A Unified Analysis of Exact Traveling Wave Solutions for the Fractional-Order and Integer-Order Biswas–Milovic Equation: Via Bifurcation Theory of Dynamical System

This paper presents a unified method to investigate exact traveling wave solutions of the nonlinear fractional-order and integer-order partial differential equations. We use the conformable fractional derivatives. The method is based on the bifurcation theory of planar dynamical systems. To show the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Qualitative theory of dynamical systems Ročník 19; číslo 1
Hlavní autori: Zhang, Bei, Zhu, Wenjing, Xia, Yonghui, Bai, Yuzhen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.04.2020
Springer Nature B.V
Predmet:
ISSN:1575-5460, 1662-3592
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents a unified method to investigate exact traveling wave solutions of the nonlinear fractional-order and integer-order partial differential equations. We use the conformable fractional derivatives. The method is based on the bifurcation theory of planar dynamical systems. To show the effectiveness of this method, we choose Biswas–Milovic (for short, BM) equation with conformable derivative as an application. Also comparison is presented for the exact traveling wave solutions between the integer-order BM equation and fractional-order BM equation. It is believed that this approach can be extended to other nonlinear fractional-order partial differential equations.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1575-5460
1662-3592
DOI:10.1007/s12346-020-00352-x