A Unified Analysis of Exact Traveling Wave Solutions for the Fractional-Order and Integer-Order Biswas–Milovic Equation: Via Bifurcation Theory of Dynamical System
This paper presents a unified method to investigate exact traveling wave solutions of the nonlinear fractional-order and integer-order partial differential equations. We use the conformable fractional derivatives. The method is based on the bifurcation theory of planar dynamical systems. To show the...
Saved in:
| Published in: | Qualitative theory of dynamical systems Vol. 19; no. 1 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.04.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1575-5460, 1662-3592 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper presents a unified method to investigate exact traveling wave solutions of the nonlinear fractional-order and integer-order partial differential equations. We use the conformable fractional derivatives. The method is based on the bifurcation theory of planar dynamical systems. To show the effectiveness of this method, we choose Biswas–Milovic (for short, BM) equation with conformable derivative as an application. Also comparison is presented for the exact traveling wave solutions between the integer-order BM equation and fractional-order BM equation. It is believed that this approach can be extended to other nonlinear fractional-order partial differential equations. |
|---|---|
| AbstractList | This paper presents a unified method to investigate exact traveling wave solutions of the nonlinear fractional-order and integer-order partial differential equations. We use the conformable fractional derivatives. The method is based on the bifurcation theory of planar dynamical systems. To show the effectiveness of this method, we choose Biswas–Milovic (for short, BM) equation with conformable derivative as an application. Also comparison is presented for the exact traveling wave solutions between the integer-order BM equation and fractional-order BM equation. It is believed that this approach can be extended to other nonlinear fractional-order partial differential equations. |
| ArticleNumber | 11 |
| Author | Zhu, Wenjing Zhang, Bei Xia, Yonghui Bai, Yuzhen |
| Author_xml | – sequence: 1 givenname: Bei surname: Zhang fullname: Zhang, Bei organization: School of Mathematics Science, Huaqiao University – sequence: 2 givenname: Wenjing surname: Zhu fullname: Zhu, Wenjing organization: Department of Mathematics, China Jiliang University – sequence: 3 givenname: Yonghui orcidid: 0000-0001-8918-3509 surname: Xia fullname: Xia, Yonghui email: xiadoc@163.com, yhxia@zjnu.cn organization: Department of Mathematics, Zhejiang Normal University – sequence: 4 givenname: Yuzhen surname: Bai fullname: Bai, Yuzhen organization: School of Mathematical Sciences, Qufu Normal University |
| BookMark | eNp9kctOAyEUhonRxOsLuCJxjTLA3NxVrZekpgurLgllQDFTUGC0s_MdfAZfzCeRtiYmLlxxcvg_Duf_t8G6dVYBsJ_hwwzj8ihkhLICYYIRxjQnaL4GtrKiIIjmNVlPdV7mKGcF3gTbITxhXJCSki3wOYC31mijGjiwou2DCdBpOJwLGeHEi1fVGvsA71MBb1zbReNsgNp5GB8VPPdJljqiRWPfKA-FbeCVjepB-Z_OiQlvIny9f1yb1r0aCYcvnVgwx_DOiHStOy-XDTh5VM73i_FnvRUzI0ULb_oQ1WwXbGjRBrX3c-6A2_Ph5PQSjcYXV6eDEZI0qyNiUlJcEUUZEbWalqyZ6qbWWVOwHE-pVJoRpqnKZJ6AomzwNK_KWhKWrKpIRXfAwerdZ-9eOhUif3KdT-sFnvxlpMBlTZKKrFTSuxC80vzZm5nwPc8wX8TBV3HwFAdfxsHnCar-QNLE5d7RC9P-j9IVGtIcm6z9_dU_1De4D6TN |
| CitedBy_id | crossref_primary_10_1007_s12346_021_00558_7 crossref_primary_10_1155_2020_2492193 crossref_primary_10_1142_S0217984925502240 crossref_primary_10_1155_2020_5010589 crossref_primary_10_1007_s12346_021_00503_8 crossref_primary_10_1088_1402_4896_ab96e0 crossref_primary_10_1016_j_amc_2020_125342 crossref_primary_10_1016_j_ijleo_2022_169831 crossref_primary_10_3390_math11112583 crossref_primary_10_1007_s12346_020_00400_6 crossref_primary_10_1007_s12346_020_00341_0 crossref_primary_10_1007_s12346_024_01167_w crossref_primary_10_1016_j_ijleo_2023_170776 crossref_primary_10_1016_j_ijleo_2020_164490 crossref_primary_10_1515_math_2022_0469 crossref_primary_10_1155_2020_2845841 crossref_primary_10_1088_1572_9494_ab8a29 crossref_primary_10_1155_2020_4532824 |
