Machine learning-based predictive models for equivalent damping ratio of RC shear walls
Energy-based seismic design is being rapidly developed and suggests that the seismic demands are met by the energy dissipation capacity of the structural members. Equivalent damping ratio is a measure of energy dissipation in structural members that accounts for the post-elastic behavior of the memb...
Gespeichert in:
| Veröffentlicht in: | Bulletin of earthquake engineering Jg. 21; H. 1; S. 293 - 318 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.01.2023
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1570-761X, 1573-1456 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Energy-based seismic design is being rapidly developed and suggests that the seismic demands are met by the energy dissipation capacity of the structural members. Equivalent damping ratio is a measure of energy dissipation in structural members that accounts for the post-elastic behavior of the member and provides insight regarding the dynamic response reduction during a seismic event. The present study implements a machine learning algorithm to estimate the equivalent damping ratio in reinforced concrete shear walls at displacements corresponding to a 1.0% lateral drift ratio. Five different machine learning models, namely, Robust Linear Regression, K-Nearest Neighbor Regression, Kernel Ridge Regression, Support Vector Regression, and Gaussian process regression were evaluated in order to choose the model with the highest accuracy. Among all models, Gaussian process regression, a machine learning method with successful implementation experiences in civil/structural engineering related problems, is selected to identify the equivalent damping ratio. The developed GPR-based algorithm uses a database of 161 rectangular shear walls subjected to quasi-static reversed cyclic loading with geometry and mechanical properties commonly found in building stocks of many earthquake-prone countries. The proposed algorithm estimates the equivalent damping ratio for each specimen by predicting the cyclic dissipated energy and lateral force values as two dependent variables. The model validation results show a mean coefficient of determination (R
2
) of about 0.89; a relative root mean square error of about 0.14 and a mean absolute percentage error of 10.44%, which is considered a substantially accurate prediction for such a complex problem. An open-source model and the entire database are provided which can be used by researchers and also design engineers. The proposed predictive model enables comparing the damping capacity of shear walls and the outcomes of this study are believed to contribute to the energy-based design or performance evaluation procedures in terms of predicting the energy capacity of shear walls. |
|---|---|
| AbstractList | Energy-based seismic design is being rapidly developed and suggests that the seismic demands are met by the energy dissipation capacity of the structural members. Equivalent damping ratio is a measure of energy dissipation in structural members that accounts for the post-elastic behavior of the member and provides insight regarding the dynamic response reduction during a seismic event. The present study implements a machine learning algorithm to estimate the equivalent damping ratio in reinforced concrete shear walls at displacements corresponding to a 1.0% lateral drift ratio. Five different machine learning models, namely, Robust Linear Regression, K-Nearest Neighbor Regression, Kernel Ridge Regression, Support Vector Regression, and Gaussian process regression were evaluated in order to choose the model with the highest accuracy. Among all models, Gaussian process regression, a machine learning method with successful implementation experiences in civil/structural engineering related problems, is selected to identify the equivalent damping ratio. The developed GPR-based algorithm uses a database of 161 rectangular shear walls subjected to quasi-static reversed cyclic loading with geometry and mechanical properties commonly found in building stocks of many earthquake-prone countries. The proposed algorithm estimates the equivalent damping ratio for each specimen by predicting the cyclic dissipated energy and lateral force values as two dependent variables. The model validation results show a mean coefficient of determination (R2) of about 0.89; a relative root mean square error of about 0.14 and a mean absolute percentage error of 10.44%, which is considered a substantially accurate prediction for such a complex problem. An open-source model and the entire database are provided which can be used by researchers and also design engineers. The proposed predictive model enables comparing the damping capacity of shear walls and the outcomes of this study are believed to contribute to the energy-based design or performance evaluation procedures in terms of predicting the energy capacity of shear walls. Energy-based seismic design is being rapidly developed and suggests that the seismic demands are met by the energy dissipation capacity of the structural members. Equivalent damping ratio is a measure of energy dissipation in structural members that accounts for the post-elastic behavior of the member and provides insight regarding the dynamic response reduction during a seismic event. The present study implements a machine learning algorithm to estimate the equivalent damping ratio in reinforced concrete shear walls at displacements corresponding to a 1.0% lateral drift ratio. Five different machine learning models, namely, Robust Linear Regression, K-Nearest Neighbor Regression, Kernel Ridge Regression, Support Vector Regression, and Gaussian process regression were evaluated in order to choose the model with the highest accuracy. Among all models, Gaussian process regression, a machine learning method with successful implementation experiences in civil/structural engineering related problems, is selected to identify the equivalent damping ratio. The developed GPR-based algorithm uses a database of 161 rectangular shear walls subjected to quasi-static reversed cyclic loading with geometry and mechanical properties commonly found in building stocks of many earthquake-prone countries. The proposed algorithm estimates the equivalent damping ratio for each specimen by predicting the cyclic dissipated energy and lateral force values as two dependent variables. The model validation results show a mean coefficient of determination (R 2 ) of about 0.89; a relative root mean square error of about 0.14 and a mean absolute percentage error of 10.44%, which is considered a substantially accurate prediction for such a complex problem. An open-source model and the entire database are provided which can be used by researchers and also design engineers. The proposed predictive model enables comparing the damping capacity of shear walls and the outcomes of this study are believed to contribute to the energy-based design or performance evaluation procedures in terms of predicting the energy capacity of shear walls. |
