5413_CR36) 2022; 34
T Jin (5413_CR11) 2024; 54
5413_CR14
5413_CR30
5413_CR31
L Li (5413_CR28) 2021; 253
5413_CR12
YH Zhang (5413_CR27) 2023; 2023
5413_CR33
JJ Wang (5413_CR17) 2022; 9
AK Sharma (5413_CR37) 2023; 214
MAA Al-qaness (5413_CR41) 2023; 14
JCR Whittington (5413_CR22) 2019; 23
T Chuluunsaikhan (5413_CR6) 2020; 10
S Lee (5413_CR24) 2013; 40
JJ Wang (5413_CR15) 2023; 39
AA Dehkordi (5413_CR35) 2021; 109
HM Zhu (5413_CR8) 2022; 198
H Talpaz (5413_CR3) 1974; 56
YJ Wang (5413_CR9) 2023; 37
R Yu (5413_CR18) 2023; 10
K McEwan (5413_CR16) 2020; 68
J Pang (5413_CR10) 2023; 15
BL Dixon (5413_CR4) 1982; 64
M Zielińska-Sitkiewicz (5413_CR7) 2021; 31
LW Ling (5413_CR5) 2020; 39
5413_CR29
JW Tian (5413_CR23) 2022; 41
GD Sun (5413_CR25) 2019; 28
FA Hashim (5413_CR38) 2022; 192
GEP Box (5413_CR19) 2010; 31
Z Ceylan (5413_CR21) 2023; 18
MM Wang (5413_CR39) 2023; 5
HH Song (5413_CR32) 2022; 52
N Kaldor (5413_CR1) 1934; 1
F Zhang (5413_CR13) 2020; 13
R Wang (5413_CR26) 2022; 187
M Ezekiel (5413_CR2) 1938; 52
Y Chen (5413_CR34) 2020; 83
References_xml – volume: 13
  start-page: 208
  issue: 2
  year: 2020
  end-page: 217
  ident: CR13
  article-title: Prediction of pork supply via the calculation of pig population based on population prediction model
  publication-title: Int J Agric Biol Eng
  doi: 10.25165/j.ijabe.20201302.5303
– volume: 41
  start-page: 101078
  year: 2022
  ident: CR23
  article-title: Smog prediction based on the deep belief - BP neural network model (DBN-BP)
  publication-title: Urban Climate
  doi: 10.1016/j.uclim.2021.101078
– volume: 187
  start-page: 115949
  year: 2022
  ident: CR26
  article-title: A predictive model for chinese children with developmental dyslexia-Based on a genetic algorithm optimized back-propagation neural network
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115949
– volume: 192
  start-page: 84
  year: 2022
  end-page: 110
  ident: CR38
  article-title: Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2021.08.013
– volume: 9
  start-page: 1028460
  issue: 14
  year: 2022
  ident: CR17
  article-title: How does imported pork regulate the supply and demand of China's pig market during the epidemic?-based on the analysis of African swine fever and COVID-19
  publication-title: Front Vet Sci
  doi: 10.3389/fvets.2022.1028460
– volume: 253
  start-page: 111439
  year: 2021
  ident: CR28
  article-title: Development of a back-propagation neural network and adaptive grey wolf optimizer algorithm for thermal comfort and energy consumption prediction and optimization
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2021.111439
– volume: 109
  start-page: 107574
  issue: 23
  year: 2021
  ident: CR35
  article-title: Nonlinear-based Chaotic Harris Hawks Optimizer: Algorithm and Internet of Vehicles application
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107574
– ident: CR14
– volume: 34
  start-page: 20017
  issue: 22
  year: 2022
  end-page: 20065
  ident: CR36
  article-title: Prairie Dog Optimization Algorithm
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07530-9
– volume: 14
  start-page: 102095
  issue: 9
  year: 2023
  ident: CR41
  article-title: Wind power prediction using random vector functional link network with capuchin search algorithm
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2022.102095
– ident: CR12
– ident: CR30
– volume: 31
  start-page: 137
  year: 2021
  end-page: 152
  ident: CR7
  article-title: Prediction of pork meat prices by selected methods as an element supporting the decision-making process
  publication-title: Oper Res Decis
  doi: 10.37190/ord210307
– volume: 39
  start-page: 703
  issue: 3
  year: 2023
  end-page: 726
  ident: CR15
  article-title: Shocks, cycles and adjustments: The case of China's Hog Market under external shocks
  publication-title: Agribusiness
  doi: 10.1002/agr.21787
– ident: CR33
– volume: 39
  start-page: 671
  issue: 4
  year: 2020
  end-page: 686
  ident: CR5
  article-title: Can online search data improve the forecast accuracy of pork price in China?
