Numerical algorithms for inverse Sturm-Liouville problems

In this paper, two classical inverse spectral problems are investigated, namely, the inverse second-order Sturm-Liouville problem and the inverse fourth-order Sturm-Liouville problem. Based on Lidskii’s theorem, we derive trace formulas showing relations between the unknown coefficients and eigenval...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 89; číslo 3; s. 1287 - 1309
Hlavní autoři: Jiang, Xiaoying, Li, Xiaowen, Xu, Xiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.03.2022
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, two classical inverse spectral problems are investigated, namely, the inverse second-order Sturm-Liouville problem and the inverse fourth-order Sturm-Liouville problem. Based on Lidskii’s theorem, we derive trace formulas showing relations between the unknown coefficients and eigenvalues explicitly for both problems. According to those trace formulas, two efficient algorithms are proposed to recover the symmetric potential from one spectrum for second-order Sturm-Liouville problem and two coefficients simultaneously from three spectra for fourth-order Sturm-Liouville problem, respectively. Numerical results are presented to illustrate the effectiveness of the proposed reconstruction algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-021-01153-2