| Cites_doi | 10.1142/S021812741950041X 10.1016/j.amc.2019.124576 10.3788/COL201917.020006 10.1364/OE.27.016440 10.1007/s12043-014-0837-z 10.1007/s11071-015-2516-0 10.1016/j.ijleo.2012.11.039 10.1016/j.ijleo.2015.12.051 10.1140/epjp/i2015-15255-5 10.1364/OE.27.006689 10.1007/s11071-018-4612-4 10.1007/s11071-016-3105-6 10.1007/s11082-018-1416-1 10.1016/j.ijleo.2018.05.129 10.1007/s11082-017-1225-y 10.1016/j.ijleo.2015.11.078 10.1111/sapm.12165 10.1016/j.cnsns.2014.07.022 10.1016/j.ijleo.2017.12.186 10.1016/j.jksus.2010.08.003 10.1016/j.ijleo.2018.09.002 10.1007/s11071-016-2621-8 10.1016/j.ijleo.2016.05.050 10.1109/JLT.2019.2910892 10.1016/j.ijleo.2014.03.039 10.1007/s11071-016-2724-2 10.1016/j.cnsns.2009.06.017 10.1016/j.cam.2014.01.002 10.1007/s12043-013-0565-9 10.1016/j.physleta.2007.07.051 10.1016/j.ijleo.2017.11.043 10.1016/j.ijleo.2018.07.086 10.1007/s11082-017-1310-2 10.1007/s40314-013-0098-3 10.1142/S0218127407019858 10.1007/s11071-016-2613-8 10.1088/0031-8949/82/06/065003 10.1007/s11071-015-2361-1 10.1007/s10092-015-0158-8 10.1016/j.ijleo.2018.08.067 10.1016/j.ijleo.2017.11.061 10.1080/09500340.2016.1184719 10.1016/j.camwa.2006.02.001 10.1016/j.ijleo.2018.08.023 10.1021/acsanm.9b00190 10.1140/epjp/i2015-15061-1 10.1016/j.ijleo.2016.11.130 10.1016/j.ijleo.2016.04.119 10.1016/j.ijleo.2017.09.023 |
| ContentType | Journal Article |
| Copyright | Springer Nature Switzerland AG 2020 2020© Springer Nature Switzerland AG 2020 |
| Copyright_xml | – notice: Springer Nature Switzerland AG 2020 – notice: 2020© Springer Nature Switzerland AG 2020 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s12346-020-00352-x |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1662-3592 |
| ExternalDocumentID | 10_1007_s12346_020_00352_x |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11671176 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 123 1N0 203 29P 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 30V 3J0 4.4 406 408 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA C1A CAG COF CS3 CSCUP DC1 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HZ~ IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z J9A JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J P2P P9R PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RSV RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c319t-4cc3082e342a9eb74dbfd9f1d6450b3cef424f3e1c5c3167d0b5879c241668283 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000512753800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1575-5460 |
| IngestDate | Thu Sep 25 01:03:06 EDT 2025 Tue Nov 18 21:06:47 EST 2025 Sat Nov 29 06:14:54 EST 2025 Fri Feb 21 02:34:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Bifurcation Periodic wave solution Solitary wave solution Traveling wave solution Kink wave solution |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-4cc3082e342a9eb74dbfd9f1d6450b3cef424f3e1c5c3167d0b5879c241668283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8918-3509 |
| PQID | 2344260792 |
| PQPubID | 2044188 |
| ParticipantIDs | proquest_journals_2344260792 crossref_primary_10_1007_s12346_020_00352_x crossref_citationtrail_10_1007_s12346_020_00352_x springer_journals_10_1007_s12346_020_00352_x |
| PublicationCentury | 2000 |
| PublicationDate | 20200400 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 4 year: 2020 text: 20200400 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Qualitative theory of dynamical systems |
| PublicationTitleAbbrev | Qual. Theory Dyn. Syst |