| Author | Taskin, Gulsen Sutcu, Fatih Yaghoubi, Siamak Tahaei Deger, Zeynep Tuna |
| Author_xml | – sequence: 1 givenname: Siamak Tahaei surname: Yaghoubi fullname: Yaghoubi, Siamak Tahaei organization: Earthquake Engineering and Disaster Management Institute, Istanbul Technical University – sequence: 2 givenname: Zeynep Tuna surname: Deger fullname: Deger, Zeynep Tuna organization: Earthquake Engineering and Disaster Management Institute, Istanbul Technical University – sequence: 3 givenname: Gulsen surname: Taskin fullname: Taskin, Gulsen organization: Earthquake Engineering and Disaster Management Institute, Istanbul Technical University – sequence: 4 givenname: Fatih orcidid: 0000-0002-7997-9842 surname: Sutcu fullname: Sutcu, Fatih email: fatih.sutcu@itu.edu.tr organization: Faculty of Civil Engineering, Istanbul Technical University |
| BookMark | eNp9kF1LwzAUhoNMcJv-Aa8CXkfz0TbtpQy_YCKIonchTU63jC7tkm7iv7dbBcGLXZ1z8Tzn452gkW88IHTJ6DWjVN5ERlOWE8o5oSwVgmQnaMxSKQhL0mx06CmRGfs8Q5MYV5TyVBZ0jD6etVk6D7gGHbzzC1LqCBa3AawzndsBXjcW6oirJmDYbN1O1-A7bPW67XEcdOca3FT4dYbjsh-Cv3Rdx3N0Wuk6wsVvnaL3-7u32SOZvzw8zW7nxAhWdCTR0tCsLEsB3BaFlZUFyoyQQhRMg-HM5tKCyXKbSC6B00pKVpUiKVPJ80JM0dUwtw3NZguxU6tmG3y_UvH-3aRnij2VD5QJTYwBKmVctz_cd0G7WjGq9jGqIUbVx6gOMaqsV_k_tQ1urcP3cUkMUuxhv4Dwd9UR6wdrxYdb |
| CitedBy_id | crossref_primary_10_1177_13694332231174252 crossref_primary_10_3390_math11041021 crossref_primary_10_35414_akufemubid_1541763 crossref_primary_10_1007_s11831_025_10288_7 crossref_primary_10_1016_j_cscm_2024_e03183 crossref_primary_10_1016_j_engstruct_2025_120326 crossref_primary_10_1016_j_engstruct_2025_120721 crossref_primary_10_1080_13632469_2024_2335561 |
| Cites_doi | 10.1061/(ASCE)BE.1943-5592.0000982 10.1186/s40069-018-0311-2 10.1016/j.jmp.2018.03.001 10.1080/00401706.1975.10489279 10.1002/eqe.177 10.1061/(ASCE)ST.1943-541X.0002872 10.1016/j.engstruct.2006.10.020 10.1016/j.istruc.2019.06.017 10.1007/s13369-020-04683-4 10.1061/(ASCE)BE.1943-5592.0001199 10.1016/j.autcon.2016.02.002 10.1061/(ASCE)0733-9445(1983)109:5(1267) 10.1016/j.engstruct.2006.08.014 10.1002/eqe.2380 10.1002/eqe.143 10.1193/011212EQS010M 10.1061/9780784482896.063 10.1061/(ASCE)ST.1943-541X.0000218 10.1016/S0020-7373(87)80042-1 10.1142/S1363246905002390 10.1016/j.engstruct.2022.113874 10.1002/eqe.4290080407 10.1016/B0-08-043749-4/01115-0 10.1007/s00500-019-04103-2 10.1016/S0141-0296(03)00060-9 10.1061/JMCEA3.0000510 10.1080/15732479.2015.1086386 10.1007/s10706-015-9938-9 10.1016/j.soildyn.2010.04.022 10.1061/(ASCE)0733-9445(2001)127:1(43) 10.1002/eqe.2437 10.1061/40988(323)40 10.1016/j.engstruct.2020.110331 10.1061/(ASCE)ST.1943-541X.0002596 10.1002/eqe.4290240310 10.1002/eqe.4290241206 10.1785/BSSA0650020307 10.1061/(ASCE)ST.1943-541X.0000927 10.1080/13632469.2018.1461713 10.1193/102116EQS178EP 10.1061/(ASCE)CP.1943-5487.0000787 10.1016/j.engstruct.2008.05.024 10.1016/j.crme.2019.11.009 10.1093/comjnl/7.4.308 10.1145/1390817.1390822 10.1080/13632469.2012.685210 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7ST 7TG 7TN 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M2P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI |
| DOI | 10.1007/s10518-022-01533-6 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1456 |
| EndPage | 318 |
| ExternalDocumentID | 10_1007_s10518_022_01533_6 |
| GrantInformation_xml | – fundername: Türkiye Bilimsel ve Teknolojik Araştirma Kurumu grantid: 218M535 funderid: http://dx.doi.org/10.13039/501100004410 |
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 23N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67M 67Z 6J9 6NX 7XC 88I 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV L6V L8X LAK LK5 LLZTM M2P M4Y M7R M7S MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P PATMY PCBAR PF0 PQQKQ PROAC PT4 PTHSS PYCSY Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7Y Z7Z Z85 ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7ST 7TG 7TN 7UA 7XB 8FD 8FK C1K F1W FR3 H96 KL. KR7 L.G PKEHL PQEST PQUKI PRINS Q9U SOI |
| ID | FETCH-LOGICAL-c319t-4a7c06bbb3e2d99d7fde01c373391aec21d87dec68d4727e20f771fb34b572893 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000868965900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1570-761X |
| IngestDate | Sat Nov 08 14:37:33 EST 2025 Sat Nov 29 02:59:29 EST 2025 Tue Nov 18 21:25:26 EST 2025 Fri Feb 21 02:46:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Gaussian process regression Reinforced concrete shear walls Equivalent damping ratio Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-4a7c06bbb3e2d99d7fde01c373391aec21d87dec68d4727e20f771fb34b572893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7997-9842 |
| PQID | 2761428999 |
| PQPubID | 55380 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_2761428999 crossref_citationtrail_10_1007_s10518_022_01533_6 crossref_primary_10_1007_s10518_022_01533_6 springer_journals_10_1007_s10518_022_01533_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20230100 2023-01-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 1 year: 2023 text: 20230100 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | Official Publication of the European Association for Earthquake Engineering |
| PublicationTitle | Bulletin of earthquake engineering |
| PublicationTitleAbbrev | Bull Earthquake Eng |
| PublicationYear | 2023 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | DegerZTBasdoganCEmpirical equations for shear strength of conventional reinforced concrete shear wallsACI Struct J202111826171 Looi D, Su R (2017) Predictive seismic shear capacity model of rectangular squat RC shear walls in flexural and shear zones. In: 16th world conference on earthquake engineering. Santiago, Chile MangalathuSJangHHwangS-HJeonJ-SData-driven machine-learning-based seismic failure mode identification of reinforced concrete shear wallsEng Struct2020208555 MomeniEDowlatshahiMBOmidinasabFMaizirHArmaghaniDJGaussian process regression technique to estimate the pile bearing capacityArab J Sci Eng2020382558267 OhY-HHanSWLeeL-HEffect of boundary element details on the seismic deformation capacity of structural wallsEarthq Eng Struct Dyn20023115831602 Applied Technology Council (1985) ATC-13, earthquake damage evaluation data for California. Redwood City, CA Consuegra F, Irfanoglu A (2008) Variation of dynamic properties with