Machine learning-based predictive models for equivalent damping ratio of RC shear walls

Energy-based seismic design is being rapidly developed and suggests that the seismic demands are met by the energy dissipation capacity of the structural members. Equivalent damping ratio is a measure of energy dissipation in structural members that accounts for the post-elastic behavior of the memb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of earthquake engineering Jg. 21; H. 1; S. 293 - 318
Hauptverfasser: Yaghoubi, Siamak Tahaei, Deger, Zeynep Tuna, Taskin, Gulsen, Sutcu, Fatih
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.01.2023
Springer Nature B.V
Schlagworte:
ISSN:1570-761X, 1573-1456
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Energy-based seismic design is being rapidly developed and suggests that the seismic demands are met by the energy dissipation capacity of the structural members. Equivalent damping ratio is a measure of energy dissipation in structural members that accounts for the post-elastic behavior of the member and provides insight regarding the dynamic response reduction during a seismic event. The present study implements a machine learning algorithm to estimate the equivalent damping ratio in reinforced concrete shear walls at displacements corresponding to a 1.0% lateral drift ratio. Five different machine learning models, namely, Robust Linear Regression, K-Nearest Neighbor Regression, Kernel Ridge Regression, Support Vector Regression, and Gaussian process regression were evaluated in order to choose the model with the highest accuracy. Among all models, Gaussian process regression, a machine learning method with successful implementation experiences in civil/structural engineering related problems, is selected to identify the equivalent damping ratio. The developed GPR-based algorithm uses a database of 161 rectangular shear walls subjected to quasi-static reversed cyclic loading with geometry and mechanical properties commonly found in building stocks of many earthquake-prone countries. The proposed algorithm estimates the equivalent damping ratio for each specimen by predicting the cyclic dissipated energy and lateral force values as two dependent variables. The model validation results show a mean coefficient of determination (R 2 ) of about 0.89; a relative root mean square error of about 0.14 and a mean absolute percentage error of 10.44%, which is considered a substantially accurate prediction for such a complex problem. An open-source model and the entire database are provided which can be used by researchers and also design engineers. The proposed predictive model enables comparing the damping capacity of shear walls and the outcomes of this study are believed to contribute to the energy-based design or performance evaluation procedures in terms of predicting the energy capacity of shear walls.
AbstractList Energy-based seismic design is being rapidly developed and suggests that the seismic demands are met by the energy dissipation capacity of the structural members. Equivalent damping ratio is a measure of energy dissipation in structural members that accounts for the post-elastic behavior of the member and provides insight regarding the dynamic response reduction during a seismic event. The present study implements a machine learning algorithm to estimate the equivalent damping ratio in reinforced concrete shear walls at displacements corresponding to a 1.0% lateral drift ratio. Five different machine learning models, namely, Robust Linear Regression, K-Nearest Neighbor Regression, Kernel Ridge Regression, Support Vector Regression, and Gaussian process regression were evaluated in order to choose the model with the highest accuracy. Among all models, Gaussian process regression, a machine learning method with successful implementation experiences in civil/structural engineering related problems, is selected to identify the equivalent damping ratio. The developed GPR-based algorithm uses a database of 161 rectangular shear walls subjected to quasi-static reversed cyclic loading with geometry and mechanical properties commonly found in building stocks of many earthquake-prone countries. The proposed algorithm estimates the equivalent damping ratio for each specimen by predicting the cyclic dissipated energy and lateral force values as two dependent variables. The model validation results show a mean coefficient of determination (R2) of about 0.89; a relative root mean square error of about 0.14 and a mean absolute percentage error of 10.44%, which is considered a substantially accurate prediction for such a complex problem. An open-source model and the entire database are provided which can be used by researchers and also design engineers. The proposed predictive model enables comparing the damping capacity of shear walls and the outcomes of this study are believed to contribute to the energy-based design or performance evaluation procedures in terms of predicting the energy capacity of shear walls.
Energy-based seismic design is being rapidly developed and suggests that the seismic demands are met by the energy dissipation capacity of the structural members. Equivalent damping ratio is a measure of energy dissipation in structural members that accounts for the post-elastic behavior of the member and provides insight regarding the dynamic response reduction during a seismic event. The present study implements a machine learning algorithm to estimate the equivalent damping ratio in reinforced concrete shear walls at displacements corresponding to a 1.0% lateral drift ratio. Five different machine learning models, namely, Robust Linear Regression, K-Nearest Neighbor Regression, Kernel Ridge Regression, Support Vector Regression, and Gaussian process regression were evaluated in order to choose the model with the highest accuracy. Among all models, Gaussian process regression, a machine learning method with successful implementation experiences in civil/structural engineering related problems, is selected to identify the equivalent damping ratio. The developed GPR-based algorithm uses a database of 161 rectangular shear walls subjected to quasi-static reversed cyclic loading with geometry and mechanical properties commonly found in building stocks of many earthquake-prone countries. The proposed algorithm estimates the equivalent damping ratio for each specimen by predicting the cyclic dissipated energy and lateral force values as two dependent variables. The model validation results show a mean coefficient of determination (R 2 ) of about 0.89; a relative root mean square error of about 0.14 and a mean absolute percentage error of 10.44%, which is considered a substantially accurate prediction for such a complex problem. An open-source model and the entire database are provided which can be used by researchers and also design engineers. The proposed predictive model enables comparing the damping capacity of shear walls and the outcomes of this study are believed to contribute to the energy-based design or performance evaluation procedures in terms of predicting the energy capacity of shear walls.
