Numerical algorithms for inverse Sturm-Liouville problems
In this paper, two classical inverse spectral problems are investigated, namely, the inverse second-order Sturm-Liouville problem and the inverse fourth-order Sturm-Liouville problem. Based on Lidskii’s theorem, we derive trace formulas showing relations between the unknown coefficients and eigenval...
Uloženo v:
| Vydáno v: | Numerical algorithms Ročník 89; číslo 3; s. 1287 - 1309 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.03.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, two classical inverse spectral problems are investigated, namely, the inverse second-order Sturm-Liouville problem and the inverse fourth-order Sturm-Liouville problem. Based on Lidskii’s theorem, we derive trace formulas showing relations between the unknown coefficients and eigenvalues explicitly for both problems. According to those trace formulas, two efficient algorithms are proposed to recover the symmetric potential from one spectrum for second-order Sturm-Liouville problem and two coefficients simultaneously from three spectra for fourth-order Sturm-Liouville problem, respectively. Numerical results are presented to illustrate the effectiveness of the proposed reconstruction algorithms. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-021-01153-2 |