displacement in a 3-story reinforced concrete flat plate structure. In: The 14th world conference on earthquake engineering. Beijing, China GulkanPSozenMInelastic responses of reinforced concrete structures to earthquake motionsJ Am Concr Inst19742604610 Yan S, Zhang LF, Zhang, YG (2008) Seismic performances of high-strength concrete shear walls reinforced with high-strength rebars. In: 11th Biennial ASCE aerospace division international conference on engineering, science, construction, and operations in challenging environments, pp 1–8. Long Beach, California, USA ArciszewskiTMustafaMZairkoWA methodology of design knowledge acquisition for use in learning expert systemsInt J Man Mach Stud1987272332 ArroyoOBarrosJRamosLComparison of the reinforced-concrete seismic provisions of the design codes of the United States, Colombia, and ecuador for low-rise framesEarthq Spectra2018342441458 HuangYLiJFuJReview on application of artificial intelligence in civil engineeringComput Model Eng Sci20191213845875 Chopra AK (2020) Dynamics of structures: theory and applications to earthquake engineering (Fifth Edition in SI Units). Harlow: Pearson Education Limited Park H, Eom T (2004) Energy dissipation capacity of reinforced concrete members. In: CTBUH 2004 Seoul conference, pp 378–384. Seoul, South Korea: Council on Tall Buildings and Urban Habitat Dwairi H (2004) Equivalent damping in support of direct displacement-based design with applications to multi-span bridges. (Doctorate thesis). North Carolina State University NelderJAMeadRA simplex method for function minimizationComput J196574308313 OzkaynakHYukselEYalcinCDindarAABuyukozturkOMasonry infill walls in reinforced concrete frames as a source of structural dampingEarthq Eng Struct Dyn201443949968 FillibenJJThe probability plot correlation coefficient test for normalityTechnometrics1975171111117 PriestleyMJCalviGMKowalskyMJDisplacement based seismic design of structures20071PaviaIUSS Press SenguptaPLiBHysteresis behavior of reinforced concrete wallsJ Struct Eng2014504014030 SiamAEzzeldinMEl-DakhakhniWMachine learning algorithms for structural performance classifications and predictions: application to reinforced masonry shear wallsStructures201922252265 OrakcalKMassoneLMWallaceJWShear strength of lightly reinforced wall piers and spandrelsACI Struct J20091064455466 Wallace JW (2012) Performance of structural walls in recent earthquakes and tests and implications for US building codes. In: 15th world conference on. earthquake engineering. Lisbon, Portugal AkiyamaHEarthquake-resistant limit-state design for buildings1985TokyoThe University of Tokyo Press Benavent-ClimentALópez-AlmansaFBravo-GonzálezDADesign energy input spectra for moderate-to-high seismicity regions based on Colombian earthquakesSoil Dyn Earthq Eng20103011291148 Jacobsen LS (1960) Damping in composite structures. In: Proceedings of second world conference on earthquake engineering, vol 2, pp 1029–1044. Tokyo and Kyoto ChouJ-SPhamT-P-TNguyenT-KPhamA-DNgoN-TShear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning modelsSoft Comput20202433933411 ACI Committee 318 (2011) Building code requirements for structural concrete (ACI 318-11) and commentary. Farmington Hills: American Concrete Institute LuoHPaalSGMachine learning-based backbone curve model of reinforced concrete columns subjected to cyclic loading reversalsJ Comput Civil Eng201832504018042 ACI Committee 318 (2014) Building code requirements for structural concrete (ACI 318-14) and Commentary (ACI 318R-14). Farmington Hills: American Concrete Institute Shegay A, Motter C, Henry R, Elwood K (2015) A database for investigating NZS3101 structural wall provisions. In: Proceedings of the tenth Pacific conference on earthquake engineering. Sydney, Australia Housner G (1956) Limit design of structures to resist earthquakes. In: Proceedings of the 1st world conference on earthquake engineering, pp 186–198. Berkeley: IAEE SheibaniMOuGThe development of Gaussian process regression for effective regional post-earthquake building damage inferenceComput-Aided Civil Infrastruct Eng20202124 DindarAACYYükselEÖzkaynakHBüyüköztürkODevelopment of earthquake energy demand spectraEarthq Spectra201531316671689 DegerZTBasdoganCEmpirical expressions for deformation capacity of reinforced concrete structural wallsACI Struct J201925361 SullivanTJHighlighting differences between force-based and displacement-based design solutions for reinforced concrete frame structuresStruct Eng Int20182122131 Fardis M, Panagiotakos T (1996) Hysteretic damping of reinforced concrete elements. In: Eleventh world conference on earthquake engineering. Acapulco: Elsevier Science Ltd, Paper No 464 Hudson DE (1965) Equivalent viscous friction for hysteretic systems with earthquake-like excitations. In: 3rd world conference on earthquake engineering, pp II-185/II-201. New Zealand RosenbluethEHerreraIOn a kind of hysteretic dampingJ Eng Mech Div196490EM43749 PanHAzimiMYanFLinZBTime-frequency-based data-driven structural diagnosis and damage detection for cable-stayed bridgesJ Bridg Eng201823604018033 Buttmann P (1983) Experimental determination of damping factors for walls of masonry and reinforced concrete. In: Transactions of the 7th international conference on structural mechanics in reactor technology, pp 507–511. Chicago: Amsterdam : North-Holland Physics Publishing for the Commission of the European Communities JacobsenLSSteady forced vibrations as influenced by dampingASME Trans1930521169181 KassemWElsheikhAEstimation of shear strength of structural shear wallsJ Struct Eng20101361012151224 TseranidisSBrownNCMuellerCTData-driven approximation algorithms for rapid performance evaluation and optimization of civil structuresAutom Constr201672279293 Faraone G, Hutchinson T, Piccinin R, Silva J (2020) Damage patterns in squat and flexural RC shear walls. In: Structures congress 2020, pp 687–696. Reston: American Society of Civil Engineers DegerZTTaskinGA novel GPR-based prediction model for cyclic backbone curves of reinforced concrete shear wallsEng Struct2022255110 MirandaERuiz-GarciaJEvaluation of approximate methods to estimate maximum inelastic displacement demandsEarthq Eng Struct Dyn200231539560 NieXWangJ-JTaoM-XFanJ-SMoYLZhangZ-YExperimental study of shear-critical reinforced-concrete shear walls under tension-bending shear-combined cyclic loadJ Struct Eng2020146504020047 American Society of Civil Engineers (ASCE) (2000) FEMA 356 prestandard and commentary for the seismic rehabilitation of buildings, prepared for the SAC joint venture. Washington, D.C.: Federal Emergency Management Agency ErberikMSucuoğluHAcunBInelastic displacement response of RC systems with cyclic deterioration-an