| PublicationYear | 2020 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Wang, Li, Zhang (CR36) 2008; 372 Rizvi, Bashir, Ali, Ahmad (CR44) 2017; 131 Zhang, Xia, Zhu, Bai (CR52) 2019; 363 Eslami, Neirameh (CR3) 2018; 50 Liu, Eslami, Rezazadeh, Mirzazadeh (CR7) 2019; 95 Biswas, Mirzazadeh, Eslami (CR37) 2014; 125 Zhu, Xia, Zhang, Bai (CR53) 2019; 29 Eslami (CR39) 2016; 85 Zubair, Raza, Mirzazadeh, Liu, Zhou (CR9) 2018; 173 Najafi, Arbabi (CR30) 2016; 127 Manafian, Lakestani (CR33) 2016; 127 Li, Chen (CR50) 2007; 17 Biswas, Milovic (CR1) 2010; 15 Eslami, Neyrame, Ebrahimi (CR4) 2012; 24 Foroutana, Kumarb, Manafiand, Hoquee (CR25) 2018; 170 Nazarzadeh, Eslami, Mirzazadeh (CR8) 2013; 81 Liu, Liu, Lin, Liu, Lei, Wu, Dai, Wei (CR10) 2019; 27 Li (CR49) 2013 Wu, Huang (CR16) 2015 Liu, Liu, Liu, Quhe, Lei, Fang, Teng, Wei (CR11) 2019; 27 Kumar (CR42) 2017; 87 Eslami (CR18) 2016; 285 Kara, Biswas, Zhou, Moraru, Moshokoa, Belic (CR5) 2018; 174 Yu, Sun (CR47) 2017; 149 Jumarie (CR23) 2006; 51 Li, Zhao, Triki, Ekici, Mirzazadeh, Zhou, Liu (CR6) 2018; 175 Raza, Javid (CR48) 2018; 158 Zhou, Ekici, Sonmezoglu, Mirzazadeh (CR35) 2016; 127 Khalil, Horani, Yousef, Sababheh (CR24) 2014; 264 Rezazadeh, Korkmaz, Eslami, Vahidi, Asghari (CR21) 2018; 50 Jafari, Sooraki, Khalique (CR26) 2013; 124 Liu, Ouyang, Hou, Liu, Wei (CR14) 2019; 17 Liu, Liu, Wei (CR13) 2019; 37 Inc, Aliyu, Yusuf, Baleanu (CR43) 2018; 157 Khodadad, Nazzari, Eslami, Rezazadeh (CR20) 2017; 49 Manafian (CR31) 2015; 130 Song, Tang (CR51) 2017; 139 Podlubny (CR15) 1999 Zhou, Ekici, Sonmezoglu, Mirzazadeh, Eslami (CR34) 2016; 63 Liu (CR22) 2015; 22 Ma, Huang, Zhang (CR28) 2010; 82 Raza, Abdullah, Butt (CR45) 2018; 157 Mirzazadeh, Arnous (CR27) 2015; 3 Zhou, Ekici, Sonmezoglu, Mirzazadeh, Eslami (CR40) 2016; 84 Eslami, Rezazadeh (CR19) 2016; 53 Arshed, Biswas, Zhou, Moshokoa, Belic (CR46) 2018; 172 Ahmadiana, Darvishi (CR17) 2016; 127 Liu, Liu, Wang, Shen, Chang, Lei, Deng, Wei, Wei (CR12) 2019; 2 Manafian, Lakestani (CR32) 2015; 130 Zhou (CR41) 2016; 84 Eslami, Mirzazadeh, Neirameh (CR2) 2015; 84 Zhu, Li (CR54) 2016; 84 Mirzazadeh, Eslami, Biswas (CR38) 2014; 33 Eslami, Mirzazadeh (CR29) 2016; 83 AH Kara (352_CR5) 2018; 174 WJ Liu (352_CR11) 2019; 27 J Yu (352_CR47) 2017; 149 A Biswas (352_CR1) 2010; 15 Q Zhou (352_CR41) 2016; 84 M Inc (352_CR43) 2018; 157 STR Rizvi (352_CR44) 2017; 131 J Manafian (352_CR31) 2015; 130 ML Wang (352_CR36) 2008; 372 M Eslami (352_CR3) 2018; 50 M Najafi (352_CR30) 2016; 127 J Li (352_CR49) 2013 W Liu (352_CR12) 2019; 2 Q Zhou (352_CR40) 2016; 84 M Eslami (352_CR4) 2012; 24 A Biswas (352_CR37) 2014; 125 M Liu (352_CR13) 2019; 37 R Khalil (352_CR24) 2014; 264 Q Wu (352_CR16) 2015 G Jumarie (352_CR23) 2006; 51 A Zubair (352_CR9) 2018; 173 Y Song (352_CR51) 2017; 139 H Jafari (352_CR26) 2013; 124 S Kumar (352_CR42) 2017; 87 M Mirzazadeh (352_CR27) 2015; 3 J Manafian (352_CR32) 2015; 130 Q Zhou (352_CR35) 2016; 127 M Mirzazadeh (352_CR38) 2014; 33 FS Khodadad (352_CR20) 2017; 49 M Liu (352_CR14) 2019; 17 M Eslami (352_CR2) 2015; 84 N Raza (352_CR45) 2018; 157 J Manafian (352_CR33) 2016; 127 B Zhang (352_CR52) 2019; 363 W Zhu (352_CR54) 2016; 84 C Liu (352_CR22) 2015; 22 A Nazarzadeh (352_CR8) 2013; 81 M Eslami (352_CR39) 2016; 85 J Li (352_CR50) 2007; 17 B Li (352_CR6) 2018; 175 WJ Liu (352_CR10) 2019; 27 S Ahmadiana (352_CR17) 2016; 127 Q Zhou (352_CR34) 2016; 63 M Eslami (352_CR19) 2016; 53 M Foroutana (352_CR25) 2018; 170 M Eslami (352_CR29) 2016; 83 JG Liu (352_CR7) 2019; 95 M Eslami (352_CR18) 2016; 285 I Podlubny (352_CR15) 1999 S Arshed (352_CR46) 2018; 172 H Rezazadeh (352_CR21) 2018; 50 WX Ma (352_CR28) 2010; 82 N Raza (352_CR48) 2018; 158 W Zhu (352_CR53) 2019; 29 |
| References_xml | – volume: 22 start-page: 92 year: 2015 end-page: 94 ident: CR22 article-title: Counterexamples on Jumarie’s two basic fractional calculus formulae publication-title: Commun. Nonl. Sci. Numer. Simulat. – volume: 157 start-page: 267 year: 2018 end-page: 274 ident: CR43 article-title: Optical solitons for Biswas–Milovic Model in nonlinear optics by Sine-Gordon equation method publication-title: Optik – volume: 24 start-page: 69 year: 2012 end-page: 71 ident: CR4 article-title: Explicit solutions of nonlinear -dimensional dispersive long wave equation publication-title: J. King Saud Univ. Sci. – volume: 50 start-page: 47 year: 2018 ident: CR3 article-title: New exact solutions for higher order nonlinear Schrödinger equation in optical fibers publication-title: Opt. Quant. Electron. – volume: 95 start-page: 1027 year: 2019 end-page: 1033 ident: CR7 article-title: Rational solutions and lump dolutions to a non-isospectral and generalized variable-coefficient Kadomtsev–Petviashvili equation publication-title: Nonlinear Dyn. – volume: 17 start-page: 4049 year: 2007 end-page: 4065 ident: CR50 article-title: On a class of singular nonlinear traveling wave equations publication-title: Int. J. Bifurcat. Chaos – volume: 173 start-page: 249 year: 2018 end-page: 262 ident: CR9 article-title: Analytic study on optical solitons in parity-time-symmetric mixed linear and nonlinear modulation lattices with non-Kerr nonlinearities publication-title: Optik – volume: 264 start-page: 65 year: 2014 end-page: 70 ident: CR24 article-title: A new definition of fractional derivative publication-title: J. Comput. Appl. Math. – volume: 87 start-page: 1153 issue: 2 year: 2017 end-page: 1157 ident: CR42 article-title: Invariant solutions of Biswas–Milovic equation publication-title: Nonlinear Dyn. – volume: 84 start-page: 1973 year: 2016 end-page: 1987 ident: CR54 article-title: Exact traveling wave solutions and birfurcations of the Biswas–Milovic equation publication-title: Nonlinear Dyn. – volume: 127 start-page: 2679 year: 2016 end-page: 2682 ident: CR30 article-title: Dark soliton and periodic wave solutions of the Biswas–Milovic equation publication-title: Optik – volume: 158 start-page: 1049 year: 2018 end-page: 1057 ident: CR48 article-title: Optical dark and singular solitons to the Biswas–Milovic equation in nonlinear optics with spatio-temporal dispersion publication-title: Optik – volume: 51 start-page: 1367 year: 2006 end-page: 1376 ident: CR23 article-title: Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results publication-title: Comput. Math. Appl. – volume: 33 start-page: 831 year: 2014 end-page: 839 ident: CR38 article-title: Soliton solutions of the generalized Klein–Gordon equation by using -expansion method publication-title: Comput. Appl. Math. – volume: 130 start-page: 61 year: 2015 ident: CR32 article-title: Optical solitons with Biswas–Milovic equation for Kerr law nonlinearity publication-title: Eur. Phys. J. Plus – volume: 175 start-page: 177 year: 2018 end-page: 180 ident: CR6 article-title: Soliton interactions for optical switching systems with symbolic computation publication-title: Optik – volume: 131 start-page: 582 year: 2017 end-page: 587 ident: CR44 article-title: Jacobian elliptic periodic traveling wave solutions for Biswas–Milovic equation publication-title: Optik – year: 1999 ident: CR15 publication-title: Fractional Differential Equations – volume: 285 start-page: 141 year: 2016 end-page: 148 ident: CR18 article-title: Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations publication-title: Appl. Math. Comput. – volume: 127 start-page: 2040 year: 2016 end-page: 2054 ident: CR33 article-title: Application of -expansion method for solving the Biswas–Milovic equation for Kerr law nonlinearity publication-title: Optik – volume: 82 start-page: 065003 year: 2010 ident: CR28 article-title: A multiple exp-function method for nonlinear differential equations and its application publication-title: Phys. Scr. – volume: 2 start-page: 2697 year: 2019 end-page: 2705 ident: CR12 article-title: Thickness-dependent ultrafast photonics of nanolayers for optimizing fiber lasers publication-title: ACS Appl. Nano Mater. – volume: 149 start-page: 378 year: 2017 end-page: 383 ident: CR47 article-title: Exact traveling wave solutions to the -dimensional Biswas–Milovic equations publication-title: Optik – volume: 37 start-page: 3100 year: 2019 end-page: 3105 ident: CR13 article-title: saturable absorber with high modulation depth for erbium-doped fiber laser publication-title: J. Lightwave Technol. – year: 2013 ident: CR49 publication-title: Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions – volume: 174 start-page: 195 year: 2018 end-page: 198 ident: CR5 article-title: Conservation laws for optical solitons with Chen–Lee–Liu equation publication-title: Optik – volume: 27 start-page: 6689 year: 2019 end-page: 6699 ident: CR11 article-title: Nonlinear optical properties of heterostructure in fiber lasers publication-title: Opt. Express. – volume: 127 start-page: 7694 year: 2016 end-page: 7703 ident: CR17 article-title: A new fractional Biswas–Milovic model with its periodic soliton solutions publication-title: Optik – volume: 49 start-page: 384 year: 2017 ident: CR20 article-title: Soliton solutions of the conformable fractional Zakharov–Kuznetsov equation with dual-power law nonlinearity publication-title: Opt. Quant. Electron. – volume: 85 start-page: 813 year: 2016 end-page: 816 ident: CR39 article-title: Trial solution technique to chiral nonlinear Schrodinger’s equation in -dimensions publication-title: Nonliear Dyn. – volume: 63 start-page: 2131 year: 2016 end-page: 2137 ident: CR34 article-title: Analytical study of solitons to Biswas–Milovic model in nonlinear optics publication-title: J. Mod. Opt. – volume: 27 start-page: 16440 year: 2019 end-page: 16448 ident: CR10 article-title: Synthesis of high quality silver nanowires and their applications in ultrafast photonics publication-title: Opt. Express. – volume: 170 start-page: 190 year: 2018 end-page: 202 ident: CR25 article-title: New explicit soliton and other solutions for the conformable fractional Biswas–Milovic equation with Kerr and parabolic nonlinearity through an integration scheme publication-title: Optik – volume: 139 start-page: 371 issue: 3 year: 2017 end-page: 404 ident: CR51 article-title: Stability, steady-state bifurcations, and turing patterns in a predator–prey model with herd behavior and prey-taxis publication-title: Stud. Appl. Math. – volume: 17 start-page: 020006 year: 2019 ident: CR14 article-title: Q-switched fiber laser operating at 1.5 m based on publication-title: Chin. Opt. Lett. – volume: 3 start-page: 139 year: 2015 end-page: 146 ident: CR27 article-title: Exact solution of Biswas–Milovic equation using new efficient method publication-title: Electron. J. Math. Anal. Appl. – volume: 124 start-page: 3929 year: 2013 end-page: 3932 ident: CR26 article-title: Dark solitons of the Biswas–Milovic equation by the first integral method publication-title: Optik – volume: 29 start-page: 1950041 issue: 3 year: 2019 ident: CR53 article-title: Exact traveling wave solutions and bifurcations of the time fractional differential equations with applications publication-title: Int. J. Bifur. Chaos doi: 10.1142/S021812741950041X – volume: 15 start-page: 1473 year: 2010 end-page: 1484 ident: CR1 article-title: Bright and dark solitons of the generalized nonlinear Schröndinger equation publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 172 start-page: 826 year: 2018 end-page: 831 ident: CR46 article-title: Optical soliton perturbation with differential group delay and parabolic law nonlinearity using -expansion method publication-title: Optik – volume: 83 start-page: 731 year: 2016 end-page: 738 ident: CR29 article-title: Optical solitons with Biswas–Milovic equation for power law and dual-power law nonlinearities publication-title: Nonlinear Dyn. – volume: 127 start-page: 6277 year: 2016 end-page: 6290 ident: CR35 article-title: Optical solitons with Biswas–Milovic equation by extended -expansion method publication-title: Optik – volume: 130 start-page: 255 year: 2015 ident: CR31 article-title: On the complex structures of the Biswas–Milovic equation for power, parabolic and dual parabolic law nonlinearities publication-title: Eur. Phys. J. Plus – volume: 363 start-page: 124576 year: 2019 ident: CR52 article-title: Explicit exact traveling wave solutions and bifurcations of the generalized combined double sinh–cosh-Gordon equation publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2019.124576 – volume: 50 start-page: 150 year: 2018 