  publication-title: J Forecast
  doi: 10.1002/for.2649
– volume: 40
  start-page: 2941
  issue: 8
  year: 2013
  end-page: 2946
  ident: CR24
  article-title: A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.12.009
– volume: 28
  start-page: 024213
  issue: 2
  year: 2019
  ident: CR25
  article-title: Feasibility analysis for acquiring visibility based on lidar signal using genetic algorithm-optimized back propagation algorithm
  publication-title: Chin Phys B
  doi: 10.1088/1674-1056/28/2/024213
– ident: CR29
– volume: 5
  start-page: 698
  issue: 31
  year: 2023
  ident: CR39
  article-title: An Autoregressive Integrated Moving Average Model for Predicting Varicella Outbreaks-China, 2019
  publication-title: China CDC Weekly
  doi: 10.46234/ccdcw2023.134
– volume: 1
  start-page: 122
  year: 1934
  end-page: 136
  ident: CR1
  article-title: A Classificatory Note on the Determinateness of Equilibrium
  publication-title: Rev Econ Stud
  doi: 10.2307/2967618
– volume: 52
  start-page: 255
  issue: 2
  year: 1938
  end-page: 280
  ident: CR2
  article-title: The Cobweb Theorem
  publication-title: Quart J Econ
  doi: 10.2307/1881734
– volume: 64
  start-page: 530
  issue: 3
  year: 1982
  end-page: 538
  ident: CR4
  article-title: Forecasting U.S. Pork Production Using a Random Coefficient Model
  publication-title: Am J Agric Econ
  doi: 10.2307/1240645
– volume: 10
  start-page: 513
  issue: 11
  year: 2020
  ident: CR6
  article-title: Incorporating Deep Learning and News Topic Modeling for Forecasting Pork Prices: The Case of South Korea
  publication-title: Agriculture-Basel
  doi: 10.3390/agriculture10110513
– volume: 15
  start-page: 13130
  issue: 17
  year: 2023
  ident: CR10
  article-title: Supply and Demand Changes Pig Epidemic Shocks, and Pork Price Fluctuations: An Empirical Study Based on an SVAR Model
  publication-title: Sustainability-Basel
  doi: 10.3390/su151713130
– volume: 68
  start-page: 201
  issue: 2
  year: 2020
  end-page: 206
  ident: CR16
  article-title: Potential implications of COVID-19 on the Canadian pork industry
  publication-title: Can J Agric Econ-Rev Can Agroecon
  doi: 10.1111/cjag.12236
– volume: 56
  start-page: 38
  issue: 1
  year: 1974
  end-page: 49
  ident: CR3
  article-title: Multi-Frequency Cobweb Model: Decomposition of the Hog Cycle
  publication-title: Am J Agr Econ
  doi: 10.2307/1239345
– volume: 83
  start-page: 237
  year: 2020
  end-page: 265
  ident: CR34
  article-title: An innovative flower pollination algorithm for continuous optimization problem
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2020.02.023
– volume: 54
  start-page: e20220197
  issue: 2
  year: 2024
  ident: CR11
  article-title: An empirical analysis of pork price fluctuations in China with the autoregressive conditional heteroscedasticity model
  publication-title: Cienc Rural
  doi: 10.1590/0103-8478cr20220197
– volume: 10
  start-page: 1202811
  issue: 12
  year: 2023
  ident: CR18
  article-title: A study on the impact of double external shocks on Chinese wholesale pork prices
