A Unified Analysis of Exact Traveling Wave Solutions for the Fractional-Order and Integer-Order Biswas–Milovic Equation: Via Bifurcation Theory of Dynamical System

This paper presents a unified method to investigate exact traveling wave solutions of the nonlinear fractional-order and integer-order partial differential equations. We use the conformable fractional derivatives. The method is based on the bifurcation theory of planar dynamical systems. To show the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Qualitative theory of dynamical systems Ročník 19; číslo 1
Hlavní autoři: Zhang, Bei, Zhu, Wenjing, Xia, Yonghui, Bai, Yuzhen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.04.2020
Springer Nature B.V
Témata:
ISSN:1575-5460, 1662-3592
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a unified method to investigate exact traveling wave solutions of the nonlinear fractional-order and integer-order partial differential equations. We use the conformable fractional derivatives. The method is based on the bifurcation theory of planar dynamical systems. To show the effectiveness of this method, we choose Biswas–Milovic (for short, BM) equation with conformable derivative as an application. Also comparison is presented for the exact traveling wave solutions between the integer-order BM equation and fractional-order BM equation. It is believed that this approach can be extended to other nonlinear fractional-order partial differential equations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1575-5460
1662-3592
DOI:10.1007/s12346-020-00352-x