energy approachJ Earthq Eng2012167937962 JeonJ-SShafieezadehADesRochesRStatistical models for shear strength of RC beam-column joints using machine-learning techniquesEarthq Eng Struct Dyn20144320752095 SalonikiosTNKapposAJTegosIAPenelisGGCyclic load behavior of low-slenderness reinforced concrete walls: design basis and test resultsACI Struct J1999964649661 HoangN-DPhamA-DNguyenQ-LPhamQ-NEstimating compressive strength of high performance concrete with gaussian process regression modelAdv Civil Eng201627744 IwanWDEstimating inelastic response spectra from elastic spectraEarthq Eng Struct Dyn19808375388 CuradelliRRieraJAmbrosiniDAmaniMDamage detection by means of structural damping identificationEng Struct20083034973504 RasmussenCEBousquetOLuxburgUVRätschGGaussian processes in machine learningAdvanced lectures on machine learning2004BerlinSpringer6775 YangH-KParkH-GDamping ratio of RC squat wall with limited damage under high-frequency earthquakeJ Struct Eng2021147104020295 CSA A23.3-19 (2019) Design of concrete structures. Toronto: CSA Group FayyadUPiatetsky-ShapiroGSmythPFrom data mining to knowledge discovery in databasesAI Mag19961733754 Özkaynak H (2010) The earthquake behavior of RC frames with fiber polymer confined infill walls and their structural damping properties. (Doctorate thesis). Istanbul Technical University, (in Turkish) National Research Council of Canada (NRCC) (2015) NBC 2015, National Building Code of Canada. Ottawa, ON, Canada: Associate Commission on the National Building Code TrifunacMBradyAA study on the duration of strong earthquake ground motionBull Seismol Soc Am197565581626 GulecCWhittakerASEmpirical equations for peak shear strength of low aspect ratio reinforced concrete wallsACI Struct J201110818089 FarrarCRBakerWEDamping in low-aspect-ratio, reinforced concrete shear wallsEarthq Eng Struct Dyn199524439455 BelmoudenYLestuzziPAnalytical model for predicting nonlinear reversed cyclic behaviour of reinforced concrete structural wallsEng Struct20072912631276 Zaharia R, Taucer F (2008) Equivalent period and damping for EC8 spectral response of SDOF ring-spring hysteretic models. Italy SuRKWongSMSeismic behaviour of slender reinforced concrete shear walls under high axial load ratioEng Struct20072919571965 Benavent-Climent A, Escolano-Margarit D, Klenke A, Pujol S (2012) N-D Hoang (1533_CR40) 2016; 2 M Sheibani (1533_CR82) 2020; 2 I Song (1533_CR84) 2020; 24 ZT Deger (1533_CR23) 2022; 255 CR Farrar (1533_CR34) 1995; 24 1533_CR30 JA Nelder (1533_CR62) 1965; 7 A Benavent-Climent (1533_CR12) 2010; 30 Z Deger (1533_CR24) 2022; 34 P Gulkan (1533_CR39) 1974; 2 1533_CR37 1533_CR33 H Akiyama (1533_CR3) 1985 LS Jacobsen (1533_CR46) 1930; 52 1533_CR31 WG Zhang (1533_CR95) 2016; 34 1533_CR32 CA Blandon (1533_CR14) 2005; 9 1533_CR1 E Rosenblueth (1533_CR76) 1964; 90 M Trifunac (1533_CR88) 1975; 65 S Tseranidis (1533_CR89) 2016; 72 H Luo (1533_CR54) 2018; 32 1533_CR28 1533_CR7 1533_CR6 RK Su (1533_CR86) 2007; 29 1533_CR2 CE Rasmussen (1533_CR73) 2004 1533_CR5 TN Salonikios (1533_CR78) 1999; 96 1533_CR4 FJ Montáns (1533_CR60) 2019; 347 1533_CR61 X Nie (1533_CR63) 2020; 146 J-S Jeon (1533_CR48) 2014; 43 T Rossetto (1533_CR77) 2003; 25 1533_CR26 1533_CR27 SJ Hwang (1533_CR44) 2001; 127 H Pan (1533_CR68) 2018; 23 1533_CR69 R Park (1533_CR70) 2003 1533_CR66 AACY Dindar (1533_CR25) 2015; 31 ZT Deger (1533_CR21) 2019; 2 1533_CR19 1533_CR18 NW Lu (1533_CR53) 2017; 22 J-S Chou (1533_CR17) 2020; 24 W Kassem (1533_CR50) 2010; 136 JK Song (1533_CR85) 2019; 13 T Arciszewski (1533_CR8) 1987; 27 JD Aristizabal-Ochoa (1533_CR9) 1983; 109 K Orakcal (1533_CR65) 2009; 106 1533_CR52 Y-H Oh (1533_CR64) 2002; 31 D-T Vu (1533_CR90) 2016; 12 1533_CR94 U Fayyad (1533_CR35) 1996; 17 1533_CR91 1533_CR92 MJ Kowalsky (1533_CR51) 1995; 24 MJ Priestley (1533_CR71) 2003 1533_CR15 1533_CR16 1533_CR13 1533_CR57 1533_CR56 Y Huang (1533_CR42) 2019; 121 S Mangalathu (1533_CR55) 2020; 208 P Sengupta (1533_CR80) 2014; 5 R Curadelli (1533_CR20) 2008; 30 Y Belmouden (1533_CR11) 2007; 29 A Siam (1533_CR83) 2019; 22 C Gulec (1533_CR38) 2011; 108 TJ Sullivan (1533_CR87) 2018; 2 ZT Deger (1533_CR22) 2021; 118 E Miranda (1533_CR58) 2002; 31 M Erberik (1533_CR29) 2012; 16 1533_CR41 H Ozkaynak (1533_CR67) 2014; 43 CE Rasmussen (1533_CR74) 2010; 11 Y Reich (1533_CR75) 1996; 6 1533_CR81 WD Iwan (1533_CR45) 1980; 8 H-K Yang (1533_CR93) 2021; 147 E Momeni (1533_CR59) 2020; 3 E Schulz (1533_CR79) 2018; 85 O Arroyo (1533_CR10) 2018; 34 1533_CR49 1533_CR47 MJ Priestley (1533_CR72) 2007 JJ Filliben (1533_CR36) 1975; 17 1533_CR43 |
| References_xml | – reference: American Society of Civil Engineers (2016) ASCE/SEI 7-16, minimum design loads and associated criteria for buildings and other structures. Reston, Virginia – reference: HuangYLiJFuJReview on application of artificial intelligence in civil engineeringComput Model Eng Sci20191213845875 – reference: LuoHPaalSGMachine learning-based backbone curve model of reinforced concrete columns subjected to cyclic loading reversalsJ Comput Civil Eng201832504018042 – reference: BelmoudenYLestuzziPAnalytical model for predicting nonlinear reversed cyclic behaviour of reinforced concrete structural wallsEng Struct20072912631276 – reference: SuRKWongSMSeismic behaviour of slender reinforced concrete shear walls under high axial load ratioEng Struct20072919571965 – reference: Wallace JW (2012) Performance of structural walls in recent earthquakes and tests and implications for US building codes. In: 15th world conference on. earthquake engineering. Lisbon, Portugal – reference: RossettoTElnashaiADerivation of vulnerability functions for European-type RC structures based on observational dataEng Struct20032512411263 – reference: Zaharia R, Taucer F (2008) Equivalent period and damping for EC8 spectral response of SDOF ring-spring hysteretic models. Italy – reference: Shegay A, Motter C, Henry R, Elwood K (2015) A database for investigating NZS3101 structural wall provisions. In: Proceedings of the tenth Pacific conference on earthquake engineering. Sydney, Australia – reference: ChouJ-SPhamT-P-TNguyenT-KPhamA-DNgoN-TShear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning modelsSoft Comput20202433933411 – reference: Hudson DE (1965) Equivalent viscous friction for hysteretic systems with earthquake-like excitations. In: 3rd world conference on earthquake engineering, pp II-185/II-201. New Zealand – reference: Jiang Y, Cukic B, Menzies T (2008) Can data transformation help in the detection of fault-prone modules? In: Proceedings of the 2008 workshop on defects in large software systems-DEFECTS '08, pp 16–20. Seattle: ACM Press – reference: Fardis M, Panagiotakos T (1996) Hysteretic damping of reinforced