Author Taskin, Gulsen
Sutcu, Fatih
Yaghoubi, Siamak Tahaei
Deger, Zeynep Tuna
Author_xml – sequence: 1
  givenname: Siamak Tahaei
  surname: Yaghoubi
  fullname: Yaghoubi, Siamak Tahaei
  organization: Earthquake Engineering and Disaster Management Institute, Istanbul Technical University
– sequence: 2
  givenname: Zeynep Tuna
  surname: Deger
  fullname: Deger, Zeynep Tuna
  organization: Earthquake Engineering and Disaster Management Institute, Istanbul Technical University
– sequence: 3
  givenname: Gulsen
  surname: Taskin
  fullname: Taskin, Gulsen
  organization: Earthquake Engineering and Disaster Management Institute, Istanbul Technical University
– sequence: 4
  givenname: Fatih
  orcidid: 0000-0002-7997-9842
  surname: Sutcu
  fullname: Sutcu, Fatih
  email: fatih.sutcu@itu.edu.tr
  organization: Faculty of Civil Engineering, Istanbul Technical University
BookMark eNp9kF1LwzAUhoNMcJv-Aa8CXkfz0TbtpQy_YCKIonchTU63jC7tkm7iv7dbBcGLXZ1z8Tzn452gkW88IHTJ6DWjVN5ERlOWE8o5oSwVgmQnaMxSKQhL0mx06CmRGfs8Q5MYV5TyVBZ0jD6etVk6D7gGHbzzC1LqCBa3AawzndsBXjcW6oirJmDYbN1O1-A7bPW67XEcdOca3FT4dYbjsh-Cv3Rdx3N0Wuk6wsVvnaL3-7u32SOZvzw8zW7nxAhWdCTR0tCsLEsB3BaFlZUFyoyQQhRMg-HM5tKCyXKbSC6B00pKVpUiKVPJ80JM0dUwtw3NZguxU6tmG3y_UvH-3aRnij2VD5QJTYwBKmVctz_cd0G7WjGq9jGqIUbVx6gOMaqsV_k_tQ1urcP3cUkMUuxhv4Dwd9UR6wdrxYdb
CitedBy_id crossref_primary_10_1177_13694332231174252
crossref_primary_10_3390_math11041021
crossref_primary_10_35414_akufemubid_1541763
crossref_primary_10_1007_s11831_025_10288_7
crossref_primary_10_1016_j_cscm_2024_e03183
crossref_primary_10_1016_j_engstruct_2025_120326
crossref_primary_10_1016_j_engstruct_2025_120721
crossref_primary_10_1080_13632469_2024_2335561
Cites_doi 10.1061/(ASCE)BE.1943-5592.0000982
10.1186/s40069-018-0311-2
10.1016/j.jmp.2018.03.001
10.1080/00401706.1975.10489279
10.1002/eqe.177
10.1061/(ASCE)ST.1943-541X.0002872
10.1016/j.engstruct.2006.10.020
10.1016/j.istruc.2019.06.017
10.1007/s13369-020-04683-4
10.1061/(ASCE)BE.1943-5592.0001199
10.1016/j.autcon.2016.02.002
10.1061/(ASCE)0733-9445(1983)109:5(1267)
10.1016/j.engstruct.2006.08.014
10.1002/eqe.2380
10.1002/eqe.143
10.1193/011212EQS010M
10.1061/9780784482896.063
10.1061/(ASCE)ST.1943-541X.0000218
10.1016/S0020-7373(87)80042-1
10.1142/S1363246905002390
10.1016/j.engstruct.2022.113874
10.1002/eqe.4290080407
10.1016/B0-08-043749-4/01115-0
10.1007/s00500-019-04103-2
10.1016/S0141-0296(03)00060-9
10.1061/JMCEA3.0000510
10.1080/15732479.2015.1086386
10.1007/s10706-015-9938-9
10.1016/j.soildyn.2010.04.022
10.1061/(ASCE)0733-9445(2001)127:1(43)
10.1002/eqe.2437
10.1061/40988(323)40
10.1016/j.engstruct.2020.110331
10.1061/(ASCE)ST.1943-541X.0002596
10.1002/eqe.4290240310
10.1002/eqe.4290241206
10.1785/BSSA0650020307
10.1061/(ASCE)ST.1943-541X.0000927
10.1080/13632469.2018.1461713
10.1193/102116EQS178EP
10.1061/(ASCE)CP.1943-5487.0000787
10.1016/j.engstruct.2008.05.024
10.1016/j.crme.2019.11.009
10.1093/comjnl/7.4.308
10.1145/1390817.1390822
10.1080/13632469.2012.685210
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7ST
7TG
7TN
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M2P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
DOI 10.1007/s10518-022-01533-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1456
EndPage 318
ExternalDocumentID 10_1007_s10518_022_01533_6
GrantInformation_xml – fundername: Türkiye Bilimsel ve Teknolojik Araştirma Kurumu
  grantid: 218M535
  funderid: http://dx.doi.org/10.13039/501100004410
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
23N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67M
67Z
6J9
6NX
7XC
88I
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
L6V
L8X
LAK
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PTHSS
PYCSY
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z85
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7ST
7TG
7TN
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H96
KL.
KR7
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
ID FETCH-LOGICAL-c319t-4a7c06bbb3e2d99d7fde01c373391aec21d87dec68d4727e20f771fb34b572893
IEDL.DBID M2P
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000868965900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1570-761X
IngestDate Sat Nov 08 14:37:33 EST 2025
Sat Nov 29 02:59:29 EST 2025
Tue Nov 18 21:25:26 EST 2025
Fri Feb 21 02:46:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gaussian process regression
Reinforced concrete shear walls
Equivalent damping ratio
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-4a7c06bbb3e2d99d7fde01c373391aec21d87dec68d4727e20f771fb34b572893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7997-9842
PQID 2761428999
PQPubID 55380
PageCount 26
ParticipantIDs proquest_journals_2761428999
crossref_citationtrail_10_1007_s10518_022_01533_6
crossref_primary_10_1007_s10518_022_01533_6
springer_journals_10_1007_s10518_022_01533_6
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle Official Publication of the European Association for Earthquake Engineering
PublicationTitle Bulletin of earthquake engineering
PublicationTitleAbbrev Bull Earthquake Eng
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References DegerZTBasdoganCEmpirical equations for shear strength of conventional reinforced concrete shear wallsACI Struct J202111826171
Looi D, Su R (2017) Predictive seismic shear capacity model of rectangular squat RC shear walls in flexural and shear zones. In: 16th world conference on earthquake engineering. Santiago, Chile
MangalathuSJangHHwangS-HJeonJ-SData-driven machine-learning-based seismic failure mode identification of reinforced concrete shear wallsEng Struct2020208555
MomeniEDowlatshahiMBOmidinasabFMaizirHArmaghaniDJGaussian process regression technique to estimate the pile bearing capacityArab J Sci Eng2020382558267
OhY-HHanSWLeeL-HEffect of boundary element details on the seismic deformation capacity of structural wallsEarthq Eng Struct Dyn20023115831602
Applied Technology Council (1985) ATC-13, earthquake damage evaluation data for California. Redwood City, CA
Consuegra F, Irfanoglu A (2008) Variation of dynamic properties with displacement in a 3-story reinforced concrete flat plate structure. In: The 14th world conference on earthquake engineering. Beijing, China
GulkanPSozenMInelastic responses of reinforced concrete structures to earthquake motionsJ Am Concr Inst19742604610
Yan S, Zhang LF, Zhang, YG (2008) Seismic performances of high-strength concrete shear walls reinforced with high-strength rebars. In: 11th Biennial ASCE aerospace division international conference on engineering, science, construction, and operations in challenging environments, pp 1–8. Long Beach, California, USA