ident: CR21 article-title: Traveling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method publication-title: Opt. Quant. Electron. – volume: 84 start-page: 677 year: 2016 end-page: 681 ident: CR41 article-title: Optical solitons for Biswas–Milovic model with Kerr law and parabolic law nonlinearities publication-title: Nonlinear Dyn. – volume: 157 start-page: 993 year: 2018 end-page: 1002 ident: CR45 article-title: Analytical soliton solutions of Biswas–Milovic equation in Kerr and non-Kerr law media publication-title: Optik – volume: 81 start-page: 225 year: 2013 end-page: 236 ident: CR8 article-title: Exact solutions of some nonlinear partial differential equations using functional variable method publication-title: Pramana – volume: 84 start-page: 1883 year: 2016 end-page: 1900 ident: CR40 article-title: Optical solitons with Biswas–Milovic equation by extended trial equation method publication-title: Nonlinear Dyn. – year: 2015 ident: CR16 publication-title: Fractional Differential Equations – volume: 84 start-page: 3 year: 2015 end-page: 8 ident: CR2 article-title: New exact wave solutions for Hirota equation publication-title: Pramana – volume: 53 start-page: 475 year: 2016 end-page: 485 ident: CR19 article-title: The first integral method for Wu–Zhang system with conformable time-fractional derivative publication-title: Calcolo – volume: 125 start-page: 4215 year: 2014 end-page: 4218 ident: CR37 article-title: Dispersive dark optical soliton with Schödinger–Hirota equation by -expansion approach in power law medium publication-title: Optik – volume: 372 start-page: 417 year: 2008 end-page: 423 ident: CR36 article-title: The -expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics publication-title: Phys. Lett. A – volume: 17 start-page: 020006 year: 2019 ident: 352_CR14 publication-title: Chin. Opt. Lett. doi: 10.3788/COL201917.020006 – volume: 27 start-page: 16440 year: 2019 ident: 352_CR10 publication-title: Opt. Express. doi: 10.1364/OE.27.016440 – volume: 285 start-page: 141 year: 2016 ident: 352_CR18 publication-title: Appl. Math. Comput. – volume: 84 start-page: 3 year: 2015 ident: 352_CR2 publication-title: Pramana doi: 10.1007/s12043-014-0837-z – volume: 84 start-page: 677 year: 2016 ident: 352_CR41 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-015-2516-0 – volume: 124 start-page: 3929 year: 2013 ident: 352_CR26 publication-title: Optik doi: 10.1016/j.ijleo.2012.11.039 – volume: 127 start-page: 2679 year: 2016 ident: 352_CR30 publication-title: Optik doi: 10.1016/j.ijleo.2015.12.051 – volume: 130 start-page: 255 year: 2015 ident: 352_CR31 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2015-15255-5 – volume: 27 start-page: 6689 year: 2019 ident: 352_CR11 publication-title: Opt. Express. doi: 10.1364/OE.27.006689 – volume: 95 start-page: 1027 year: 2019 ident: 352_CR7 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4612-4 – volume: 87 start-page: 1153 issue: 2 year: 2017 ident: 352_CR42 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-3105-6 – volume: 50 start-page: 150 year: 2018 ident: 352_CR21 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-018-1416-1 – volume: 170 start-page: 190 year: 2018 ident: 352_CR25 publication-title: Optik doi: 10.1016/j.ijleo.2018.05.129 – volume: 49 start-page: 384 year: 2017 ident: 352_CR20 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-017-1225-y – volume: 363 start-page: 124576 year: 2019 ident: 352_CR52 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2019.124576 – volume: 127 start-page: 2040 year: 2016 ident: 352_CR33 publication-title: Optik doi: 10.1016/j.ijleo.2015.11.078 – volume: 139 start-page: 371 issue: 3 year: 2017 ident: 352_CR51 publication-title: Stud. Appl. Math. doi: 10.1111/sapm.12165 – volume: 22 start-page: 92 year: 2015 ident: 352_CR22 publication-title: Commun. Nonl. Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2014.07.022 – volume: 158 start-page: 1049 year: 2018 ident: 352_CR48 publication-title: Optik doi: 10.1016/j.ijleo.2017.12.186 – volume-title: Fractional Differential Equations year: 2015 ident: 352_CR16 – volume: 24 start-page: 69 year: 2012 ident: 352_CR4 publication-title: J. King Saud Univ. Sci. doi: 10.1016/j.jksus.2010.08.003 – volume: 175 start-page: 177 year: 2018 ident: 352_CR6 publication-title: Optik doi: 10.1016/j.ijleo.2018.09.002 – volume: 84 start-page: 1973 year: 2016 ident: 352_CR54 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-2621-8 – volume-title: Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions year: 2013 ident: 352_CR49 – volume: 127 start-page: 7694 year: 2016 ident: 352_CR17 publication-title: Optik doi: 10.1016/j.ijleo.2016.05.050 – volume: 3 start-page: 139 year: 2015 ident: 352_CR27 publication-title: Electron. J. Math. Anal. Appl. – volume: 37 start-page: 3100 year: 2019 ident: 352_CR13 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2910892 – volume: 125 start-page: 4215 year: 2014 ident: 352_CR37 publication-title: Optik doi: 10.1016/j.ijleo.2014.03.039 – volume: 29 start-page: 1950041 issue: 3 year: 2019 ident: 352_CR53 publication-title: Int. J. Bifur. Chaos doi: 10.1142/S021812741950041X – volume: 85 start-page: 813 year: 2016 ident: 352_CR39 publication-title: Nonliear Dyn. doi: 10.1007/s11071-016-2724-2 – volume: 15 start-page: 1473 year: 2010 ident: 352_CR1 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2009.06.017 – volume: 264 start-page: 65 year: 2014 ident: 352_CR24 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2014.01.002 – volume: 81 start-page: 225 year: 2013 ident: 352_CR8 publication-title: Pramana doi: 10.1007/s12043-013-0565-9 – volume: 372 start-page: 417 year: 2008 ident: 352_CR36 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2007.07.051 – volume: 157 start-page: 993 year: 2018 ident: 352_CR45 publication-title: Optik doi: 10.1016/j.ijleo.2017.11.043 – volume: 172 start-page: 826 year: 2018 ident: 352_CR46 publication-title: Optik doi: 10.1016/j.ijleo.2018.07.086 – volume: 50 start-page: 47 year: 2018 ident: 352_CR3 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-017-1310-2 – volume: 33 start-page: 831 year: 2014 ident: 352_CR38 publication-title: Comput. Appl. Math. doi: 10.1007/s40314-013-0098-3 – volume: 17 start-page: 4049 year: 2007 ident: 352_CR50 publication-title: Int. J. Bifurcat. Chaos doi: 10.1142/S0218127407019858 – volume: 84 start-page: 1883 year: 2016 ident: 352_CR40 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-2613-8 – volume: 82 start-page: 065003 year: 2010 ident: 352_CR28 publication-title: Phys. Scr. doi: 10.1088/0031-8949/82/06/065003 – volume: 83 start-page: 731 year: 2016 ident: 352_CR29 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-015-2361-1 – volume: 53 start-page: 475 year: 2016 ident: 352_CR19 publication-title: Calcolo doi: 10.1007/s10092-015-0158-8 – volume: 174 start-page: 195 year: 2018 ident: 352_CR5 publication-title: Optik doi: 10.1016/j.ijleo.2018.08.067 – volume: 157 start-page: 267 year: 2018 ident: 352_CR43 publication-title: Optik doi: 10.1016/j.ijleo.2017.11.061 – volume: 63 start-page: 2131 year: 2016 ident: 352_CR34 publication-title: J. Mod. Opt. doi: 10.1080/09500340.2016.1184719 – volume: 51 start-page: 1367 year: 2006 ident: 352_CR23 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2006.02.001 – volume: 173 start-page: 249 year: 2018 ident: 352_CR9 publication-title: Optik doi: 10.1016/j.ijleo.2018.08.023 – volume: 2 start-page: 2697 year: 2019 ident: 352_CR12 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b00190 – volume: 130 start-page: 61 year: 2015 ident: 352_CR32 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2015-15061-1 – volume: 131 start-page: 582 year: 2017 ident: 352_CR44 publication-title: Optik doi: 10.1016/j.ijleo.2016.11.130 – volume-title: Fractional Differential Equations year: 1999 ident: 352_CR15 – volume: 127 start-page: 6277 year: 2016 ident: 352_CR35 publication-title: Optik doi: 10.1016/j.ijleo.2016.04.119 – volume: 149 start-page: 378 year: 2017 ident: 352_CR47 publication-title: Optik doi: 10.1016/j.ijleo.2017.09.023 |