concrete elements. In: Eleventh world conference on earthquake engineering. Acapulco: Elsevier Science Ltd, Paper No 464 – reference: ParkRMilneIRitchieRKarihalooBEarthquake resistant structuresComprehensive structural integrity2003LondonElsevier Science Ltd.271303 – reference: Ghobarah A (2004) On drift limits associated with different damage levels. In: International workshop on performance-based seismic design. Ontario: Department of Civil Engineering, McMaster University – reference: ReichYMachine learning techniques for civil engineering problemsComput-Aided Civil Infrastruct Eng199665555 – reference: MangalathuSJangHHwangS-HJeonJ-SData-driven machine-learning-based seismic failure mode identification of reinforced concrete shear wallsEng Struct2020208555 – reference: ArroyoOBarrosJRamosLComparison of the reinforced-concrete seismic provisions of the design codes of the United States, Colombia, and ecuador for low-rise framesEarthq Spectra2018342441458 – reference: Ebden M (2008) Gaussian processes for regression: a quick introduction. Retrieved from http://ftp.tuebingen.mpg.de/pub/ebio/chrisd/GPtutorial.pdf – reference: OhY-HHanSWLeeL-HEffect of boundary element details on the seismic deformation capacity of structural wallsEarthq Eng Struct Dyn20023115831602 – reference: Aristizabal-OchoaJDCracking and shear effects on structural wallsJ Struct Eng1983109512671277 – reference: CuradelliRRieraJAmbrosiniDAmaniMDamage detection by means of structural damping identificationEng Struct20083034973504 – reference: Ministerio de Ambiente V and NSR-10 DT (2010) Reglamento Colombiano De Construcción Sismo Resistente. Bogota – reference: Housner G (1956) Limit design of structures to resist earthquakes. In: Proceedings of the 1st world conference on earthquake engineering, pp 186–198. Berkeley: IAEE – reference: PanHAzimiMYanFLinZBTime-frequency-based data-driven structural diagnosis and damage detection for cable-stayed bridgesJ Bridg Eng201823604018033 – reference: Dwairi H, Kowalsky M (2004) Investigation of Jacobsen's equivalent viscous damping approach as applied to displacement-based seismic design. In: 13th world conference on earthquake engineering. Vancouver, Canada – reference: NelderJAMeadRA simplex method for function minimizationComput J196574308313 – reference: SenguptaPLiBHysteresis behavior of reinforced concrete wallsJ Struct Eng2014504014030 – reference: SongIChoIHWongRKAn advanced statistical approach to data-driven earthquake engineeringJ Earthq Eng202024812451269 – reference: European Committee for Standardization (2004) Eurocode 8: design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings (EN 1998-1). Brussels: CEN – reference: OzkaynakHYukselEYalcinCDindarAABuyukozturkOMasonry infill walls in reinforced concrete frames as a source of structural dampingEarthq Eng Struct Dyn201443949968 – reference: MirandaERuiz-GarciaJEvaluation of approximate methods to estimate maximum inelastic displacement demandsEarthq Eng Struct Dyn200231539560 – reference: VuD-THoangN-DPunching shear capacity estimation of FRP-reinforced concrete slabs using a hybrid machine learning approachStruct Infrastruct Eng201612911531161 – reference: Applied Technology Council (1985) ATC-13, earthquake damage evaluation data for California. Redwood City, CA – reference: DindarAACYYükselEÖzkaynakHBüyüköztürkODevelopment of earthquake energy demand spectraEarthq Spectra201531316671689 – reference: ArciszewskiTMustafaMZairkoWA methodology of design knowledge acquisition for use in learning expert systemsInt J Man Mach Stud1987272332 – reference: GulkanPSozenMInelastic responses of reinforced concrete structures to earthquake motionsJ Am Concr Inst19742604610 – reference: Buttmann P (1983) Experimental determination of damping factors for walls of masonry and reinforced concrete. In: Transactions of the 7th international conference on structural mechanics in reactor technology, pp 507–511. Chicago: Amsterdam : North-Holland Physics Publishing for the Commission of the European Communities – reference: Park H, Eom T (2004) Energy dissipation capacity of reinforced concrete members. In: CTBUH 2004 Seoul conference, pp 378–384. Seoul, South Korea: Council on Tall Buildings and Urban Habitat – reference: SalonikiosTNKapposAJTegosIAPenelisGGCyclic load behavior of low-slenderness reinforced concrete walls: design basis and test resultsACI Struct J1999964649661 – reference: JacobsenLSSteady forced vibrations as influenced by dampingASME Trans1930521169181 – reference: Chopra AK (2020) Dynamics of structures: theory and applications to earthquake engineering (Fifth Edition in SI Units). Harlow: Pearson Education Limited – reference: Faraone G, Hutchinson T, Piccinin R, Silva J (2020) Damage patterns in squat and flexural RC shear walls. In: Structures congress 2020, pp 687–696. Reston: American Society of Civil Engineers – reference: Benavent-Climent A, Escolano-Margarit D, Klenke A, Pujol S (2012) Failure mechanism of reinforced concrete structural walls with and without confinement. In: 15th world conference on earthquake engineering 2012. Lisboa, Portugal – reference: MontánsFJChinestaFGómez-BombarelliRKutzJNData-driven modeling and learning in science and engineeringCR Mec2019347845855 – reference: NieXWangJ-JTaoM-XFanJ-SMoYLZhangZ-YExperimental study of shear-critical reinforced-concrete shear walls under tension-bending shear-combined cyclic loadJ Struct Eng2020146504020047 – reference: DegerZTBasdoganCEmpirical equations for shear strength of conventional reinforced concrete shear wallsACI Struct J202111826171 – reference: RasmussenCENickischHGaussian processes for machine learning (GPML) toolboxJ Mach Learn Res20101130113015 – reference: ErberikMSucuoğluHAcunBInelastic displacement response of RC systems with cyclic deterioration-an energy approachJ Earthq Eng2012167937962 – reference: PriestleyMJMyths and fallacies in earthquake engineering, revisited: the Ninth Mallet Milne Lecture, 20032003PaviaIUSS press – reference: AkiyamaHEarthquake-resistant limit-state design for buildings1985TokyoThe University of Tokyo Press – reference: Ministry of Interior, Disaster and Emergency Management Authority (AFAD) (2018) TBSC-2018: Turkish Building Seismic Code-2018 – reference: Looi D, Su R (2017) Predictive seismic shear capacity model of rectangular squat RC shear walls in flexural and shear zones. In: 16th world conference on earthquake engineering. Santiago, Chile – reference: KassemWElsheikhAEstimation of shear strength of structural shear wallsJ Struct Eng20101361012151224 – reference: JeonJ-SShafieezadehADesRochesRStatistical models for shear strength of RC beam-column joints using machine-learning techniquesEarthq Eng