  publication-title: Front Vet Sci
  doi: 10.3389/fvets.2023.1202811
– volume: 2023
  start-page: 6328119
  issue: 11
  year: 2023
  ident: CR27
  article-title: Short-Term Power Prediction of Wind Power Generation System Based on Logistic Chaos Atom Search Optimization BP Neural Network
  publication-title: Int Trans Electr Energy Syst
  doi: 10.1155/2023/6328119
– ident: CR31
– volume: 37
  start-page: 2204600
  issue: 1
  year: 2023
  ident: CR9
  article-title: Agricultural products price prediction based on improved RBF neural network model
  publication-title: Appl Artif Intell
  doi: 10.1080/08839514.2023.2204600
– volume: 23
  start-page: 235
  issue: 3
  year: 2019
  end-page: 250
  ident: CR22
  article-title: Theories of Error Back-Propagation in the Brain
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2018.12.005
– volume: 52
  start-page: 17410
  issue: 15
  year: 2022
  end-page: 17448
  ident: CR32
  article-title: Improvement and application of hybrid real-coded genetic algorithm
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-03048-0
– volume: 17
  start-page: 649
  issue: 3
  year: 2023
  end-page: 659
  ident: CR40
  article-title: Ice accretion thickness prediction using flash infrared thermal imaging and BP neural networks
  publication-title: IET Image Proc
  doi: 10.1049/ipr2.12662
– volume: 31
  start-page: 303
  issue: 3
  year: 2010
  ident: CR19
  article-title: Time series analysis: forecasting and control
  publication-title: J Time Ser Anal
  doi: 10.1111/j.1467-9892.2009.00643.x
– volume: 198
  start-page: 107068
  issue: 15
  year: 2022
  ident: CR8
  article-title: A novel STL-based hybrid model for forecasting hog price in China
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2022.107068
– volume: 72
  start-page: 956
  issue: 4
  year: 2009
  end-page: 967
  ident: CR20
  article-title: Improvement of Auto-Regressive Integrated Moving Average models using Fuzzy logic and Artificial Neural Networks (ANNs)
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.04.017
– volume: 214
  start-page: 119002
  issue: 18
  year: 2023
  ident: CR37
  article-title: Oppositional Slime Mould Algorithm: Development and application for designing demand side management controller
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119002
– volume: 18
  start-page: 2241455
  issue: 1
  year: 2023
  ident: CR21
  article-title: Comparative analysis of deep learning and classical time series methods to forecast natural gas demand during COVID-19 pandemic
  publication-title: Energy Sources Part B
  doi: 10.1080/15567249.2023.2241455
– volume: 214
  start-page: 119002
  issue: 18
  year: 2023
  ident: 5413_CR37
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119002
– volume: 15
  start-page: 13130
  issue: 17
  year: 2023
  ident: 5413_CR10
  publication-title: Sustainability-Basel
  doi: 10.3390/su151713130
– volume: 54
  start-page: e20220197
  issue: 2
  year: 2024
  ident: 5413_CR11
  publication-title: Cienc Rural