ArciszewskiTMustafaMZairkoWA methodology of design knowledge acquisition for use in learning expert systemsInt J Man Mach Stud1987272332
ArroyoOBarrosJRamosLComparison of the reinforced-concrete seismic provisions of the design codes of the United States, Colombia, and ecuador for low-rise framesEarthq Spectra2018342441458
HuangYLiJFuJReview on application of artificial intelligence in civil engineeringComput Model Eng Sci20191213845875
Chopra AK (2020) Dynamics of structures: theory and applications to earthquake engineering (Fifth Edition in SI Units). Harlow: Pearson Education Limited
Park H, Eom T (2004) Energy dissipation capacity of reinforced concrete members. In: CTBUH 2004 Seoul conference, pp 378–384. Seoul, South Korea: Council on Tall Buildings and Urban Habitat
Dwairi H (2004) Equivalent damping in support of direct displacement-based design with applications to multi-span bridges. (Doctorate thesis). North Carolina State University
NelderJAMeadRA simplex method for function minimizationComput J196574308313
OzkaynakHYukselEYalcinCDindarAABuyukozturkOMasonry infill walls in reinforced concrete frames as a source of structural dampingEarthq Eng Struct Dyn201443949968
FillibenJJThe probability plot correlation coefficient test for normalityTechnometrics1975171111117
PriestleyMJCalviGMKowalskyMJDisplacement based seismic design of structures20071PaviaIUSS Press
SenguptaPLiBHysteresis behavior of reinforced concrete wallsJ Struct Eng2014504014030
SiamAEzzeldinMEl-DakhakhniWMachine learning algorithms for structural performance classifications and predictions: application to reinforced masonry shear wallsStructures201922252265
OrakcalKMassoneLMWallaceJWShear strength of lightly reinforced wall piers and spandrelsACI Struct J20091064455466
Wallace JW (2012) Performance of structural walls in recent earthquakes and tests and implications for US building codes. In: 15th world conference on. earthquake engineering. Lisbon, Portugal
AkiyamaHEarthquake-resistant limit-state design for buildings1985TokyoThe University of Tokyo Press
Benavent-ClimentALópez-AlmansaFBravo-GonzálezDADesign energy input spectra for moderate-to-high seismicity regions based on Colombian earthquakesSoil Dyn Earthq Eng20103011291148
Jacobsen LS (1960) Damping in composite structures. In: Proceedings of second world conference on earthquake engineering, vol 2, pp 1029–1044. Tokyo and Kyoto
ChouJ-SPhamT-P-TNguyenT-KPhamA-DNgoN-TShear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning modelsSoft Comput20202433933411
ACI Committee 318 (2011) Building code requirements for structural concrete (ACI 318-11) and commentary. Farmington Hills: American Concrete Institute
LuoHPaalSGMachine learning-based backbone curve model of reinforced concrete columns subjected to cyclic loading reversalsJ Comput Civil Eng201832504018042
ACI Committee 318 (2014) Building code requirements for structural concrete (ACI 318-14) and Commentary (ACI 318R-14). Farmington Hills: American Concrete Institute
Shegay A, Motter C, Henry R, Elwood K (2015) A database for investigating NZS3101 structural wall provisions. In: Proceedings of the tenth Pacific conference on earthquake engineering. Sydney, Australia
Housner G (1956) Limit design of structures to resist earthquakes. In: Proceedings of the 1st world conference on earthquake engineering, pp 186–198. Berkeley: IAEE
SheibaniMOuGThe development of Gaussian process regression for effective regional post-earthquake building damage inferenceComput-Aided Civil Infrastruct Eng20202124
DindarAACYYükselEÖzkaynakHBüyüköztürkODevelopment of earthquake energy demand spectraEarthq Spectra201531316671689
DegerZTBasdoganCEmpirical expressions for deformation capacity of reinforced concrete structural wallsACI Struct J201925361
SullivanTJHighlighting differences between force-based and displacement-based design solutions for reinforced concrete frame structuresStruct Eng Int20182122131
Fardis M, Panagiotakos T (1996) Hysteretic damping of reinforced concrete elements. In: Eleventh world conference on earthquake engineering. Acapulco: Elsevier Science Ltd, Paper No 464
Hudson DE (1965) Equivalent viscous friction for hysteretic systems with earthquake-like excitations. In: 3rd world conference on earthquake engineering, pp II-185/II-201. New Zealand
RosenbluethEHerreraIOn a kind of hysteretic dampingJ Eng Mech Div196490EM43749
PanHAzimiMYanFLinZBTime-frequency-based data-driven structural diagnosis and damage detection for cable-stayed bridgesJ Bridg Eng201823604018033
Buttmann P (1983) Experimental determination of damping factors for walls of masonry and reinforced concrete. In: Transactions of the 7th international conference on structural mechanics in reactor technology, pp 507–511. Chicago: Amsterdam : North-Holland Physics Publishing for the Commission of the European Communities
JacobsenLSSteady forced vibrations as influenced by dampingASME Trans1930521169181
KassemWElsheikhAEstimation of shear strength of structural shear wallsJ Struct Eng20101361012151224
TseranidisSBrownNCMuellerCTData-driven approximation algorithms for rapid performance evaluation and optimization of civil structuresAutom Constr201672279293
Faraone G, Hutchinson T, Piccinin R, Silva J (2020) Damage patterns in squat and flexural RC shear walls. In: Structures congress 2020, pp 687–696. Reston: American Society of Civil Engineers
DegerZTTaskinGA novel GPR-based prediction model for cyclic backbone curves of reinforced concrete shear wallsEng Struct2022255110
MirandaERuiz-GarciaJEvaluation of approximate methods to estimate maximum inelastic displacement demandsEarthq Eng Struct Dyn200231539560
NieXWangJ-JTaoM-XFanJ-SMoYLZhangZ-YExperimental study of shear-critical reinforced-concrete shear walls under tension-bending shear-combined cyclic loadJ Struct Eng2020146504020047
American Society of Civil Engineers (ASCE) (2000) FEMA 356 prestandard and commentary for the seismic rehabilitation of buildings, prepared for the SAC joint venture. Washington, D.C.: Federal Emergency Management Agency
ErberikMSucuoğluHAcunBInelastic displacement response of RC systems with cyclic deterioration-an energy approachJ Earthq Eng2012167937962
JeonJ-SShafieezadehADesRochesRStatistical models for shear strength of RC beam-column joints using machine-learning techniquesEarthq Eng Struct Dyn20144320752095
SalonikiosTNKapposAJTegosIAPenelisGGCyclic load behavior of low-slenderness reinforced concrete walls: design basis and test resultsACI Struct J1999964649661
HoangN-DPhamA-DNguyenQ-LPhamQ-NEstimating compressive strength of high performance concrete with gaussian process regression modelAdv Civil Eng201627744