Struct Dyn20144320752095 – reference: SongJKChunYSSongJWYangKHChangKKSeismic performance of special structural walls using overlapping hoops instead of closed hoopsJ Concrete Struct Mater201913117 – reference: National Research Council of Canada (NRCC) (2015) NBC 2015, National Building Code of Canada. Ottawa, ON, Canada: Associate Commission on the National Building Code – reference: Yan S, Zhang LF, Zhang, YG (2008) Seismic performances of high-strength concrete shear walls reinforced with high-strength rebars. In: 11th Biennial ASCE aerospace division international conference on engineering, science, construction, and operations in challenging environments, pp 1–8. Long Beach, California, USA – reference: RasmussenCEBousquetOLuxburgUVRätschGGaussian processes in machine learningAdvanced lectures on machine learning2004BerlinSpringer6775 – reference: FayyadUPiatetsky-ShapiroGSmythPFrom data mining to knowledge discovery in databasesAI Mag19961733754 – reference: Benavent-ClimentALópez-AlmansaFBravo-GonzálezDADesign energy input spectra for moderate-to-high seismicity regions based on Colombian earthquakesSoil Dyn Earthq Eng20103011291148 – reference: FarrarCRBakerWEDamping in low-aspect-ratio, reinforced concrete shear wallsEarthq Eng Struct Dyn199524439455 – reference: Jacobsen LS (1960) Damping in composite structures. In: Proceedings of second world conference on earthquake engineering, vol 2, pp 1029–1044. Tokyo and Kyoto – reference: SchulzESpeekenbrinkMKrauseAA tutorial on gaussian process regression: modelling, exploring, and exploiting functionsJ Math Psychol201885116 – reference: CSA A23.3-19 (2019) Design of concrete structures. Toronto: CSA Group – reference: PriestleyMJCalviGMKowalskyMJDisplacement based seismic design of structures20071PaviaIUSS Press – reference: ACI Committee 318 (2011) Building code requirements for structural concrete (ACI 318-11) and commentary. Farmington Hills: American Concrete Institute – reference: TrifunacMBradyAA study on the duration of strong earthquake ground motionBull Seismol Soc Am197565581626 – reference: Consuegra F, Irfanoglu A (2008) Variation of dynamic properties with displacement in a 3-story reinforced concrete flat plate structure. In: The 14th world conference on earthquake engineering. Beijing, China – reference: KowalskyMJPriestleyMJMacraeGADisplacement-based design of RC bridge columns in seismic regionsEarthq Eng Struct Dyn19952416231643 – reference: MomeniEDowlatshahiMBOmidinasabFMaizirHArmaghaniDJGaussian process regression technique to estimate the pile bearing capacityArab J Sci Eng2020382558267 – reference: YangH-KParkH-GDamping ratio of RC squat wall with limited damage under high-frequency earthquakeJ Struct Eng2021147104020295 – reference: BlandonCAPriestleyMJEquivalent viscous damping equations for direct displacement based designJ Earthq Eng200592257278 – reference: ACI Committee 318 (2014) Building code requirements for structural concrete (ACI 318-14) and Commentary (ACI 318R-14). Farmington Hills: American Concrete Institute – reference: Dwairi H (2004) Equivalent damping in support of direct displacement-based design with applications to multi-span bridges. (Doctorate thesis). North Carolina State University – reference: SheibaniMOuGThe development of Gaussian process regression for effective regional post-earthquake building damage inferenceComput-Aided Civil Infrastruct Eng20202124 – reference: HoangN-DPhamA-DNguyenQ-LPhamQ-NEstimating compressive strength of high performance concrete with gaussian process regression modelAdv Civil Eng201627744 – reference: SullivanTJHighlighting differences between force-based and displacement-based design solutions for reinforced concrete frame structuresStruct Eng Int20182122131 – reference: IwanWDEstimating inelastic response spectra from elastic spectraEarthq Eng Struct Dyn19808375388 – reference: FillibenJJThe probability plot correlation coefficient test for normalityTechnometrics1975171111117 – reference: ZhangWGGohATZhangYMMultivariate adaptive regression splines application for multivariate geotechnical problems with big dataGeotech Geol Eng201634193204 – reference: TseranidisSBrownNCMuellerCTData-driven approximation algorithms for rapid performance evaluation and optimization of civil structuresAutom Constr201672279293 – reference: American Society of Civil Engineers (ASCE) (2000) FEMA 356 prestandard and commentary for the seismic rehabilitation of buildings, prepared for the SAC joint venture. Washington, D.C.: Federal Emergency Management Agency – reference: DegerZTTaskinGA novel GPR-based prediction model for cyclic backbone curves of reinforced concrete shear wallsEng Struct2022255110 – reference: SiamAEzzeldinMEl-DakhakhniWMachine learning algorithms for structural performance classifications and predictions: application to reinforced masonry shear wallsStructures201922252265 – reference: Arciszewski T (1994) Machine learning in engineering design. In: Intelligent information systems III, pp 40–54. Wigry, Poland – reference: OrakcalKMassoneLMWallaceJWShear strength of lightly reinforced wall piers and spandrelsACI Struct J20091064455466 – reference: GulecCWhittakerASEmpirical equations for peak shear strength of low aspect ratio reinforced concrete wallsACI Struct J201110818089 – reference: DegerZTBasdoganCEmpirical expressions for deformation capacity of reinforced concrete structural wallsACI Struct J201925361 – reference: RosenbluethEHerreraIOn a kind of hysteretic dampingJ Eng Mech Div196490EM43749 – reference: HwangSJFangWHLeeHJYuHWAnalytical model for predicting shear strengthof squat wallsJ Struct Eng200112714350 – reference: European Committee for Standardization (2005) Eurocode 8: design of structures for earthquake resistance-part 3: assessment and retrofitting of buildings (EN 1998-3). Brussels: CEN – reference: LuNWNooriMLiuYFatigue reliability assessment of welded steel bridge decks under stochastic truck loads via machine learningJ Bridg Eng20172204016105 – reference: Özkaynak H (2010) The earthquake behavior of RC frames with fiber polymer confined infill walls and their structural damping properties. (Doctorate thesis). Istanbul Technical University, (in Turkish) – reference: DegerZTaskinGGlass-box model representation of seismic failure mode prediction for conventional reinforced concrete shear wallsNeural Comput Appl2022348113 – ident: 1533_CR7 – volume: 22 start-page: 04016105 year: 2017 ident: 1533_CR53 publication-title: J Bridg Eng doi: 10.1061/(ASCE)BE.1943-5592.0000982 – volume: 13 start-page: 1 year: 2019 ident: 1533_CR85 publication-title: J Concrete Struct Mater doi: 10.1186/s40069-018-0311-2 – volume: 85 start-page: 1 year: 2018 ident: 1533_CR79 