  doi: 10.1590/0103-8478cr20220197
– ident: 5413_CR29
  doi: 10.48550/arXiv.1312.5673
– volume: 52
  start-page: 17410
  issue: 15
  year: 2022
  ident: 5413_CR32
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-03048-0
– volume: 64
  start-page: 530
  issue: 3
  year: 1982
  ident: 5413_CR4
  publication-title: Am J Agric Econ
  doi: 10.2307/1240645
– volume: 17
  start-page: 649
  issue: 3
  year: 2023
  ident: 5413_CR40
  publication-title: IET Image Proc
  doi: 10.1049/ipr2.12662
– volume: 31
  start-page: 303
  issue: 3
  year: 2010
  ident: 5413_CR19
  publication-title: J Time Ser Anal
  doi: 10.1111/j.1467-9892.2009.00643.x
– volume: 18
  start-page: 2241455
  issue: 1
  year: 2023
  ident: 5413_CR21
  publication-title: Energy Sources Part B
  doi: 10.1080/15567249.2023.2241455
– volume: 40
  start-page: 2941
  issue: 8
  year: 2013
  ident: 5413_CR24
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2012.12.009
– volume: 10
  start-page: 1202811
  issue: 12
  year: 2023
  ident: 5413_CR18
  publication-title: Front Vet Sci
  doi: 10.3389/fvets.2023.1202811
– volume: 41
  start-page: 101078
  year: 2022
  ident: 5413_CR23
  publication-title: Urban Climate
  doi: 10.1016/j.uclim.2021.101078
– volume: 56
  start-page: 38
  issue: 1
  year: 1974
  ident: 5413_CR3
  publication-title: Am J Agr Econ
  doi: 10.2307/1239345
– volume: 39
  start-page: 703
  issue: 3
  year: 2023
  ident: 5413_CR15
  publication-title: Agribusiness
  doi: 10.1002/agr.21787
– volume: 72
  start-page: 956
  issue: 4
  year: 2009
  ident: 5413_CR20
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.04.017
– volume: 31
  start-page: 137
  year: 2021
  ident: 5413_CR7
  publication-title: Oper Res Decis
  doi: 10.37190/ord210307
– ident: 5413_CR12
– ident: 5413_CR31
– volume: 9
  start-page: 1028460
  issue: 14
  year: 2022
  ident: 5413_CR17
  publication-title: Front Vet Sci
  doi: 10.3389/fvets.2022.1028460
– volume: 10
  start-page: 513
  issue: 11
  year: 2020
  ident: 5413_CR6
  publication-title: Agriculture-Basel
  doi: 10.3390/agriculture10110513
– volume: 52
  start-page: 255
  issue: 2
  year: 1938
  ident: 5413_CR2
  publication-title: Quart J Econ
  doi: 10.2307/1881734
– volume: 39
  start-page: 671
  issue: 4
  year: 2020
  ident: 5413_CR5
  publication-title: J Forecast
  doi: 10.1002/for.2649
– volume: 198
  start-page: 107068
  issue: 15
  year: 2022
  ident: 5413_CR8
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2022.107068
– volume: 37
  start-page: 2204600
  issue: 1
  year: 2023
  ident: 5413_CR9
  publication-title: Appl Artif Intell
  doi: 10.1080/08839514.2023.2204600
– volume: 68
  start-page: 201
  issue: 2
  year: 2020
  ident: 5413_CR16
  publication-title: Can J Agric Econ-Rev Can Agroecon
  doi: 10.1111/cjag.12236
– volume: 83
  start-page: 237
  year: 2020
  ident: 5413_CR34
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2020.02.023
– ident: 5413_CR33
  doi: 10.1214/aoms/1177731944
– volume: 253
  start-page: 111439
  year: 2021
  ident: 5413_CR28