IwanWDEstimating inelastic response spectra from elastic spectraEarthq Eng Struct Dyn19808375388
CuradelliRRieraJAmbrosiniDAmaniMDamage detection by means of structural damping identificationEng Struct20083034973504
RasmussenCEBousquetOLuxburgUVRätschGGaussian processes in machine learningAdvanced lectures on machine learning2004BerlinSpringer6775
YangH-KParkH-GDamping ratio of RC squat wall with limited damage under high-frequency earthquakeJ Struct Eng2021147104020295
CSA A23.3-19 (2019) Design of concrete structures. Toronto: CSA Group
FayyadUPiatetsky-ShapiroGSmythPFrom data mining to knowledge discovery in databasesAI Mag19961733754
Özkaynak H (2010) The earthquake behavior of RC frames with fiber polymer confined infill walls and their structural damping properties. (Doctorate thesis). Istanbul Technical University, (in Turkish)
National Research Council of Canada (NRCC) (2015) NBC 2015, National Building Code of Canada. Ottawa, ON, Canada: Associate Commission on the National Building Code
TrifunacMBradyAA study on the duration of strong earthquake ground motionBull Seismol Soc Am197565581626
GulecCWhittakerASEmpirical equations for peak shear strength of low aspect ratio reinforced concrete wallsACI Struct J201110818089
FarrarCRBakerWEDamping in low-aspect-ratio, reinforced concrete shear wallsEarthq Eng Struct Dyn199524439455
BelmoudenYLestuzziPAnalytical model for predicting nonlinear reversed cyclic behaviour of reinforced concrete structural wallsEng Struct20072912631276
Zaharia R, Taucer F (2008) Equivalent period and damping for EC8 spectral response of SDOF ring-spring hysteretic models. Italy
SuRKWongSMSeismic behaviour of slender reinforced concrete shear walls under high axial load ratioEng Struct20072919571965
Benavent-Climent A, Escolano-Margarit D, Klenke A, Pujol S (2012)
N-D Hoang (1533_CR40) 2016; 2
M Sheibani (1533_CR82) 2020; 2
I Song (1533_CR84) 2020; 24
ZT Deger (1533_CR23) 2022; 255
CR Farrar (1533_CR34) 1995; 24
1533_CR30
JA Nelder (1533_CR62) 1965; 7
A Benavent-Climent (1533_CR12) 2010; 30
Z Deger (1533_CR24) 2022; 34
P Gulkan (1533_CR39) 1974; 2
1533_CR37
1533_CR33
H Akiyama (1533_CR3) 1985
LS Jacobsen (1533_CR46) 1930; 52
1533_CR31
WG Zhang (1533_CR95) 2016; 34
1533_CR32
CA Blandon (1533_CR14) 2005; 9
1533_CR1
E Rosenblueth (1533_CR76) 1964; 90
M Trifunac (1533_CR88) 1975; 65
S Tseranidis (1533_CR89) 2016; 72
H Luo (1533_CR54) 2018; 32
1533_CR28
1533_CR7
1533_CR6
RK Su (1533_CR86) 2007; 29
1533_CR2
CE Rasmussen (1533_CR73) 2004
1533_CR5
TN Salonikios (1533_CR78) 1999; 96
1533_CR4
FJ Montáns (1533_CR60) 2019; 347
1533_CR61
X Nie (1533_CR63) 2020; 146
J-S Jeon (1533_CR48) 2014; 43
T Rossetto (1533_CR77) 2003; 25
1533_CR26
1533_CR27
SJ Hwang (1533_CR44) 2001; 127
H Pan (1533_CR68) 2018; 23
1533_CR69
R Park (1533_CR70) 2003
1533_CR66
AACY Dindar (1533_CR25) 2015; 31
ZT Deger (1533_CR21) 2019; 2
1533_CR19
1533_CR18
NW Lu (1533_CR53) 2017; 22
J-S Chou (1533_CR17) 2020; 24
W Kassem (1533_CR50) 2010; 136
JK Song (1533_CR85) 2019; 13
T Arciszewski (1533_CR8) 1987; 27
JD Aristizabal-Ochoa (1533_CR9) 1983; 109
K Orakcal (1533_CR65) 2009; 106
1533_CR52
Y-H Oh (1533_CR64) 2002; 31
D-T Vu (1533_CR90) 2016; 12
1533_CR94
U Fayyad (1533_CR35) 1996; 17
1533_CR91
1533_CR92
MJ Kowalsky (1533_CR51) 1995; 24
MJ Priestley (1533_CR71) 2003
1533_CR15
1533_CR16
1533_CR13
1533_CR57
1533_CR56
Y Huang (1533_CR42) 2019; 121
S Mangalathu (1533_CR55) 2020; 208
P Sengupta (1533_CR80) 2014; 5
R Curadelli (1533_CR20) 2008; 30
Y Belmouden (1533_CR11) 2007; 29
A Siam (1533_CR83) 2019; 22
C Gulec (1533_CR38) 2011; 108
TJ Sullivan (1533_CR87) 2018; 2
ZT Deger (1533_CR22) 2021; 118
E Miranda (1533_CR58) 2002; 31
M Erberik (1533_CR29) 2012; 16
1533_CR41
H Ozkaynak (1533_CR67) 2014; 43
CE Rasmussen (1533_CR74) 2010; 11
Y Reich (1533_CR75) 1996; 6
1533_CR81
WD Iwan (1533_CR45) 1980; 8
H-K Yang (1533_CR93) 2021; 147
E Momeni (1533_CR59) 2020; 3
E Schulz (1533_CR79) 2018; 85
O Arroyo (1533_CR10) 2018; 34
1533_CR49
1533_CR47
MJ Priestley (1533_CR72) 2007
JJ Filliben (1533_CR36) 1975; 17
1533_CR43
References_xml – reference: American Society of Civil Engineers (2016) ASCE/SEI 7-16, minimum design loads and associated criteria for buildings and other structures. Reston, Virginia
– reference: HuangYLiJFuJReview on application of artificial intelligence in civil engineeringComput Model Eng Sci20191213845875
– reference: LuoHPaalSGMachine learning-based backbone curve model of reinforced concrete columns subjected to cyclic loading reversalsJ Comput Civil Eng201832504018042
– reference: BelmoudenYLestuzziPAnalytical model for predicting nonlinear reversed cyclic behaviour of reinforced concrete structural wallsEng Struct20072912631276
– reference: SuRKWongSMSeismic behaviour of slender reinforced concrete shear walls under high axial load ratioEng Struct20072919571965
– reference: Wallace JW (2012) Performance of structural walls in recent earthquakes and tests and implications for US building codes. In: 15th world conference on. earthquake engineering. Lisbon, Portugal
– reference: RossettoTElnashaiADerivation of vulnerability functions for European-type RC structures based on observational dataEng Struct20032512411263
– reference: Zaharia R, Taucer F (2008) Equivalent period and damping for EC8 spectral response of SDOF ring-spring hysteretic models. Italy
– reference: Shegay A, Motter C, Henry R, Elwood K (2015) A database for investigating NZS3101 structural wall provisions. In: Proceedings of the tenth Pacific conference on earthquake engineering. Sydney, Australia
– reference: ChouJ-SPhamT-P-TNguyenT-KPhamA-DNgoN-TShear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning modelsSoft Comput20202433933411
– reference: Hudson DE (1965) Equivalent viscous friction for hysteretic systems with earthquake-like excitations. In: 3rd world conference on earthquake engineering, pp II-185/II-201. New Zealand
– reference: Jiang Y, Cukic B, Menzies T (2008) Can data transformation help in the detection of fault-prone modules? In: Proceedings of the 2008 workshop on defects in large software systems-DEFECTS '08, pp 16–20. Seattle: ACM Press
– reference: Fardis M, Panagiotakos T (1996) Hysteretic damping of reinforced concrete elements. In: Eleventh world conference on earthquake engineering. Acapulco: Elsevier Science Ltd, Paper No 464
– reference: ParkRMilneIRitchieRKarihalooBEarthquake resistant structuresComprehensive structural integrity2003LondonElsevier Science Ltd.271303
– reference: Ghobarah A (2004) On drift limits associated with different damage levels. In: International workshop on performance-based seismic design. Ontario: Department of Civil Engineering, McMaster University