publication-title: J Math Psychol doi: 10.1016/j.jmp.2018.03.001 – ident: 1533_CR18 – volume: 17 start-page: 111 issue: 1 year: 1975 ident: 1533_CR36 publication-title: Technometrics doi: 10.1080/00401706.1975.10489279 – ident: 1533_CR91 – volume: 31 start-page: 1583 year: 2002 ident: 1533_CR64 publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.177 – ident: 1533_CR33 – ident: 1533_CR52 – volume: 147 start-page: 04020295 issue: 1 year: 2021 ident: 1533_CR93 publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0002872 – ident: 1533_CR37 – ident: 1533_CR56 – volume: 29 start-page: 1957 year: 2007 ident: 1533_CR86 publication-title: Eng Struct doi: 10.1016/j.engstruct.2006.10.020 – volume: 6 start-page: 5555 year: 1996 ident: 1533_CR75 publication-title: Comput-Aided Civil Infrastruct Eng – volume: 52 start-page: 169 issue: 1 year: 1930 ident: 1533_CR46 publication-title: ASME Trans – volume: 22 start-page: 252 year: 2019 ident: 1533_CR83 publication-title: Structures doi: 10.1016/j.istruc.2019.06.017 – volume: 106 start-page: 455 issue: 4 year: 2009 ident: 1533_CR65 publication-title: ACI Struct J – volume: 3 start-page: 8255 year: 2020 ident: 1533_CR59 publication-title: Arab J Sci Eng doi: 10.1007/s13369-020-04683-4 – volume: 23 start-page: 04018033 issue: 6 year: 2018 ident: 1533_CR68 publication-title: J Bridg Eng doi: 10.1061/(ASCE)BE.1943-5592.0001199 – ident: 1533_CR43 – ident: 1533_CR66 – volume: 72 start-page: 279 year: 2016 ident: 1533_CR89 publication-title: Autom Constr doi: 10.1016/j.autcon.2016.02.002 – ident: 1533_CR28 – ident: 1533_CR81 – ident: 1533_CR47 – ident: 1533_CR4 – volume: 109 start-page: 1267 issue: 5 year: 1983 ident: 1533_CR9 publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(1983)109:5(1267) – volume: 29 start-page: 1263 year: 2007 ident: 1533_CR11 publication-title: Eng Struct doi: 10.1016/j.engstruct.2006.08.014 – volume: 17 start-page: 37 issue: 3 year: 1996 ident: 1533_CR35 publication-title: AI Mag – volume: 43 start-page: 949 year: 2014 ident: 1533_CR67 publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.2380 – volume: 118 start-page: 61 issue: 2 year: 2021 ident: 1533_CR22 publication-title: ACI Struct J – ident: 1533_CR15 – volume: 31 start-page: 539 year: 2002 ident: 1533_CR58 publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.143 – ident: 1533_CR57 – ident: 1533_CR94 – ident: 1533_CR19 – volume: 31 start-page: 1667 issue: 3 year: 2015 ident: 1533_CR25 publication-title: Earthq Spectra doi: 10.1193/011212EQS010M – ident: 1533_CR32 doi: 10.1061/9780784482896.063 – volume: 136 start-page: 1215 issue: 10 year: 2010 ident: 1533_CR50 publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0000218 – volume: 27 start-page: 23 year: 1987 ident: 1533_CR8 publication-title: Int J Man Mach Stud doi: 10.1016/S0020-7373(87)80042-1 – volume: 9 start-page: 257 issue: 2 year: 2005 ident: 1533_CR14 publication-title: J Earthq Eng doi: 10.1142/S1363246905002390 – volume: 255 start-page: 1 year: 2022 ident: 1533_CR23 publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.113874 – volume: 8 start-page: 375 year: 1980 ident: 1533_CR45 publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.4290080407 – start-page: 271 volume-title: Comprehensive structural integrity year: 2003 ident: 1533_CR70 doi: 10.1016/B0-08-043749-4/01115-0 – volume: 2 start-page: 1 year: 2020 ident: 1533_CR82 publication-title: Comput-Aided Civil Infrastruct Eng – volume: 24 start-page: 3393 year: 2020 ident: 1533_CR17 publication-title: Soft Comput doi: 10.1007/s00500-019-04103-2 – volume: 25 start-page: 1241 year: 2003 ident: 1533_CR77 publication-title: Eng Struct doi: 10.1016/S0141-0296(03)00060-9 – ident: 1533_CR5 – volume-title: Myths and fallacies in earthquake engineering, revisited: the Ninth Mallet Milne Lecture, 2003 year: 2003 ident: 1533_CR71 – ident: 1533_CR1 – volume: 90 start-page: 37 issue: EM4 year: 1964 ident: 1533_CR76 publication-title: J Eng Mech Div doi: 10.1061/JMCEA3.0000510 – volume: 12 start-page: 1153 issue: 9 year: 2016 ident: 1533_CR90 publication-title: Struct Infrastruct Eng doi: 10.1080/15732479.2015.1086386 – volume-title: Earthquake-resistant limit-state design for buildings year: 1985 ident: 1533_CR3 – ident: 1533_CR16 – ident: 1533_CR31 – volume: 34 start-page: 193 year: 2016 ident: 1533_CR95 publication-title: Geotech Geol Eng doi: 10.1007/s10706-015-9938-9 – volume: 30 start-page: 1129 year: 2010 ident: 1533_CR12 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2010.04.022 – volume: 127 start-page: 43 issue: 1 year: 2001 ident: 1533_CR44 publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(2001)127:1(43) – volume: 96 start-page: 649 issue: 4 year: 1999 ident: 1533_CR78 publication-title: ACI Struct J – volume: 43 start-page: 2075 year: 2014 ident: 1533_CR48 publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.2437 – ident: 1533_CR92 doi: 10.1061/40988(323)40 – volume: 208 start-page: 555 year: 2020 ident: 1533_CR55 publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.110331 – volume: 146 start-page: 04020047 issue: 5 year: 2020 ident: 1533_CR63 publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0002596 – volume: 2 start-page: 53 year: 2019 ident: 1533_CR21 publication-title: ACI Struct J – volume: 24 start-page: 439 year: 1995 ident: 1533_CR34 publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.4290240310 – ident: 1533_CR41 – start-page: 67 volume-title: Advanced lectures on machine learning year: 2004 ident: 1533_CR73 – ident: 1533_CR26 – volume: 24 start-page: 1623 year: 1995 ident: 1533_CR51 publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.4290241206 – ident: 1533_CR61 – volume: 108 start-page: 80 issue: 1 year: 2011 ident: 1533_CR38 publication-title: ACI Struct J – volume: 11 start-page: 3011 year: 2010 ident: 1533_CR74 publication-title: J Mach Learn Res – ident: 1533_CR13 – volume: 2 start-page: 7744 year: 2016 ident: 1533_CR40 publication-title: Adv Civil Eng – volume: 65 start-page: 581 year: 1975 ident: 1533_CR88 publication-title: Bull Seismol Soc Am doi: 10.1785/BSSA0650020307 – volume: 5 start-page: 04014030 year: 2014 ident: 1533_CR80 publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0000927 – ident: 1533_CR6 – volume: 24 start-page: 1245 issue: 8 year: 2020 ident: 1533_CR84 publication-title: J Earthq Eng doi: 10.1080/13632469.2018.1461713 – ident: 1533_CR2 – volume: 121 start-page: 845 issue: 3 year: 2019 ident: 1533_CR42 publication-title: Comput Model Eng Sci – volume: 34 start-page: 441 issue: 2 year: 2018 ident: 1533_CR10 publication-title: Earthq Spectra doi: 10.1193/102116EQS178EP – ident: 1533_CR30 – volume: 34 start-page: 1 issue: 8 year: 2022 ident: 1533_CR24 publication-title: Neural Comput Appl – volume: 2 start-page: 604 year: 1974 ident: 1533_CR39 publication-title: J Am Concr Inst – volume: 32 start-page: 04018042 issue: 5 year: 2018 ident: 1533_CR54 publication-title: J Comput Civil Eng doi: 10.1061/(ASCE)CP.1943-5487.0000787 – volume: 30 start-page: 3497 year: 2008 ident: 1533_CR20 publication-title: Eng Struct doi: 10.1016/j.engstruct.2008.05.024 – volume: 2 start-page: 122 year: 2018 ident: 1533_CR87 publication-title: Struct Eng Int – volume-title: Displacement based seismic design of structures year: 2007 ident: 1533_CR72 – volume: 347 start-page: 845 year: 2019 ident: 1533_CR60 publication-title: CR Mec doi: 10.1016/j.crme.2019.11.009 – volume: 7 start-page: 308 issue: 4 year: 1965 ident: 1533_CR62 publication-title: Comput J doi: 10.1093/comjnl/7.4.308 – ident: 1533_CR49 doi: 10.1145/1390817.1390822 – ident: 1533_CR69 – ident: 1533_CR27 – volume: 16 start-page: 937 issue: 7 year: 2012 ident: 1533_CR29 publication-title: J Earthq Eng doi: 10.1080/13632469.2012.685210 |
| SSID | ssj0025790 |
| Score | 2.358904 |
| Snippet | Energy-based seismic design is being rapidly developed and suggests that the seismic demands are met by the energy dissipation capacity of the structural... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 293 |
| SubjectTerms | Algorithms Civil Engineering Cyclic loading Cyclic loads Damping Damping capacity Damping ratio Dependent variables Design Dynamic response Earth and Environmental Science Earth Sciences Earthquake dampers Earthquakes Elasticity Energy dissipation Energy exchange Environmental Engineering/Biotechnology Equivalence Gaussian process Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Hydrogeology Kernel functions Lateral forces Learning algorithms Machine learning Mechanical properties Model accuracy Modelling Original Article Performance evaluation Prediction models Regression Regression analysis Reinforced concrete Robustness (mathematics) Seismic activity Seismic design Seismic response Shear Stocks Structural engineering Structural Geology Structural members |
| SummonAdditionalLinks | – databaseName: Springer LINK dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADb8RgoBy4QaS-0xzRxMSFCY3XblXzQpPGNtYN_j5O1rKBAAnOTa3Ij9hObH8Ap1GObkqrhDLBQhoZkVAeS0NFZGsBcp6iSTmwCdZup90uvymbwoqq2r16knQn9UKzW-yn1FafezZIockyrKC7Sy1gQ-f24SPNipm7WfFj5lFM0rtlq8z3ND67o3mM-eVZ1Hmb1ub_9rkFG2V0SS5m6rANS3qwA-sLMwd34fHalU9qUuJFPFHryBQZje2TjT38iEPHKQiGs0S_THuoi-iZiMqfbW8VcSpDhoZ0mqSweNjkLe_3iz24b13eNa9oia5AJZrdhKKUpJcIIUIdKM4VM0p7vgxZGHI_1zLwVcqUlkmqIgxydOAZxnwjwkjEDNO0cB9qg-FAHwCx3bUaMw-eK9u6yjCH40geY6Ocm0BEdfArJmeyHD1uETD62XxosmVahkzLHNOypA5nH_-MZoM3fl3dqGSXlUZYZAFKP7IJJa_DeSWr-eefqR3-bfkRrFkQ-tnFTANqk_FUH8OqfJ30ivGJU853pFrcUw priority: 102 providerName: Springer Nature |
| Title | Machine learning-based predictive models for equivalent damping ratio of RC shear walls |
| URI | https://link.springer.com/article/10.1007/s10518-022-01533-6 https://www.proquest.com/docview/2761428999 |
| Volume | 21 |
| WOSCitedRecordID | wos000868965900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1573-1456 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0025790 issn: 1570-761X databaseCode: PCBAR dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-1456 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0025790 issn: 1570-761X databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1573-1456 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0025790 issn: 1570-761X databaseCode: PATMY dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-1456 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0025790 issn: 1570-761X databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1573-1456 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0025790 issn: 1570-761X databaseCode: M2P dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-1456 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025790 issn: 1570-761X databaseCode: RSV dateStart: 20030101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07TwMxDLagMMDAG1EoKAMbRNyrl2ZCgEAsVFV5dTtdHocqlbb0Cvx97DSlgAQLS5Y8dBc78SO2P4DDJEcxZU3KhRIxTwqVclnXBVcJxQLksoFHyoFNiGaz0enIlne4lT6scnonuovaDDT5yE8itLcTsg7k6fCFE2oUva56CI15WEDNJqSQrpuo9Wlw1YXzsYR1EXCc3vFJMz51DsdzimUPSOXh6XfBNNM2fzyQOrlztfrfL16DFa9xsrMJi6zDnO1vwPKXOoSb8HjjQiot8xgST5yEm2HDET3j0IXIHGJOyVDFZfbltYv8idKKmfyZ8q2YYyM2KFj7gpWEkc3e816v3IL7q8u7i2vuERe4xqM45kg5HaRKqdhGRkojCmODUMcijmWYWx2FpiGM1WnDJKj42CgohAgLFSeqLvBX422o9Ad9uwOMMm4tWiMyN5TOKmgfcHnUl3JZRCqpQjjd7kz7cuSEitHLZoWUiUQZkihzJMrSKhx9zhlOinH8Obo2pUvmD2aZzYhSheMpZWfdv6-2-_dqe7BEQPQT50wNKuPRq92HRf027pajA1g4v2y22geOPakVt9i2bx8-AOMi6kM |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xqER74F11Wyg-0BO1SJyH40OFEA-BgBWqQN1biB9BSNvdZbMU9U_1N3bGm7AUCW4cek4ycuxvPDP2zHwAm3GBZsrZlEstIx6XOuUqMSXXMeUCFCpDlfJkE7LdzjoddT4Ff5paGEqrbPZEv1HbvqEz8m2B8XZM0YHaGdxyYo2i29WGQmMMixP3-x5Dturb8T6u7xchDg8u9o54zSrADcJtxHF0Jki11pETVikrS-uC0EQyilRYOCNCm0nrTJrZGI27E0EpZVjqKNaJxAFEKHcaZmPqLEapguL8IcBLpD_TCRMZcBxupy7SqUv1kjDjlDsfkIvF038N4cS7fXIh6-3c4cL_NkOLMF971Gx3rAJLMOV6y_DuUZ_FFfhx5lNGHas5Mq45GW_LBkO6pqINn3lGoIqhC8_c7d0N6h9aY2aLn1RPxryasH7Jvu-xijjA2X3R7VarcPkqf_YeZnr9nvsAjCqKHUZbqrBUritp3lE8-oOFKoWOWxA2y5ubut06sX5080mjaIJEjpDIPSTytAVbD98Mxs1GXnx7rcFBXm88VT4BQQu-NkiaPH5e2seXpW3A3NHF2Wl-etw--QRvBbp644OoNZgZDe_cOrwxv0Y31fCzVwkGV6-NsL862UPy |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RUFVwgD5AhEe7h_bUrvB7vQeEeEVFQBShVs3NeB9GSCEJcQDx1_h1zDhrUirBjUPPXo_W3m92ZnZn5gP4GuVopqxJuFAi5FGhEi5jXXAVUS5ALlNUqYpsQrTbabcrOzNwX9fCUFplvSdWG7UZaDoj3www3o4oOpCbhUuL6Oy3todXnBik6Ka1ptOYQOTI3t1i-FZuHe7jWn8LgtbBr72f3DEMcI3QG3OcqfYSpVRoAyOlEYWxnq9DEYbSz60OfJMKY3WSmggNvQ28Qgi_UGGkYoGTCVHuG5gV6GREDZjdPWh3Th_DvVhUJzx-LDyOk--6kh1XuBf7KadMeo8cLp48NYtTX_ef69nK6rUW_-f_9R4WnK_NdibK8QFmbP8jzP_VgfET_Dmpkkktc-wZ55zMumHDEV1gkSlgFVdQydC5Z_bq-gI1E-00M_klVZqxSoHYoGCne6wkdnB2m_d65RL8fpUvW4ZGf9C3K8Co1thiHCZzQ4W8gtYAxaOnmMsiUFET_HqpM-0asRMfSC-btpAmeGQIj6yCR5Y04fvjO8NJG5IXR6_XmMjcllRmU0A04UeNqunj56WtviztC7xDYGXHh-2jNZgL0AecnFCtQ2M8urYb8FbfjC_K0WenHwzOXhtiD9UVTgw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+predictive+models+for+equivalent+damping+ratio+of+RC+shear+walls&rft.jtitle=Bulletin+of+earthquake+engineering&rft.au=Yaghoubi%2C+Siamak+Tahaei&rft.au=Deger%2C+Zeynep+Tuna&rft.au=Taskin%2C+Gulsen&rft.au=Sutcu%2C+Fatih&rft.date=2023-01-01&rft.issn=1570-761X&rft.eissn=1573-1456&rft.volume=21&rft.issue=1&rft.spage=293&rft.epage=318&rft_id=info:doi/10.1007%2Fs10518-022-01533-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10518_022_01533_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-761X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-761X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-761X&client=summon |