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2021.111439
– volume: 14
  start-page: 102095
  issue: 9
  year: 2023
  ident: 5413_CR41
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2022.102095
– volume: 1
  start-page: 122
  year: 1934
  ident: 5413_CR1
  publication-title: Rev Econ Stud
  doi: 10.2307/2967618
– volume: 192
  start-page: 84
  year: 2022
  ident: 5413_CR38
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2021.08.013
– volume: 13
  start-page: 208
  issue: 2
  year: 2020
  ident: 5413_CR13
  publication-title: Int J Agric Biol Eng
  doi: 10.25165/j.ijabe.20201302.5303
– volume: 23
  start-page: 235
  issue: 3
  year: 2019
  ident: 5413_CR22
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2018.12.005
– volume: 187
  start-page: 115949
  year: 2022
  ident: 5413_CR26
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115949
– volume: 109
  start-page: 107574
  issue: 23
  year: 2021
  ident: 5413_CR35
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107574
– volume: 34
  start-page: 20017
  issue: 22
  year: 2022
  ident: 5413_CR36
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07530-9
– volume: 28
  start-page: 024213
  issue: 2
  year: 2019
  ident: 5413_CR25
  publication-title: Chin Phys B
  doi: 10.1088/1674-1056/28/2/024213
– volume: 5
  start-page: 698
  issue: 31
  year: 2023
  ident: 5413_CR39
  publication-title: China CDC Weekly
  doi: 10.46234/ccdcw2023.134
– ident: 5413_CR14
  doi: 10.1038/s43016-020-0057-2
– volume: 2023
  start-page: 6328119
  issue: 11
  year: 2023
  ident: 5413_CR27
  publication-title: Int Trans Electr Energy Syst
  doi: 10.1155/2023/6328119
– ident: 5413_CR30
SSID ssj0003301
Score 2.3741913
Snippet Regulating the number of breeding sows (NBS) is crucial for pork supply–demand balance. Current forecasting methods for NBS fail to consider the principle of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5826
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Artificial neural networks
Back propagation
Back propagation networks
Computer Science
Forecasting
Hogs
Machines
Manufacturing
Mechanical Engineering
Neural networks
Principles
Processes
Swine
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYK5cAFWmjVBVrNoTdqkWS9jn1Cu1VXPVSrlYBqb5F_kgV1m9BNoNe-BmfejCdh7DisQIJLc_WPLM145pvxZD5CPgvNowIdBTUIDygrjKA6Z5YKqQe5EipNfcLt5490MhGzmZyGhFsdyio7m-gNta2My5EfoV6i6RSIto8v_1DHGuVeVwOFxhp57bokxL507-TBEmOs7hnzMMagnMtZ-Gkm_DrHXLEQjuDGcZ_Gjx3TCm0-eSD1fme8_b8nfkO2AuKEYasib8mrvNwh2x2bA4TLvUtuHUunUbWrgwZHkbYABLSAABEmnjYEqgJGy9bbwUn1t4YRukALVQnTi_ndv5sal5XNee0mDuc5eD9Y4EJVWmizFzh9vHDEbDD13cC9XsBwMceDN-e_6UiZXzBdYiQ_b4dc8xA8_aStVn9HzsbfTr9-p4HCgRq82w1ldqBjpvBjieqnRugBlwVXhU4Q1jPBrExQjVKtuGWRklzFSSpdjMlEZBCavSfrZVXmHwho96abc1Yk_ZxpYSWPlUyljYQ0SZTqHok7-WUm9Dd3NBuLbNWZ2ck8Q5lnXuZZ3COHD2su2-4eL84-6ASdhZteZysp98iXTlVWw8_vtvfybvtkM_Ha6YqEDsh6s7zKP5INc91c1MtPXs_vAanPBE8
  priority: 102
  providerName: ProQuest
Title Forecasting Model for the Number of Breeding Sows Based on Pig’s Months of Age Transfer and Improved Flower Pollination Algorithm-Back Propagation Neural Network