– reference: ReichYMachine learning techniques for civil engineering problemsComput-Aided Civil Infrastruct Eng199665555
– reference: MangalathuSJangHHwangS-HJeonJ-SData-driven machine-learning-based seismic failure mode identification of reinforced concrete shear wallsEng Struct2020208555
– reference: ArroyoOBarrosJRamosLComparison of the reinforced-concrete seismic provisions of the design codes of the United States, Colombia, and ecuador for low-rise framesEarthq Spectra2018342441458
– reference: Ebden M (2008) Gaussian processes for regression: a quick introduction. Retrieved from http://ftp.tuebingen.mpg.de/pub/ebio/chrisd/GPtutorial.pdf
– reference: OhY-HHanSWLeeL-HEffect of boundary element details on the seismic deformation capacity of structural wallsEarthq Eng Struct Dyn20023115831602
– reference: Aristizabal-OchoaJDCracking and shear effects on structural wallsJ Struct Eng1983109512671277
– reference: CuradelliRRieraJAmbrosiniDAmaniMDamage detection by means of structural damping identificationEng Struct20083034973504
– reference: Ministerio de Ambiente V and NSR-10 DT (2010) Reglamento Colombiano De Construcción Sismo Resistente. Bogota
– reference: Housner G (1956) Limit design of structures to resist earthquakes. In: Proceedings of the 1st world conference on earthquake engineering, pp 186–198. Berkeley: IAEE
– reference: PanHAzimiMYanFLinZBTime-frequency-based data-driven structural diagnosis and damage detection for cable-stayed bridgesJ Bridg Eng201823604018033
– reference: Dwairi H, Kowalsky M (2004) Investigation of Jacobsen's equivalent viscous damping approach as applied to displacement-based seismic design. In: 13th world conference on earthquake engineering. Vancouver, Canada
– reference: NelderJAMeadRA simplex method for function minimizationComput J196574308313
– reference: SenguptaPLiBHysteresis behavior of reinforced concrete wallsJ Struct Eng2014504014030
– reference: SongIChoIHWongRKAn advanced statistical approach to data-driven earthquake engineeringJ Earthq Eng202024812451269
– reference: European Committee for Standardization (2004) Eurocode 8: design of structures for earthquake resistance-part 1: general rules, seismic actions and rules for buildings (EN 1998-1). Brussels: CEN
– reference: OzkaynakHYukselEYalcinCDindarAABuyukozturkOMasonry infill walls in reinforced concrete frames as a source of structural dampingEarthq Eng Struct Dyn201443949968
– reference: MirandaERuiz-GarciaJEvaluation of approximate methods to estimate maximum inelastic displacement demandsEarthq Eng Struct Dyn200231539560
– reference: VuD-THoangN-DPunching shear capacity estimation of FRP-reinforced concrete slabs using a hybrid machine learning approachStruct Infrastruct Eng201612911531161
– reference: Applied Technology Council (1985) ATC-13, earthquake damage evaluation data for California. Redwood City, CA
– reference: DindarAACYYükselEÖzkaynakHBüyüköztürkODevelopment of earthquake energy demand spectraEarthq Spectra201531316671689
– reference: ArciszewskiTMustafaMZairkoWA methodology of design knowledge acquisition for use in learning expert systemsInt J Man Mach Stud1987272332
– reference: GulkanPSozenMInelastic responses of reinforced concrete structures to earthquake motionsJ Am Concr Inst19742604610
– reference: Buttmann P (1983) Experimental determination of damping factors for walls of masonry and reinforced concrete. In: Transactions of the 7th international conference on structural mechanics in reactor technology, pp 507–511. Chicago: Amsterdam : North-Holland Physics Publishing for the Commission of the European Communities
– reference: Park H, Eom T (2004) Energy dissipation capacity of reinforced concrete members. In: CTBUH 2004 Seoul conference, pp 378–384. Seoul, South Korea: Council on Tall Buildings and Urban Habitat
– reference: SalonikiosTNKapposAJTegosIAPenelisGGCyclic load behavior of low-slenderness reinforced concrete walls: design basis and test resultsACI Struct J1999964649661
– reference: JacobsenLSSteady forced vibrations as influenced by dampingASME Trans1930521169181
– reference: Chopra AK (2020) Dynamics of structures: theory and applications to earthquake engineering (Fifth Edition in SI Units). Harlow: Pearson Education Limited
– reference: Faraone G, Hutchinson T, Piccinin R, Silva J (2020) Damage patterns in squat and flexural RC shear walls. In: Structures congress 2020, pp 687–696. Reston: American Society of Civil Engineers
– reference: Benavent-Climent A, Escolano-Margarit D, Klenke A, Pujol S (2012) Failure mechanism of reinforced concrete structural walls with and without confinement. In: 15th world conference on earthquake engineering 2012. Lisboa, Portugal
– reference: MontánsFJChinestaFGómez-BombarelliRKutzJNData-driven modeling and learning in science and engineeringCR Mec2019347845855
– reference: NieXWangJ-JTaoM-XFanJ-SMoYLZhangZ-YExperimental study of shear-critical reinforced-concrete shear walls under tension-bending shear-combined cyclic loadJ Struct Eng2020146504020047
– reference: DegerZTBasdoganCEmpirical equations for shear strength of conventional reinforced concrete shear wallsACI Struct J202111826171
– reference: RasmussenCENickischHGaussian processes for machine learning (GPML) toolboxJ Mach Learn Res20101130113015
– reference: ErberikMSucuoğluHAcunBInelastic displacement response of RC systems with cyclic deterioration-an energy approachJ Earthq Eng2012167937962
– reference: PriestleyMJMyths and fallacies in earthquake engineering, revisited: the Ninth Mallet Milne Lecture, 20032003PaviaIUSS press
– reference: AkiyamaHEarthquake-resistant limit-state design for buildings1985TokyoThe University of Tokyo Press
– reference: Ministry of Interior, Disaster and Emergency Management Authority (AFAD) (2018) TBSC-2018: Turkish Building Seismic Code-2018
– reference: Looi D, Su R (2017) Predictive seismic shear capacity model of rectangular squat RC shear walls in flexural and shear zones. In: 16th world conference on earthquake engineering. Santiago, Chile
– reference: KassemWElsheikhAEstimation of shear strength of structural shear wallsJ Struct Eng20101361012151224
– reference: JeonJ-SShafieezadehADesRochesRStatistical models for shear strength of RC beam-column joints using machine-learning techniquesEarthq Eng Struct Dyn20144320752095
– reference: SongJKChunYSSongJWYangKHChangKKSeismic performance of special structural walls using overlapping hoops instead of closed hoopsJ Concrete Struct Mater201913117
– reference: National Research Council of Canada (NRCC) (2015) NBC 2015, National Building Code of Canada. Ottawa, ON, Canada: Associate Commission on the National Building Code
