Numerical algorithms for inverse Sturm-Liouville problems

In this paper, two classical inverse spectral problems are investigated, namely, the inverse second-order Sturm-Liouville problem and the inverse fourth-order Sturm-Liouville problem. Based on Lidskii’s theorem, we derive trace formulas showing relations between the unknown coefficients and eigenval...

Full description

Saved in:
Bibliographic Details
Published in:Numerical algorithms Vol. 89; no. 3; pp. 1287 - 1309
Main Authors: Jiang, Xiaoying, Li, Xiaowen, Xu, Xiang
Format: Journal Article
Language:English
Published: New York Springer US 01.03.2022
Springer Nature B.V
Subjects:
ISSN:1017-1398, 1572-9265
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, two classical inverse spectral problems are investigated, namely, the inverse second-order Sturm-Liouville problem and the inverse fourth-order Sturm-Liouville problem. Based on Lidskii’s theorem, we derive trace formulas showing relations between the unknown coefficients and eigenvalues explicitly for both problems. According to those trace formulas, two efficient algorithms are proposed to recover the symmetric potential from one spectrum for second-order Sturm-Liouville problem and two coefficients simultaneously from three spectra for fourth-order Sturm-Liouville problem, respectively. Numerical results are presented to illustrate the effectiveness of the proposed reconstruction algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-021-01153-2