Boundedness of Convolution Operators on Hardy Spaces
Establishing conditions for the boundedness of an operator taking H p ( R n ) into L p ( R n ) , with 0 < p ≤ 1 , is a classical subject. A standard approach to such problems is using the atomic characterization of H p ( R n ) , 0 < p ≤ 1 , and working with atoms. Unlike in certain earlier wor...
Uložené v:
| Vydané v: | Computational methods and function theory Ročník 19; číslo 2; s. 183 - 191 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2019
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1617-9447, 2195-3724 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Establishing conditions for the boundedness of an operator taking
H
p
(
R
n
)
into
L
p
(
R
n
)
, with
0
<
p
≤
1
, is a classical subject. A standard approach to such problems is using the atomic characterization of
H
p
(
R
n
)
,
0
<
p
≤
1
, and working with atoms. Unlike in certain earlier work on the subject we apply this machinery not to specific operators but to a wide general family of multivariate linear means generated by a multiplier. We illustrate the use of these new conditions applying them to some methods known from before. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1617-9447 2195-3724 |
| DOI: | 10.1007/s40315-019-00269-w |