– reference: Yan S, Zhang LF, Zhang, YG (2008) Seismic performances of high-strength concrete shear walls reinforced with high-strength rebars. In: 11th Biennial ASCE aerospace division international conference on engineering, science, construction, and operations in challenging environments, pp 1–8. Long Beach, California, USA
– reference: RasmussenCEBousquetOLuxburgUVRätschGGaussian processes in machine learningAdvanced lectures on machine learning2004BerlinSpringer6775
– reference: FayyadUPiatetsky-ShapiroGSmythPFrom data mining to knowledge discovery in databasesAI Mag19961733754
– reference: Benavent-ClimentALópez-AlmansaFBravo-GonzálezDADesign energy input spectra for moderate-to-high seismicity regions based on Colombian earthquakesSoil Dyn Earthq Eng20103011291148
– reference: FarrarCRBakerWEDamping in low-aspect-ratio, reinforced concrete shear wallsEarthq Eng Struct Dyn199524439455
– reference: Jacobsen LS (1960) Damping in composite structures. In: Proceedings of second world conference on earthquake engineering, vol 2, pp 1029–1044. Tokyo and Kyoto
– reference: SchulzESpeekenbrinkMKrauseAA tutorial on gaussian process regression: modelling, exploring, and exploiting functionsJ Math Psychol201885116
– reference: CSA A23.3-19 (2019) Design of concrete structures. Toronto: CSA Group
– reference: PriestleyMJCalviGMKowalskyMJDisplacement based seismic design of structures20071PaviaIUSS Press
– reference: ACI Committee 318 (2011) Building code requirements for structural concrete (ACI 318-11) and commentary. Farmington Hills: American Concrete Institute
– reference: TrifunacMBradyAA study on the duration of strong earthquake ground motionBull Seismol Soc Am197565581626
– reference: Consuegra F, Irfanoglu A (2008) Variation of dynamic properties with displacement in a 3-story reinforced concrete flat plate structure. In: The 14th world conference on earthquake engineering. Beijing, China
– reference: KowalskyMJPriestleyMJMacraeGADisplacement-based design of RC bridge columns in seismic regionsEarthq Eng Struct Dyn19952416231643
– reference: MomeniEDowlatshahiMBOmidinasabFMaizirHArmaghaniDJGaussian process regression technique to estimate the pile bearing capacityArab J Sci Eng2020382558267
– reference: YangH-KParkH-GDamping ratio of RC squat wall with limited damage under high-frequency earthquakeJ Struct Eng2021147104020295
– reference: BlandonCAPriestleyMJEquivalent viscous damping equations for direct displacement based designJ Earthq Eng200592257278
– reference: ACI Committee 318 (2014) Building code requirements for structural concrete (ACI 318-14) and Commentary (ACI 318R-14). Farmington Hills: American Concrete Institute
– reference: Dwairi H (2004) Equivalent damping in support of direct displacement-based design with applications to multi-span bridges. (Doctorate thesis). North Carolina State University
– reference: SheibaniMOuGThe development of Gaussian process regression for effective regional post-earthquake building damage inferenceComput-Aided Civil Infrastruct Eng20202124
– reference: HoangN-DPhamA-DNguyenQ-LPhamQ-NEstimating compressive strength of high performance concrete with gaussian process regression modelAdv Civil Eng201627744
– reference: SullivanTJHighlighting differences between force-based and displacement-based design solutions for reinforced concrete frame structuresStruct Eng Int20182122131
– reference: IwanWDEstimating inelastic response spectra from elastic spectraEarthq Eng Struct Dyn19808375388
– reference: FillibenJJThe probability plot correlation coefficient test for normalityTechnometrics1975171111117
– reference: ZhangWGGohATZhangYMMultivariate adaptive regression splines application for multivariate geotechnical problems with big dataGeotech Geol Eng201634193204
– reference: TseranidisSBrownNCMuellerCTData-driven approximation algorithms for rapid performance evaluation and optimization of civil structuresAutom Constr201672279293
– reference: American Society of Civil Engineers (ASCE) (2000) FEMA 356 prestandard and commentary for the seismic rehabilitation of buildings, prepared for the SAC joint venture. Washington, D.C.: Federal Emergency Management Agency
– reference: DegerZTTaskinGA novel GPR-based prediction model for cyclic backbone curves of reinforced concrete shear wallsEng Struct2022255110
– reference: SiamAEzzeldinMEl-DakhakhniWMachine learning algorithms for structural performance classifications and predictions: application to reinforced masonry shear wallsStructures201922252265
– reference: Arciszewski T (1994) Machine learning in engineering design. In: Intelligent information systems III, pp 40–54. Wigry, Poland
– reference: OrakcalKMassoneLMWallaceJWShear strength of lightly reinforced wall piers and spandrelsACI Struct J20091064455466
– reference: GulecCWhittakerASEmpirical equations for peak shear strength of low aspect ratio reinforced concrete wallsACI Struct J201110818089
– reference: DegerZTBasdoganCEmpirical expressions for deformation capacity of reinforced concrete structural wallsACI Struct J201925361
– reference: RosenbluethEHerreraIOn a kind of hysteretic dampingJ Eng Mech Div196490EM43749
– reference: HwangSJFangWHLeeHJYuHWAnalytical model for predicting shear strengthof squat wallsJ Struct Eng200112714350
– reference: European Committee for Standardization (2005) Eurocode 8: design of structures for earthquake resistance-part 3: assessment and retrofitting of buildings (EN 1998-3). Brussels: CEN
– reference: LuNWNooriMLiuYFatigue reliability assessment of welded steel bridge decks under stochastic truck loads via machine learningJ Bridg Eng20172204016105
– reference: Özkaynak H (2010) The earthquake behavior of RC frames with fiber polymer confined infill walls and their structural damping properties. (Doctorate thesis). Istanbul Technical University, (in Turkish)
– reference: DegerZTaskinGGlass-box model representation of seismic failure mode prediction for conventional reinforced concrete shear wallsNeural Comput Appl2022348113
– ident: 1533_CR7
– volume: 22
  start-page: 04016105
  year: 2017
  ident: 1533_CR53
  publication-title: J Bridg Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0000982
– volume: 13
  start-page: 1
  year: 2019
  ident: 1533_CR85
  publication-title: J Concrete Struct Mater
  doi: 10.1186/s40069-018-0311-2
– volume: 85
  start-page: 1
  year: 2018
  ident: 1533_CR79
  publication-title: J Math Psychol
  doi: 10.1016/j.jmp.2018.03.001
– ident: 1533_CR18
– volume: 17
  start-page: 111
  issue: 1
  year: 1975
  ident: 1533_CR36
  publication-title: Technometrics
  doi: 10.1080/00401706.1975.10489279
– ident: 1533_CR91
– volume: 31
  start-page: 1583
  year: 2002
  ident: 1533_CR64
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.177
– ident: 1533_CR33
– ident: 1533_CR52
– volume: 147
  start-page: 04020295
  issue: 1
  year: 2021
  ident: 1533_CR93
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0002872
– ident: 1533_CR37
– ident: 1533_CR56
– volume: 29
  start-page: 1957
  year: 2007
  ident: 1533_CR86
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2006.10.020
– volume: 6
  start-page: 5555
  year: 1996
  ident: 1533_CR75
  publication-title: Comput-Aided Civil Infrastruct Eng
– volume: 52
  start-page: 169
  issue: 1
  year: 1930
  ident: 1533_CR46
  publication-title: ASME Trans
– volume: 22
  start-page: 252
  year: 2019
  ident: 1533_CR83
  publication-title: Structures
  doi: 10.1016/j.istruc.2019.06.017
– volume: 106
  start-page: 455
  issue: 4
  year: 2009
  ident: 1533_CR65
  publication-title: ACI Struct J
– volume: 3
  start-page: 8255
  year: 2020
  ident: 1533_CR59
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-020-04683-4
– volume: 23
  start-page: 04018033
  issue: 6
  year: 2018
  ident: 1533_CR68
  publication-title: J Bridg Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0001199
– ident: 1533_CR43
– ident: 1533_CR66
– volume: 72
  start-page: 279
  year: 2016
  ident: 1533_CR89
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2016.02.002
– ident: 1533_CR28
– ident: 1533_CR81
– ident: 1533_CR47
– ident: 1533_CR4
– volume: 109
  start-page: 1267
  issue: 5
  year: 1983
  ident: 1533_CR9
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(1983)109:5(1267)
– volume: 29
  start-page: 1263
  year: 2007
  ident: 1533_CR11
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2006.08.014
– volume: 17
  start-page: 37
  issue: 3
  year: 1996
  ident: 1533_CR35
  publication-title: AI Mag
– volume: 43
  start-page: 949
  year: 2014
  ident: 1533_CR67
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.2380
– volume: 118
  start-page: 61
  issue: 2
  year: 2021
  ident: 1533_CR22
  publication-title: ACI Struct J
– ident: 1533_CR15
– volume: 31
  start-page: 539
  year: 2002
  ident: 1533_CR58
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.143
– ident: 1533_CR57
– ident: 1533_CR94
– ident: 1533_CR19
– volume: 31
  start-page: 1667
  issue: 3
  year: 2015
  ident: 1533_CR25
  publication-title: Earthq Spectra
  doi: 10.1193/011212EQS010M
– ident: 1533_CR32
  doi: 10.1061/9780784482896.063
– volume: 136
  start-page: 1215
  issue: 10
  year: 2010
  ident: 1533_CR50
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0000218
– volume: 27
  start-page: 23
  year: 1987
  ident: 1533_CR8
  publication-title: Int J Man Mach Stud
  doi: 10.1016/S0020-7373(87)80042-1
– volume: 9
  start-page: 257
  issue: 2
  year: 2005
  ident: 1533_CR14
  publication-title: J Earthq Eng
  doi: 10.1142/S1363246905002390
– volume: 255
  start-page: 1
  year: 2022
  ident: 1533_CR23
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.113874
– volume: 8
  start-page: 375
  year: 1980
  ident: 1533_CR45
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.4290080407
– start-page: 271
  volume-title: Comprehensive structural integrity
  year: 2003
  ident: 1533_CR70
  doi: 10.1016/B0-08-043749-4/01115-0
– volume: 2
  start-page: 1
  year: 2020
  ident: 1533_CR82
  publication-title: Comput-Aided Civil Infrastruct Eng
– volume: 24
  start-page: 3393
  year: 2020
  ident: 1533_CR17
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04103-2
– volume: 25
  start-page: 1241
  year: 2003
  ident: 1533_CR77
  publication-title: Eng Struct
  doi: 10.1016/S0141-0296(03)00060-9
– ident: 1533_CR5
– volume-title: Myths and fallacies in earthquake engineering, revisited: the Ninth Mallet Milne Lecture, 2003
  year: 2003
  ident: 1533_CR71
– ident: 1533_CR1
– volume: 90
  start-page: 37
  issue: EM4
  year: 1964
  ident: 1533_CR76
  publication-title: J Eng Mech Div
  doi: 10.1061/JMCEA3.0000510
– volume: 12
  start-page: 1153
  issue: 9
  year: 2016
  ident: 1533_CR90
  publication-title: Struct Infrastruct Eng
  doi: 10.1080/15732479.2015.1086386
– volume-title: Earthquake-resistant limit-state design for buildings
  year: 1985
  ident: 1533_CR3
– ident: 1533_CR16
– ident: 1533_CR31
– volume: 34
  start-page: 193
  year: 2016
  ident: 1533_CR95
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-015-9938-9
– volume: 30
  start-page: 1129
  year: 2010
  ident: 1533_CR12
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2010.04.022
– volume: 127
  start-page: 43
  issue: 1
  year: 2001
  ident: 1533_CR44
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)0733-9445(2001)127:1(43)
– volume: 96
  start-page: 649
  issue: 4
  year: 1999
  ident: 1533_CR78
  publication-title: ACI Struct J
– volume: 43
  start-page: 2075
  year: 2014
  ident: 1533_CR48
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.2437
– ident: 1533_CR92
  doi: 10.1061/40988(323)40
– volume: 208
  start-page: 555
  year: 2020
  ident: 1533_CR55
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2020.110331
– volume: 146
  start-page: 04020047
  issue: 5
  year: 2020
  ident: 1533_CR63
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0002596
– volume: 2
  start-page: 53
  year: 2019
  ident: 1533_CR21
  publication-title: ACI Struct J
– volume: 24
  start-page: 439
  year: 1995
  ident: 1533_CR34
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.4290240310
– ident: 1533_CR41
– start-page: 67
  volume-title: Advanced lectures on machine learning
  year: 2004
  ident: 1533_CR73
– ident: 1533_CR26
– volume: 24
  start-page: 1623
  year: 1995
  ident: 1533_CR51
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.4290241206
– ident: 1533_CR61
– volume: 108
  start-page: 80
  issue: 1
  year: 2011
  ident: 1533_CR38
  publication-title: ACI Struct J
– volume: 11
  start-page: 3011
  year: 2010
  ident: 1533_CR74
  publication-title: J Mach Learn Res
– ident: 1533_CR13
– volume: 2
  start-page: 7744
  year: 2016
  ident: 1533_CR40
  publication-title: Adv Civil Eng
– volume: 65
  start-page: 581
  year: 1975
  ident: 1533_CR88
  publication-title: Bull Seismol Soc Am
  doi: 10.1785/BSSA0650020307
– volume: 5
  start-page: 04014030
  year: 2014
  ident: 1533_CR80
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0000927
– ident: 1533_CR6
– volume: 24
  start-page: 1245
  issue: 8
  year: 2020
  ident: 1533_CR84
  publication-title: J Earthq Eng
  doi: 10.1080/13632469.2018.1461713
– ident: 1533_CR2
– volume: 121
  start-page: 845
  issue: 3
  year: 2019
  ident: 1533_CR42
  publication-title: Comput Model Eng Sci
– volume: 34
  start-page: 441
  issue: 2
  year: 2018
  ident: 1533_CR10
  publication-title: Earthq Spectra
  doi: 10.1193/102116EQS178EP
– ident: 1533_CR30
– volume: 34
  start-page: 1
  issue: 8
  year: 2022
  ident: 1533_CR24
  publication-title: Neural Comput Appl
– volume: 2
  start-page: 604
  year: 1974
  ident: 1533_CR39
  publication-title: J Am Concr Inst
– volume: 32
  start-page: 04018042
  issue: 5
  year: 2018
  ident: 1533_CR54
  publication-title: J Comput Civil Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000787
– volume: 30
  start-page: 3497
  year: 2008
  ident: 1533_CR20
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2008.05.024
– volume: 2
  start-page: 122
  year: 2018
  ident: 1533_CR87
  publication-title: Struct Eng Int
– volume-title: Displacement based seismic design of structures
  year: 2007
  ident: 1533_CR72
– volume: 347
  start-page: 845
  year: 2019
  ident: 1533_CR60
  publication-title: CR Mec
  doi: 10.1016/j.crme.2019.11.009
– volume: 7
  start-page: 308
  issue: 4
  year: 1965
  ident: 1533_CR62
  publication-title: Comput J
  doi: 10.1093/comjnl/7.4.308
– ident: 1533_CR49
  doi: 10.1145/1390817.1390822
– ident: 1533_CR69
– ident: 1533_CR27
– volume: 16
  start-page: 937
  issue: 7
  year: 2012
  ident: 1533_CR29
  publication-title: J Earthq Eng
  doi: 10.1080/13632469.2012.685210
SSID ssj0025790
Score 2.358904
Snippet Energy-based seismic design is being rapidly developed and suggests that the seismic demands are met by the energy dissipation capacity of the structural...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 293
SubjectTerms Algorithms
Civil Engineering
Cyclic loading
Cyclic loads
Damping
Damping capacity
Damping ratio
Dependent variables
Design
Dynamic response
Earth and Environmental Science
Earth Sciences
Earthquake dampers
Earthquakes
Elasticity
Energy dissipation
Energy exchange
Environmental Engineering/Biotechnology
Equivalence
Gaussian process
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Kernel functions
Lateral forces
Learning algorithms
Machine learning
Mechanical properties
Model accuracy
Modelling
Original Article
Performance evaluation
Prediction models
Regression
Regression analysis
Reinforced concrete
Robustness (mathematics)
Seismic activity
Seismic design
Seismic response
Shear
Stocks
Structural engineering
Structural Geology
Structural members
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADb8RgoBy4QaS-0xzRxMSFCY3XblXzQpPGNtYN_j5O1rKBAAnOTa3Ij9hObH8Ap1GObkqrhDLBQhoZkVAeS0NFZGsBcp6iSTmwCdZup90uvymbwoqq2r16knQn9UKzW-yn1FafezZIockyrKC7Sy1gQ-f24SPNipm7WfFj5lFM0rtlq8z3ND67o3mM-eVZ1Hmb1ub_9rkFG2V0SS5m6rANS3qwA-sLMwd34fHalU9qUuJFPFHryBQZje2TjT38iEPHKQiGs0S_THuoi-iZiMqfbW8VcSpDhoZ0mqSweNjkLe_3iz24b13eNa9oia5AJZrdhKKUpJcIIUIdKM4VM0p7vgxZGHI_1zLwVcqUlkmqIgxydOAZxnwjwkjEDNO0cB9qg-FAHwCx3bUaMw-eK9u6yjCH40geY6Ocm0BEdfArJmeyHD1uETD62XxosmVahkzLHNOypA5nH_-MZoM3fl3dqGSXlUZYZAFKP7IJJa_DeSWr-eefqR3-bfkRrFkQ-tnFTANqk_FUH8OqfJ30ivGJU853pFrcUw
  priority: 102
  providerName: Springer Nature
Title Machine learning-based predictive models for equivalent damping ratio of RC shear walls
URI https://link.springer.com/article/10.1007/s10518-022-01533-6
https://www.proquest.com/docview/2761428999
Volume 21
WOSCitedRecordID wos000868965900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1573-1456
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0025790
  issn: 1570-761X
  databaseCode: PCBAR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-1456
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0025790
  issn: 1570-761X
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1573-1456
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0025790
  issn: 1570-761X
  databaseCode: PATMY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-1456
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0025790
  issn: 1570-761X
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 1573-1456
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0025790
  issn: 1570-761X
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025790
  issn: 1570-761X
  databaseCode: RSV
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07TwMxDLagMMDAG1EoKAMbRNyrl2ZCgEAsVFV5dTtdHocqlbb0Cvx97DSlgAQLS5Y8dBc78SO2P4DDJEcxZU3KhRIxTwqVclnXBVcJxQLksoFHyoFNiGaz0enIlne4lT6scnonuovaDDT5yE8itLcTsg7k6fCFE2oUva56CI15WEDNJqSQrpuo9Wlw1YXzsYR1EXCc3vFJMz51DsdzimUPSOXh6XfBNNM2fzyQOrlztfrfL16DFa9xsrMJi6zDnO1vwPKXOoSb8HjjQiot8xgST5yEm2HDET3j0IXIHGJOyVDFZfbltYv8idKKmfyZ8q2YYyM2KFj7gpWEkc3e816v3IL7q8u7i2vuERe4xqM45kg5HaRKqdhGRkojCmODUMcijmWYWx2FpiGM1WnDJKj42CgohAgLFSeqLvBX422o9Ad9uwOMMm4tWiMyN5TOKmgfcHnUl3JZRCqpQjjd7kz7cuSEitHLZoWUiUQZkihzJMrSKhx9zhlOinH8Obo2pUvmD2aZzYhSheMpZWfdv6-2-_dqe7BEQPQT50wNKuPRq92HRf027pajA1g4v2y22geOPakVt9i2bx8-AOMi6kM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xqER74F11Wyg-0BO1SJyH40OFEA-BgBWqQN1biB9BSNvdZbMU9U_1N3bGm7AUCW4cek4ycuxvPDP2zHwAm3GBZsrZlEstIx6XOuUqMSXXMeUCFCpDlfJkE7LdzjoddT4Ff5paGEqrbPZEv1HbvqEz8m2B8XZM0YHaGdxyYo2i29WGQmMMixP3-x5Dturb8T6u7xchDg8u9o54zSrADcJtxHF0Jki11pETVikrS-uC0EQyilRYOCNCm0nrTJrZGI27E0EpZVjqKNaJxAFEKHcaZmPqLEapguL8IcBLpD_TCRMZcBxupy7SqUv1kjDjlDsfkIvF038N4cS7fXIh6-3c4cL_NkOLMF971Gx3rAJLMOV6y_DuUZ_FFfhx5lNGHas5Mq45GW_LBkO6pqINn3lGoIqhC8_c7d0N6h9aY2aLn1RPxryasH7Jvu-xijjA2X3R7VarcPkqf_YeZnr9nvsAjCqKHUZbqrBUritp3lE8-oOFKoWOWxA2y5ubut06sX5080mjaIJEjpDIPSTytAVbD98Mxs1GXnx7rcFBXm88VT4BQQu-NkiaPH5e2seXpW3A3NHF2Wl-etw--QRvBbp644OoNZgZDe_cOrwxv0Y31fCzVwkGV6-NsL862UPy
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RUFVwgD5AhEe7h_bUrvB7vQeEeEVFQBShVs3NeB9GSCEJcQDx1_h1zDhrUirBjUPPXo_W3m92ZnZn5gP4GuVopqxJuFAi5FGhEi5jXXAVUS5ALlNUqYpsQrTbabcrOzNwX9fCUFplvSdWG7UZaDoj3www3o4oOpCbhUuL6Oy3todXnBik6Ka1ptOYQOTI3t1i-FZuHe7jWn8LgtbBr72f3DEMcI3QG3OcqfYSpVRoAyOlEYWxnq9DEYbSz60OfJMKY3WSmggNvQ28Qgi_UGGkYoGTCVHuG5gV6GREDZjdPWh3Th_DvVhUJzx-LDyOk--6kh1XuBf7KadMeo8cLp48NYtTX_ef69nK6rUW_-f_9R4WnK_NdibK8QFmbP8jzP_VgfET_Dmpkkktc-wZ55zMumHDEV1gkSlgFVdQydC5Z_bq-gI1E-00M_klVZqxSoHYoGCne6wkdnB2m_d65RL8fpUvW4ZGf9C3K8Co1thiHCZzQ4W8gtYAxaOnmMsiUFET_HqpM-0asRMfSC-btpAmeGQIj6yCR5Y04fvjO8NJG5IXR6_XmMjcllRmU0A04UeNqunj56WtviztC7xDYGXHh-2jNZgL0AecnFCtQ2M8urYb8FbfjC_K0WenHwzOXhtiD9UVTgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+predictive+models+for+equivalent+damping+ratio+of+RC+shear+walls&rft.jtitle=Bulletin+of+earthquake+engineering&rft.au=Yaghoubi%2C+Siamak+Tahaei&rft.au=Deger%2C+Zeynep+Tuna&rft.au=Taskin%2C+Gulsen&rft.au=Sutcu%2C+Fatih&rft.date=2023-01-01&rft.issn=1570-761X&rft.eissn=1573-1456&rft.volume=21&rft.issue=1&rft.spage=293&rft.epage=318&rft_id=info:doi/10.1007%2Fs10518-022-01533-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10518_022_01533_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-761X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-761X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-761X&client=summon