Distributed stochastic gradient tracking methods
In this paper, we study the problem of distributed multi-agent optimization over a network, where each agent possesses a local cost function that is smooth and strongly convex. The global objective is to find a common solution that minimizes the average of all cost functions. Assuming agents only ha...
Uloženo v:
| Vydáno v: | Mathematical programming Ročník 187; číslo 1-2; s. 409 - 457 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we study the problem of distributed multi-agent optimization over a network, where each agent possesses a local cost function that is smooth and strongly convex. The global objective is to find a common solution that minimizes the average of all cost functions. Assuming agents only have access to unbiased estimates of the gradients of their local cost functions, we consider a distributed stochastic gradient tracking method (DSGT) and a gossip-like stochastic gradient tracking method (GSGT). We show that, in expectation, the iterates generated by each agent are attracted to a neighborhood of the optimal solution, where they accumulate exponentially fast (under a constant stepsize choice). Under DSGT, the limiting (expected) error bounds on the distance of the iterates from the optimal solution decrease with the network size
n
, which is a comparable performance to a centralized stochastic gradient algorithm. Moreover, we show that when the network is well-connected, GSGT incurs lower communication cost than DSGT while maintaining a similar computational cost. Numerical example further demonstrates the effectiveness of the proposed methods. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-020-01487-0 |