| SSID | ssj0062732 |
| Score | 2.2998369 |
| Snippet | This paper presents a unified method to investigate exact traveling wave solutions of the nonlinear fractional-order and integer-order partial differential... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Bifurcation theory Difference and Functional Equations Dynamical systems Dynamical Systems and Ergodic Theory Integers Mathematical analysis Mathematics Mathematics and Statistics Nonlinear equations Partial differential equations System effectiveness Traveling waves |
| Title | A Unified Analysis of Exact Traveling Wave Solutions for the Fractional-Order and Integer-Order Biswas–Milovic Equation: Via Bifurcation Theory of Dynamical System |
| URI | https://link.springer.com/article/10.1007/s12346-020-00352-x https://www.proquest.com/docview/2344260792 |
| Volume | 19 |
| WOSCitedRecordID | wos000512753800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1662-3592 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062732 issn: 1575-5460 databaseCode: RSV dateStart: 19990301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQcIADO6JsmgM3sJTF2bixtOLCIvZb5FWqVKXQtCw3_oFv4Mf4EsZZWoEACW5R4jiRZux5Hvu9IWQrimQs0dg0krjSYY5wacKFpFxq4fBYK1eKothEdHIS394mZxUpLK9Pu9dbksVMPSK7eT6zB2YtExphA0XkOIHhLrbD8fziup5_QwzIxR4nAhEasNCpqDLf9_E5HI0w5pdt0SLatGb_959zZKZCl7BXusM8GdPZApk-Hkqz5ovkbQ8QZxpEnlALkkDXQPOJyz5c2mJElqAON3gBw5wZILQF7ARavZIIwTv01Ip2As8U2KyizQ2Wd_bb-SPP319ej9udLs5D0Lwv5cR34brN8bEZ9Mo8IZTCAPbzh88ZL4QLoJRQXyJXreblwRGtajVQiYO4T5mUVvhG-8zjiRYRU8KoxLgqZIEjfKkN85jxtSsDacn3yhFBHCUSAUQY4qrPXybjWTfTKwQ8hTApQesZxGoiYQignFDEIg6UYibyG8StTZbKSsjc1tPopCMJZmuCFE2QFiZInxpke_jOXSnj8Wvr9doT0mpI5yk2smr-UeI1yE5t-dHjn3tb_VvzNTLlFc5jTwetk_F-b6A3yKR86Lfz3mbh6h_arvsV |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTiMxELUQIDEcWGbRhG3qwA0s9eLeuLEkAg0JCDIMt5ZXKVLUgXTYbvwD38CP8SWUe0k0CEaaubXabrelKruey1WvCNmMIhlLFDaNJJ50mCNcmnAhKZdaODzWypWiKDYRdTrx5WVyWiWF5XW0e30lWezUk2Q3z2c2YNZmQiNsoIgcZxhaLBvId3Z-Ue-_IRrk4o4TgQgNWOhUqTLvj_GnOZpgzDfXooW1aS3-3zyXyEKFLmG3VIdlMqWzz2S-PaZmzb-Q511AnGkQeUJNSAIDA817LkfQtcWIbII6_MYHGPvMAKEt4CDQGpaJELxPTyxpJ_BMgfUqWt9g-Wavl9_x_OXxqd3rD3AfguZ1SSe-Axc9js3mZlj6CaEkBrC_P3jIeEFcACWF-lfyq9Xs7h_SqlYDlbiIR5RJaYlvtM88nmgRMSWMSoyrQhY4wpfaMI8ZX7sykDb5XjkiiKNEIoAIQzz1-d_IdDbI9HcCnkKYlKD0DGI1kTAEUE4oYhEHSjET-Q3i1iJLZUVkbutp9NMJBbMVQYoiSAsRpPcNsjX-5qqk8fhr77VaE9JqSecpdrJs_lHiNch2LflJ88ejrfxb9x9k7rDbPk6Pjzo_V8knr1AkGym0RqZHwxu9Tmbl7aiXDzcKtX8FpuX9-Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQixAsWl4V0xa4C3ZgNQ_n1V1LZwSCDpUopbvIT2mkUaadpA92_APfwI_xJdwbJzOAAAmxi2LHsXSv7eNrn3MZe5ZlOtdobJ5p3OmIQIW8kEpzqa0KZG5NqFWbbCIbj_PT0-LoBxZ_e9u9P5L0nAZSaaqanTPjdpbEtygWdHmWWNEIITiiyFVBSYNov_7-pJ-LU1yc2_NOBCU8EWnQ0WZ-38bPS9MSb_5yRNquPKP1_-_zXbbWoU7Y825yj92w1X1253Ah2Vo_YF_3APGnQ0QKvVAJzBwMr6Vu4JiSFBFxHT7iAyxiaYCQF7ARGM09QUJO-TsS8wRZGaBoI8UM_Zv9SX0l62-fvxxOpjOcn2B47mXGd-FkIrHYXcx9_BC8YAD9_uBTJVtBA_DS6g_Zh9Hw-OUr3uVw4BoHd8OF1iSIY2MRycKqTBjlTOFCk4okULG2TkTCxTbUiSZSvglUkmeFRmCRprgbjDfYSjWr7CMGkUH4VKAlHWI4VQgEVkGqcpUnxgiXxQMW9uYrdSdwTnk2puVSmplMUKIJytYE5fWAPV98c-blPf5ae7v3irIb6nWJlUjlPyuiAXvRe8Gy-M-tbf5b9afs1tHBqHz7evxmi92OWj-iC0TbbKWZX9jH7Ka-bCb1_Ek7Ar4D7GUG7A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unified+Analysis+of+Exact+Traveling+Wave+Solutions+for+the+Fractional-Order+and+Integer-Order+Biswas%E2%80%93Milovic+Equation%3A+Via+Bifurcation+Theory+of+Dynamical+System&rft.jtitle=Qualitative+theory+of+dynamical+systems&rft.au=Zhang%2C+Bei&rft.au=Zhu%2C+Wenjing&rft.au=Xia%2C+Yonghui&rft.au=Bai%2C+Yuzhen&rft.date=2020-04-01&rft.pub=Springer+International+Publishing&rft.issn=1575-5460&rft.eissn=1662-3592&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1007%2Fs12346-020-00352-x&rft.externalDocID=10_1007_s12346_020_00352_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1575-5460&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1575-5460&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1575-5460&client=summon |