URI https://link.springer.com/article/10.1007/s10489-024-05413-1
https://www.proquest.com/docview/3054298666
Volume 54
WOSCitedRecordID wos001210740800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZglwMXll_RZanmwA0sJanrn2O72goJiKItLIVLZDtJt6IkqyTAldfgzJvxJIydZAsIkCAHS5HHlqWZ8czY4_kIeSQNDwo0FNSie0BZYSU1OcuoVGaaa6mF8AduZ89FHMvVSiX9o7BmyHYfriT9Tv3DYzfm0nsiRtHNCCcUY559NHfSATacLs8u91-M0D1OHkYWlHO16p_K_H6On83Rzsf85VrUW5vFwf-t8ya50XuXMOvE4Ra5kpe3ycGA3AC9It8hXx0ip9WNy3kGB4e2BXReAZ1BiD1ECFQFzOvOssGy-tTAHM1dBlUJyWb97fOXBoeV7XnjCGfrHLzNK3CgLjPoTiqQfLF1IGyQ-MrfXgZgtl1X9aY9f0_n2r6DpMaofd11uUIhuPq4y0y_S14tTl4eP6U9XAO1qMctZdnUhEzjxyI9EVaaKVcF14WJ0IVnkmUqQpERRvOMBVpxHUZCuXiSycCiG3aP7JVVmd8nYNz9bc5ZEU1yZmSmeKiVUFkglY0CYUYkHLiW2r6WuYPU2Ka7KsyOCylyIfVcSMMReXw55qKr5PFX6qNBGNJeq5sU90Y03xIjvhF5MjB_1_3n2Q7_jfwBuR55-XEJQkdkr60_5A_JNfux3TT1mFwVr9-Myf78JE5O8e-ZoNi-CI5dK5bYJtO3Y68T3wGy_wB1
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqggQbylMMFLgLWIFFHh4_FgjNAKNWM0QjUdDsgu0k04ohKZNAxY7fYM2ej-JLuHaSjkCiuy7I1g8lzvG51_b1PYQ8lIYHBRoKatE9oKywkpqcZVQqM8y11EL4Dbd3M5EkcrFQ8y3ys78L48Iqe070RJ1V1u2RP0VcInVK9LafH3-iTjXKna72EhotLKb51xNcstXP9l_i_30URZNXBy_2aKcqQC3CraEsG5qQaXxYpGNhpRlyVXBdmAg9TSZZpiL8MmE0z1igFddhJJRb9jAZWO4SHSDlX2CxFG5eTQU9Zf449nLLAa5pKOdq0V3S6a7qMRechCX4IWFMwz8N4ca7_etA1tu5yc7_NkJXyZXOo4ZROwWuka28vE52erUK6MjrBvnhVEitrl2cNzgJuBWgww7oAEPiZVGgKmC8bq05vKlOahijic-gKmF-tPz17XuNzcrmsHYVR8scvJ0vsKEuM2h3Z7D6ZOWE52Dus5173MNotcSBag4_0rG2H2C-rpDG2yKXHAXfPmmj8W-St-cyVLfIdlmV-W0Cxp1Z55wVUZwzIzPFQ62EygKpbBQIMyBhj5fUdvnbnYzIKt1knnYYSxFjqcdYGg7I49M2x232kjNr7_bASjsmq9MNqgbkSQ_NTfG_e7tzdm8PyKW9g9ezdLafTO-Sy5GfGS4gapdsN-vP-T1y0X5pjur1fT_HgLw_b8j-BsC7YAU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqghAbylMMFLgLWIHVxPE49gKhGcqIqlUUiYdGbILtJNOKISmTQMWO32DNX_A5fAnXTtIRSHTXBdn6ocQ592Vf30PIQ2lEUKKhoBbdA8pLK6kpeE6lMuNCSx3HfsPt7UGcJHI-V-kG-TnchXFplYNO9Io6r63bI99BXKLqlOht75R9WkS6O3t2_Ik6Bil30jrQaXQQ2S--nmD41jzd28V__Yix2YvXz1_SnmGAWoReS3k-NiHX-HCmo9hKMxaqFLo0DL1OLnmuGH5lbLTIeaCV0CGLlQuBuAyscEUPUP1fiDHGdOmE6fjdqRWIIk-9HGB8Q4VQ8_7CTn9tj7tEJWzBjwojGv5pFNee7l-Hs97mzbb-59W6Sq70njZMOtG4RjaK6jrZGlgsoFdqN8gPx05qdePyv8FRwy0BHXlAxxgST5cCdQnTVWfl4VV90sAUTX8OdQXp0eLXt-8NDqvaw8Z1nCwK8Pa_xIG6yqHbtcHus6UjpIPUV0H38gCT5QIXqj38SKfafoB0VaN675pc0RR8-6TL0r9J3pzLUt0im1VdFbcJGHeWXQhesqjgRuZKhFrFKg-ksiyIzYiEA3Yy29d1d_Qiy2xdkdrhLUO8ZR5vWTgij0_HHHdVTc7svT2ALOs1XJOtETYiTwaYrpv_Pduds2d7QC4hUrODvWT_LrnMvJC4PKltstmuPhf3yEX7pT1qVve9uAF5f96I_Q1HuGkp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+Model+for+the+Number+of+Breeding+Sows+Based+on+Pig%E2%80%99s+Months+of+Age+Transfer+and+Improved+Flower+Pollination+Algorithm-Back+Propagation+Neural+Network&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Song%2C+Haohao&rft.au=Zhang%2C+Hongyu&rft.au=Yang%2C+Jingnan&rft.au=Wang%2C+Jiquan&rft.date=2024-04-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=54&rft.issue=7&rft.spage=5826&rft.epage=5858&rft_id=info:doi/10.1007%2Fs10489-024-05413-1&rft.externalDocID=10_1007_s10489_024_05413_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon