Graph Neural Network Operators: a Review

Graph Neural Networks (GNN) is one of the promising machine learning areas in solving real world problems such as social networks, recommender systems, computer vision and pattern recognition. One of the important component of GNN is GNN operators which are responsible to train GNN graph structured...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Multimedia tools and applications Ročník 83; číslo 8; s. 23413 - 23436
Hlavní autori: Sharma, Anuj, Singh, Sukhdeep, Ratna, S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.03.2024
Springer Nature B.V
Predmet:
ISSN:1573-7721, 1380-7501, 1573-7721
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Graph Neural Networks (GNN) is one of the promising machine learning areas in solving real world problems such as social networks, recommender systems, computer vision and pattern recognition. One of the important component of GNN is GNN operators which are responsible to train GNN graph structured data and forward learning nodes information to other layers. This review focus on recent advancements of GNN operators in detail. The rich Mathematical nature of GNN operators has been discussed for selected GNN operators. The review also highlights different benchmark graph structured datasets and presents results using different GNN operators. We have included thorough discussion for state-of-the-art in this field including limitations and future directions. Overall, the review covers important areas of GNN as GNN operators from future research directions point of view and real world applications perspective.
AbstractList Graph Neural Networks (GNN) is one of the promising machine learning areas in solving real world problems such as social networks, recommender systems, computer vision and pattern recognition. One of the important component of GNN is GNN operators which are responsible to train GNN graph structured data and forward learning nodes information to other layers. This review focus on recent advancements of GNN operators in detail. The rich Mathematical nature of GNN operators has been discussed for selected GNN operators. The review also highlights different benchmark graph structured datasets and presents results using different GNN operators. We have included thorough discussion for state-of-the-art in this field including limitations and future directions. Overall, the review covers important areas of GNN as GNN operators from future research directions point of view and real world applications perspective.
Author Singh, Sukhdeep
Sharma, Anuj
Ratna, S.
Author_xml – sequence: 1
  givenname: Anuj
  orcidid: 0000-0003-2219-2528
  surname: Sharma
  fullname: Sharma, Anuj
  email: anujs@pu.ac.in
  organization: Department of Computer Science and Applications, Panjab University
– sequence: 2
  givenname: Sukhdeep
  surname: Singh
  fullname: Singh, Sukhdeep
  organization: Computer Science Department, D.M.College
– sequence: 3
  givenname: S.
  surname: Ratna
  fullname: Ratna, S.
  organization: Department of Computer Science and Applications, Panjab University
BookMark eNp9kMFOwzAMhiM0JLbBC3CqxIVLwU7SpuGGJhhIE5PQ7lHaJdAxmpK0TLw9gSKBOOxg2Yf_s61vQkaNawwhpwgXCCAuAyJwmgJlKeacQ8oPyBgzwVIhKI7-zEdkEsIGAPOM8jE5n3vdPicPpvd6G1u3c_4lWbbG6875cJXo5NG812Z3TA6t3gZz8tOnZHV7s5rdpYvl_H52vUgrhrJLucZSlHwtJeZrWwBwbSW1KAWrMtSSokFpBFhTQiFoJgtp1yJnvBRY2oxNydmwtvXurTehUxvX-yZeVFQygFhMxlQxpCrvQvDGqqrudFe7pvO63ioE9aVFDVpU1KK-tSgeUfoPbX39qv3HfogNUIjh5sn436_2UJ9naXQ8
CitedBy_id crossref_primary_10_1016_j_cpc_2025_109719
crossref_primary_10_1111_exsy_70091
crossref_primary_10_1098_rspa_2024_0819
crossref_primary_10_1016_j_csbj_2025_03_014
crossref_primary_10_1145_3694784
crossref_primary_10_1007_s13042_024_02482_z
crossref_primary_10_1016_j_asoc_2025_112923
crossref_primary_10_1016_j_neunet_2025_108027
crossref_primary_10_1016_j_oregeorev_2024_106399
crossref_primary_10_1016_j_rser_2024_114647
crossref_primary_10_1038_s41598_025_05225_4
crossref_primary_10_1007_s42791_025_00101_8
Cites_doi 10.1145/3394486.3403088
10.1109/TNN.2008.2005605
10.1109/TKDE.2020.2981333
10.1007/978-3-031-01588-5
10.1609/aimag.v29i3.2157
10.1093/bioinformatics/btx252
10.1109/ICDMW58026.2022.00094
10.1609/icwsm.v14i1.7347
10.1016/j.aiopen.2021.01.001
10.2200/S01045ED1V01Y202009AIM046
10.1155/2023/1566123
10.1145/3534678.3539387
10.1038/s41598-021-96723-8
10.1007/s41019-023-00206-x
10.1016/j.neunet.2021.11.001
10.1109/TNN.2008.2005141
10.1609/aaai.v29i1.9277
10.1609/aaai.v34i04.5997
10.1145/3575637.3575646
10.24963/ijcai.2021/214
10.1109/CVPR42600.2020.00178
10.1016/j.patcog.2020.107637
10.1109/CVPR.2018.00097
10.1109/TNNLS.2020.2978386
10.1103/PhysRevLett.120.145301
10.1609/aaai.v24i1.7519
10.1613/jair.1.13225
10.1609/aaai.v33i01.33014602
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-16440-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI-INFORM Complete
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Research Library (subscription)
Research Library (Corporate)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 23436
ExternalDocumentID 10_1007_s11042_023_16440_4
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7SC
7XB
8AL
8FD
8FK
AFFHD
JQ2
L.-
L7M
L~C
L~D
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-4a1b7b4d9916df8004af92f1973c51a921e19e70feb08725989fd7634b71bf53
IEDL.DBID M0C
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001051759100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-7721
1380-7501
IngestDate Wed Nov 05 09:06:01 EST 2025
Sat Nov 29 06:20:33 EST 2025
Tue Nov 18 21:51:52 EST 2025
Fri Feb 21 02:41:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords GNN convolutional operators
Deep learning
Graph structural representation
Graph neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-4a1b7b4d9916df8004af92f1973c51a921e19e70feb08725989fd7634b71bf53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2219-2528
PQID 2930093039
PQPubID 54626
PageCount 24
ParticipantIDs proquest_journals_2930093039
crossref_citationtrail_10_1007_s11042_023_16440_4
crossref_primary_10_1007_s11042_023_16440_4
springer_journals_10_1007_s11042_023_16440_4
PublicationCentury 2000
PublicationDate 20240300
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Jin Y, JaJa JF (2022) Improving graph neural network with learnable permutation pooling. In: 2022 IEEE international conference on data mining workshops (ICDMW), pp 682–689
Ong E, Veličkoviá P (2022) Learnable commutative monoids for graph neural networks. In: Proceedings of the first learning on graphs conference, vol 198, pp 43–14322
Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka Jr ER, Mitchell TM (2010) Toward an architecture for never-ending language learning. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence
Rossi R, Ahmed N (2015) The network data repository with interactive graph analytics and visualization. In: AAAI Conference on Artificial Intelligence, vol 29, pp 4292–4293
Hamilton WL (2020) Graph representation learning. Synthesis Lectures on Artificial Intelligence and Machine Learning 14(3): 1–159
Shi W, Rajkumar RR (2020) Point-gnn: Graph neural network for 3d object detection in a point cloud. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2009) The graph neural network model. IEEE Transactions on Neural Networks 20(1): 61–80
Weisfeiler BY, Leman AA (1968) The reduction of a graph to canonical form and the algebra which appears therein. Nauchno-Tekhnicheskaya Informatsiya 9, 12–16
Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M (2020) Graph neural networks: A review of methods and applications. AI Open 1, 57–81
LiuYLiuQZhangJ-WFengHWangZZhouZChenWMulti-variate time-series forecasting with temporal polynomial graph neural networksAdvances in Neural Information Processing Systems2022351941419426
Chen M, Wei Z, Huang Z, Ding B, Li Y (2020) Simple and deep graph convolutional networks. arXiv:2007.02133
Deng C, Li X, Feng Z, Zhang Z (2022) Garnet: Reduced-rank topology learning for robust and scalable graph neural networks. In: Proceedings of the first learning on graphs conference, pp 3–1323
ScarselliFGoriMTsoiACHagenbuchnerMMonfardiniGThe graph neural network modelIEEE Transactions on Neural Networks2009201618010.1109/TNN.2008.200560519068426
bitcoin otc. http://www.bitcoin-otc.com
Zitnik M, Leskovec J (2017) Predicting multicellular function through multi-layer tissue networks. Bioinformatics 33(14): 190–198
Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J (2015) 3d shapenets: A deep representation for volumetric shapes. Computer Vision and Pattern Recognition (CVPR)
bitcoin alpha. http://www.btc-alpha.com
LeCun Y, Cortes C, Burges CJ (1998) The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist
Baumgartner J, Zannettou S, Keegan B, Squire M, Blackburn J (2020) The pushshift reddit dataset. arXiv:2001.08435
Hamilton WL, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp 1024–1034
RanjanRGroverSMedyaSChakaravarthyVSabharwalYRanuSGreed: A neural framework for learning graph distance functionsAdvances in Neural Information Processing Systems2022352251822530
Shi Y, Huang Z, Feng S, Zhong H, Wang W, Sun Y (2021) Masked label prediction: Unified message passing model for semi-supervised classification. In: Proceedings of the thirtieth international joint conference on artificial intelligence, IJCAI-21, pp 1548–1554
Li Y, Tarlow D, Brockschmidt M, Zemel R (2016) Gated graph sequence neural networks. In: International Conference on Learning Representations
Qi CR, Su H, Mo K, Guibas LJ (2017) Pointnet: Deep learning on point sets for 3d classification and segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, 652–660
Zuo S, Jiang H, Yin Q, Tang X, Yin B, Zhao T (2022) Dip-gnn: Discriminative pre-training of graph neural networks. arXiv:2209.07499
Qin Y, Zhang Z, Wang X, Zhang Z, Zhu W (2022) Nas-bench-graph: Benchmarking graph neural architecture search. Advances in Neural Information Processing Systems 35:54–69
ZitnikMLeskovecJPredicting multicellular function through multi-layer tissue networksBioinformatics2017331419019810.1093/bioinformatics/btx252
Yuen B, Hoang MT, Dong X, Lu T (2021) Universal activation function for machine learning. Scientific Reports 11(1)
Fey M, Lenssen J, Weichert F, Muller H (2018) Splinecnn: Fast geometric deep learning with continuous b-spline kernels. In: 2018 IEEE/CVF Conference on computer vision and pattern recognition (CVPR), pp 869–877
Dudzik AJ, Veličković, P (2022) Graph neural networks are dynamic programmers. In: Advances in neural information processing systems, vol 35, pp 20635–20647
Parvathaneni Naga S, Balamurali K, Shakeel A, Naif A, Fawaz Khaled A, Nasser A (2023) Variational autoencoders-basedself-learning model for tumor identification and impact analysis from 2-d mri images. Journal of Healthcare Engineering
Qin Y, Zhang Z, Wang X, Zhang Z, Zhu W (2022) Nas-bench-graph: Benchmarking graph neural architecture search. In: Advances in neural information processing systems, vol 35, pp 54–69
Xie T, Grossman JC (2018) Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett 120
ZhangZWangXZhangZLiHQinZZhuWDynamic graph neural networks under spatio-temporal distribution shiftAdvances in Neural Information Processing Systems20223560746089
Buterez D, Janet JP, Kiddle SJ, Oglic D, Lió P (2022) Graph neural networks with adaptive readouts. In: Advances in Neural Information Processing Systems, vol 35, pp 19746–19758
Zhu Z, Galkin M, Zhang Z, Tang J (2022) Neural-symbolic models for logical queries on knowledge graphs. In: Proceedings of the 39th international conference on machine learning, vol 162, pp 27454–27478
OngEVeličkoviáPLearnable commutative monoids for graph neural networksProceedings of the First Learning on Graphs Conference20221984314322
Du J, Zhang S, Wu G, Moura JMF, Kar S (2018) Topology adaptive graph convolutional networks. arXiv:1710.10370
HamiltonWLGraph representation learningSynthesis Lectures on Artificial Intelligence and Machine Learning2020143115910.1007/978-3-031-01588-5
Tang J, Li J, Gao Z, Li J (2022) Rethinking graph neural networks for anomaly detection. In: Proceedings of the 39th international conference on machine learning, vol 162, pp 21076–21089
ItohTDKuboTIkedaKMulti-level attention pooling for graph neural networks: Unifying graph representations with multiple localitiesNeural Networks202214535637310.1016/j.neunet.2021.11.00134808587
Sanchez-Gonzalez A, Godwin J, Pfaff T, Ying R, Leskovec J, Battaglia PW (2020) Learning to simulate complex physics with graph networks. In: Proceedings of the 37th international conference on machine learning. JMLR.org, ???
GasteigerJQianCGünnemannSInfluence-based mini-batching for graph neural networksProceedings of the First Learning on Graphs Conference202219891919
Lan S, Ma Y, Huang W, Wang W, Yang H, Li P (2022) DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting. In: Proceedings of the 39th international conference on machine learning, vol 162, pp 11906–11917
He Y, Perlmutter M, Reinert G, Cucuringu M (2022) Msgnn: A spectral graph neural network based on a novel magnetic signed laplacian. In: Proceedings of the first learning on graphs conference, vol 198, pp 40–14039
Liu J, Hooi B, Kawaguchi K, Xiao X (2022) Mgnni: Multiscale graph neural networks with implicit layers. In: Advances in Neural Information Processing Systems, vol 35, pp 21358–21370
Gasteiger J, Qian C, Günnemann S (2022) Influence-based mini-batching for graph neural networks. In: Proceedings of the first learning on graphs conference, vol 198, pp 9–1919
Hengshuang Z, Li J, Jiaya J, Philip T, Vladlen K (2021) Point transformer. arXiv:2012.09164
Zhang H, Dai G, Liu Z, Wang R, Hamilton W (2022) Understanding gnn computational graph: A coordinated computation, io, and memory perspective. In: Proceedings of 5th MLSys, pp 1–15
LiuJHooiBKawaguchiKXiaoXMgnni: Multiscale graph neural networks with implicit layersAdvances in Neural Information Processing Systems2022352135821370
Ding K, Xu Z, Tong H, Liu H (2022) Data augmentation for deep graph learning: A survey. SIGKDD Explor Newsl 24(2):61–77
Carselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2009) Computational capabilities of graph neural networks. IEEE Transactions on Neural Networks 20(1): 81–102
Prithviraj Sen MBLGBG Galileo Mark Namata Eliassi-Rad T (2008) Collective classification in network data. AI Magazine 29(3): 93–106
RossiRAhmedNThe network data repository with interactive graph analytics and visualizationAAAI Conference on Artificial Intelligence20152942924293
HuangTChenTFangMMenkovskiVZhaoJYinLPeiYMocanuDCWangZPechenizkiyMLiuSYou can have better graph neural networks by not training weights at all: Finding untrained gnns ticketsProceedings of the First Learning on Graphs Conference202219881817
Brody S, Alon U, Yahav E (2022) How attentive are graph attention networks? arXiv:2105.14491
Brockschmidt M (2020) GNN-FiLM: Graph neural networks with feature-wise linear modulation. In: Proceedings of the 37th international conference on machine learning, pp 1144–1152
You J, Ying R, Leskovec J (2019) Position-aware graph neural networks. In: Proceedings of the 36th international conference on machine learning. Proceedings of machine learning research, vol 97, pp 7134–7143
Li G, Müller M, Ghanem B, Koltun V (2021) Training graph neural networks with 1000 layers. In: Proceedings of the 38th international conference on machine learning, vol 139, pp 6437–6449
ZekunLQianchengYXiaLXiaoningLQinwenYLearning weight signed network embedding with graph neural networksData Science and Engineering20238364610.1007/s41019-023-00206-x
DudzikAJVeličkovićPGraph neural networks are dynamic programmersAdvances in Neural Information Processing Systems2022352063520647
Ranjan E, Sanyal S, Talukdar PP (2020) Asap: Adaptive structure aware pooling for learning hierarchical graph representations. In: Proceedings of the thirty-fourth AAAI conference on artificial in
16440_CR65
16440_CR22
Y He (16440_CR29) 2022; 198
16440_CR66
16440_CR63
16440_CR20
16440_CR64
Z Zhang (16440_CR80) 2022; 35
16440_CR25
16440_CR26
16440_CR23
16440_CR67
16440_CR24
16440_CR68
16440_CR27
J Liu (16440_CR44) 2022; 35
Z Hu (16440_CR33) 2020; 2020
F Scarselli (16440_CR61) 2009; 20
16440_CR73
16440_CR71
16440_CR32
16440_CR76
16440_CR30
16440_CR74
16440_CR31
16440_CR75
16440_CR37
16440_CR2
TD Itoh (16440_CR36) 2022; 145
16440_CR78
16440_CR1
16440_CR35
J Zhou (16440_CR83) 2020; 1
16440_CR38
16440_CR39
E Ong (16440_CR48) 2022; 198
F Carselli (16440_CR11) 2009; 20
Z Zhang (16440_CR79) 2022; 34
R Ranjan (16440_CR56) 2022; 35
AJ Dudzik (16440_CR17) 2022; 35
L Zekun (16440_CR77) 2023; 8
R Rossi (16440_CR58) 2015; 29
16440_CR4
16440_CR3
16440_CR6
16440_CR5
16440_CR7
16440_CR40
16440_CR84
16440_CR81
16440_CR9
16440_CR82
M Zitnik (16440_CR86) 2017; 33
16440_CR87
T Xie (16440_CR72) 2018
16440_CR88
16440_CR41
16440_CR85
16440_CR42
16440_CR45
16440_CR46
Y Liu (16440_CR43) 2022; 35
WL Hamilton (16440_CR28) 2020; 14
16440_CR49
D Buterez (16440_CR8) 2022; 35
Z Wu (16440_CR70) 2021; 32
16440_CR50
J Gasteiger (16440_CR21) 2022; 198
16440_CR51
16440_CR10
16440_CR54
16440_CR55
16440_CR52
16440_CR53
16440_CR14
16440_CR15
16440_CR59
16440_CR12
16440_CR13
16440_CR57
16440_CR18
16440_CR19
16440_CR16
G Nikolentzos (16440_CR47) 2021; 72
BY Weisfeiler (16440_CR69) 1968; 9
T Huang (16440_CR34) 2022; 198
16440_CR62
16440_CR60
References_xml – reference: GasteigerJQianCGünnemannSInfluence-based mini-batching for graph neural networksProceedings of the First Learning on Graphs Conference202219891919
– reference: Hamilton WL (2020) Graph representation learning. Synthesis Lectures on Artificial Intelligence and Machine Learning 14(3): 1–159
– reference: Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2009) The graph neural network model. IEEE Transactions on Neural Networks 20(1): 61–80
– reference: Prithviraj Sen MBLGBG Galileo Mark Namata Eliassi-Rad T (2008) Collective classification in network data. AI Magazine 29(3): 93–106
– reference: XieTGrossmanJCCrystal graph convolutional neural networks for an accurate and interpretable prediction of material properties2018LettPhys Rev120
– reference: Xie T, Grossman JC (2018) Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett 120
– reference: Ying Z, Hamilton WL, Leskovec J (2019) Weisfeiler and leman go neural: Higher order graph neural networks. In: Proceedings of the 33rd AAAI conference on artificial intelligence, pp 10848–10855. arXiv:1812.08434
– reference: OngEVeličkoviáPLearnable commutative monoids for graph neural networksProceedings of the First Learning on Graphs Conference20221984314322
– reference: WuZPanSChenFLongGZhangCYuPSA comprehensive survey on graph neural networksIEEE Transactions on Neural Networks and Learning Systems2021321424420549510.1109/TNNLS.2020.297838632217482
– reference: Li Y, Tarlow D, Brockschmidt M, Zemel R (2016) Gated graph sequence neural networks. In: International Conference on Learning Representations
– reference: Buterez D, Janet JP, Kiddle SJ, Oglic D, Lió P (2022) Graph neural networks with adaptive readouts. In: Advances in Neural Information Processing Systems, vol 35, pp 19746–19758
– reference: HamiltonWLGraph representation learningSynthesis Lectures on Artificial Intelligence and Machine Learning2020143115910.1007/978-3-031-01588-5
– reference: Ding K, Xu Z, Tong H, Liu H (2022) Data augmentation for deep graph learning: A survey. SIGKDD Explor Newsl 24(2):61–77
– reference: Gravina A, Bacciu D, Gallicchio C (2023) Anti-symmetric dgn: a stable architecture for deep graph networks. In: International conference on learning representations
– reference: Qi CR, Su H, Mo K, Guibas LJ (2017) Pointnet: Deep learning on point sets for 3d classification and segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, 652–660
– reference: Zhu Z, Galkin M, Zhang Z, Tang J (2022) Neural-symbolic models for logical queries on knowledge graphs. In: Proceedings of the 39th international conference on machine learning, vol 162, pp 27454–27478
– reference: Wang X, Zhang M (2022) How powerful are spectral graph neural networks. In: Proceedings of the 39th international conference on machine learning, vol 162, pp 23341–23362
– reference: Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural message passing for quantum chemistry. In: Proceedings of the 34th international conference on machine learning (ICML), vol 70, pp 1263–1272
– reference: Zhang H, Dai G, Liu Z, Wang R, Hamilton W (2022) Understanding gnn computational graph: A coordinated computation, io, and memory perspective. In: Proceedings of 5th MLSys, pp 1–15
– reference: Itoh TD, Kubo T, Ikeda K (2022) Multi-level attention pooling for graph neural networks: Unifying graph representations with multiple localities. Neural Networks 145, 356–373
– reference: Li G, Müller M, Ghanem B, Koltun V (2021) Training graph neural networks with 1000 layers. In: Proceedings of the 38th international conference on machine learning, vol 139, pp 6437–6449
– reference: Brody S, Alon U, Yahav E (2022) How attentive are graph attention networks? arXiv:2105.14491
– reference: ZhouJCuiGHuSZhangZYangCLiuZWangLLiCSunMGraph neural networks: A review of methods and applicationsAI Open20201578110.1016/j.aiopen.2021.01.001
– reference: He Y, Gan Q, Wipf D, Reinert GD, Yan J, Cucuringu M (2022) GNNRank: Learning global rankings from pairwise comparisons via directed graph neural networks. In: Proceedings of the 39th International Conference on Machine Learning, vol 162, pp 8581–8612
– reference: Shi Y, Huang Z, Feng S, Zhong H, Wang W, Sun Y (2021) Masked label prediction: Unified message passing model for semi-supervised classification. In: Proceedings of the thirtieth international joint conference on artificial intelligence, IJCAI-21, pp 1548–1554
– reference: Ong E, Veličkoviá P (2022) Learnable commutative monoids for graph neural networks. In: Proceedings of the first learning on graphs conference, vol 198, pp 43–14322
– reference: You J, Ying R, Leskovec J (2019) Position-aware graph neural networks. In: Proceedings of the 36th international conference on machine learning. Proceedings of machine learning research, vol 97, pp 7134–7143
– reference: ScarselliFGoriMTsoiACHagenbuchnerMMonfardiniGThe graph neural network modelIEEE Transactions on Neural Networks2009201618010.1109/TNN.2008.200560519068426
– reference: Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J (2015) 3d shapenets: A deep representation for volumetric shapes. Computer Vision and Pattern Recognition (CVPR)
– reference: bitcoin otc. http://www.bitcoin-otc.com
– reference: CarselliFGoriMTsoiACHagenbuchnerMMonfardiniGComputational capabilities of graph neural networksIEEE Transactions on Neural Networks20092018110210.1109/TNN.2008.2005141
– reference: ItohTDKuboTIkedaKMulti-level attention pooling for graph neural networks: Unifying graph representations with multiple localitiesNeural Networks202214535637310.1016/j.neunet.2021.11.00134808587
– reference: Sanchez-Gonzalez A, Godwin J, Pfaff T, Ying R, Leskovec J, Battaglia PW (2020) Learning to simulate complex physics with graph networks. In: Proceedings of the 37th international conference on machine learning. JMLR.org, ???
– reference: Fey M, Lenssen J, Weichert F, Muller H (2018) Splinecnn: Fast geometric deep learning with continuous b-spline kernels. In: 2018 IEEE/CVF Conference on computer vision and pattern recognition (CVPR), pp 869–877
– reference: LiuYLiuQZhangJ-WFengHWangZZhouZChenWMulti-variate time-series forecasting with temporal polynomial graph neural networksAdvances in Neural Information Processing Systems2022351941419426
– reference: Qin Y, Zhang Z, Wang X, Zhang Z, Zhu W (2022) Nas-bench-graph: Benchmarking graph neural architecture search. In: Advances in neural information processing systems, vol 35, pp 54–69
– reference: ZhangZWangXZhangZLiHQinZZhuWDynamic graph neural networks under spatio-temporal distribution shiftAdvances in Neural Information Processing Systems20223560746089
– reference: Zitnik M, Leskovec J (2017) Predicting multicellular function through multi-layer tissue networks. Bioinformatics 33(14): 190–198
– reference: RanjanRGroverSMedyaSChakaravarthyVSabharwalYRanuSGreed: A neural framework for learning graph distance functionsAdvances in Neural Information Processing Systems2022352251822530
– reference: Lan S, Ma Y, Huang W, Wang W, Yang H, Li P (2022) DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting. In: Proceedings of the 39th international conference on machine learning, vol 162, pp 11906–11917
– reference: bitcoin alpha. http://www.btc-alpha.com
– reference: Wang Z, Wei Z, Li Y, Kuang W, Ding B (2022) Graph neural networks with node-wise architecture. In: Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining, pp 1949–1958
– reference: Zekun L, Qiancheng Y, Xia L, Xiaoning L, Qinwen Y (2023) Learning weight signed network embedding with graph neural networks. Data Science and Engineering 8, 36–46
– reference: Bai S, Zhang F, Torr PHS (2020) Hypergraph convolution and hypergraph attention. arXiv:1901.08150
– reference: Parvathaneni Naga S, Balamurali K, Shakeel A, Naif A, Fawaz Khaled A, Nasser A (2023) Variational autoencoders-basedself-learning model for tumor identification and impact analysis from 2-d mri images. Journal of Healthcare Engineering
– reference: Qin Y, Zhang Z, Wang X, Zhang Z, Zhu W (2022) Nas-bench-graph: Benchmarking graph neural architecture search. Advances in Neural Information Processing Systems 35:54–69
– reference: Yuen B, Hoang MT, Dong X, Lu T (2021) Universal activation function for machine learning. Scientific Reports 11(1)
– reference: Brockschmidt M (2020) GNN-FiLM: Graph neural networks with feature-wise linear modulation. In: Proceedings of the 37th international conference on machine learning, pp 1144–1152
– reference: Rossi R, Ahmed N (2015) The network data repository with interactive graph analytics and visualization. In: AAAI Conference on Artificial Intelligence, vol 29, pp 4292–4293
– reference: Bianchi FM, Grattarola D, Livi L, Alippi C (2019) Graph neural networks with convolutional arma filters. arXiv:1901.01343
– reference: ZekunLQianchengYXiaLXiaoningLQinwenYLearning weight signed network embedding with graph neural networksData Science and Engineering20238364610.1007/s41019-023-00206-x
– reference: Zuo S, Jiang H, Yin Q, Tang X, Yin B, Zhao T (2022) Dip-gnn: Discriminative pre-training of graph neural networks. arXiv:2209.07499
– reference: Lai K-H, Zha D, Zhou K, Hu X (2020) Policy-gnn: Aggregation optimization for graph neural networks. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp 461–471
– reference: ZitnikMLeskovecJPredicting multicellular function through multi-layer tissue networksBioinformatics2017331419019810.1093/bioinformatics/btx252
– reference: Zhou J, Cui G, Hu S, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M (2020) Graph neural networks: A review of methods and applications. AI Open 1, 57–81
– reference: Zhang Z, Wang X, Zhang Z, Li H, Qin Z, Zhu W (2022) Dynamic graph neural networks under spatio-temporal distribution shift. In: Advances in neural information processing systems, vol 35, pp 6074–6089
– reference: Jin Y, JaJa JF (2022) Improving graph neural network with learnable permutation pooling. In: 2022 IEEE international conference on data mining workshops (ICDMW), pp 682–689
– reference: ZhangZCuiPZhuWDeep learning on graphs: A surveyIEEE Transactions on Knowledge and Data Engineering202234124927010.1109/TKDE.2020.2981333
– reference: Liu J, Hooi B, Kawaguchi K, Xiao X (2022) Mgnni: Multiscale graph neural networks with implicit layers. In: Advances in Neural Information Processing Systems, vol 35, pp 21358–21370
– reference: He Y, Perlmutter M, Reinert G, Cucuringu M (2022) Msgnn: A spectral graph neural network based on a novel magnetic signed laplacian. In: Proceedings of the first learning on graphs conference, vol 198, pp 40–14039
– reference: NikolentzosGSiglidisGVazirgiannisMGraph kernels: A surveyJournal of Artificial Intelligence Research202172943102436669310.1613/jair.1.13225
– reference: Weisfeiler BY, Leman AA (1968) The reduction of a graph to canonical form and the algebra which appears therein. Nauchno-Tekhnicheskaya Informatsiya 9, 12–16
– reference: Carselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2009) Computational capabilities of graph neural networks. IEEE Transactions on Neural Networks 20(1): 81–102
– reference: Gasteiger J, Qian C, Günnemann S (2022) Influence-based mini-batching for graph neural networks. In: Proceedings of the first learning on graphs conference, vol 198, pp 9–1919
– reference: Du J, Zhang S, Wu G, Moura JMF, Kar S (2018) Topology adaptive graph convolutional networks. arXiv:1710.10370
– reference: DudzikAJVeličkovićPGraph neural networks are dynamic programmersAdvances in Neural Information Processing Systems2022352063520647
– reference: HuangTChenTFangMMenkovskiVZhaoJYinLPeiYMocanuDCWangZPechenizkiyMLiuSYou can have better graph neural networks by not training weights at all: Finding untrained gnns ticketsProceedings of the First Learning on Graphs Conference202219881817
– reference: Fu G, Zhao P, Bian Y (2022) p-Laplacian based graph neural networks. In: Proceedings of the 39th international conference on machine learning, vol 162, pp 6878–6917
– reference: RossiRAhmedNThe network data repository with interactive graph analytics and visualizationAAAI Conference on Artificial Intelligence20152942924293
– reference: Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka Jr ER, Mitchell TM (2010) Toward an architecture for never-ending language learning. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence
– reference: LeCun Y, Cortes C, Burges CJ (1998) The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/
– reference: HeYPerlmutterMReinertGCucuringuMMsgnn: A spectral graph neural network based on a novel magnetic signed laplacianProceedings of the First Learning on Graphs Conference20221984014039
– reference: LiuJHooiBKawaguchiKXiaoXMgnni: Multiscale graph neural networks with implicit layersAdvances in Neural Information Processing Systems2022352135821370
– reference: Hamilton WL, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp 1024–1034
– reference: Guan C, Wang X, Chen H, Zhang Z, Zhu W (2022) Large-scale graph neural architecture search. In: Proceedings of the 39th international conference on machine learning, vol 162, pp 7968–7981
– reference: Shi W, Rajkumar RR (2020) Point-gnn: Graph neural network for 3d object detection in a point cloud. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– reference: Dudzik AJ, Veličković, P (2022) Graph neural networks are dynamic programmers. In: Advances in neural information processing systems, vol 35, pp 20635–20647
– reference: Ranjan E, Sanyal S, Talukdar PP (2020) Asap: Adaptive structure aware pooling for learning hierarchical graph representations. In: Proceedings of the thirty-fourth AAAI conference on artificial intelligence (AAAI), pp 5470–5477
– reference: Liu Y, Liu Q, Zhang J-W, Feng H, Wang Z, Zhou Z, Chen W (2022) Multi-variate time-series forecasting with temporal polynomial graph neural networks. In: Advances in neural information processing systems, vol 35, pp 19414–19426
– reference: ButerezDJanetJPKiddleSJOglicDLióPGraph neural networks with adaptive readoutsAdvances in Neural Information Processing Systems2022351974619758
– reference: Baumgartner J, Zannettou S, Keegan B, Squire M, Blackburn J (2020) The pushshift reddit dataset. arXiv:2001.08435
– reference: Deng C, Li X, Feng Z, Zhang Z (2022) Garnet: Reduced-rank topology learning for robust and scalable graph neural networks. In: Proceedings of the first learning on graphs conference, pp 3–1323
– reference: HuZDongYWangKSunYHeterogeneous graph transformerProceedings of The Web Conference2020202027042710
– reference: Tang J, Li J, Gao Z, Li J (2022) Rethinking graph neural networks for anomaly detection. In: Proceedings of the 39th international conference on machine learning, vol 162, pp 21076–21089
– reference: WeisfeilerBYLemanAAThe reduction of a graph to canonical form and the algebra which appears thereinNauchno-Tekhnicheskaya Informatsiya196891216
– reference: Prithviraj Sen MBLGBG, Eliassi-Rad Galileo Mark Namata, T, (2008) Collective classification in network data. AI Magazine 29(3):93–106
– reference: Chen M, Wei Z, Huang Z, Ding B, Li Y (2020) Simple and deep graph convolutional networks. arXiv:2007.02133
– reference: Hengshuang Z, Li J, Jiaya J, Philip T, Vladlen K (2021) Point transformer. arXiv:2012.09164
– volume: 198
  start-page: 43
  year: 2022
  ident: 16440_CR48
  publication-title: Proceedings of the First Learning on Graphs Conference
– volume: 35
  start-page: 6074
  year: 2022
  ident: 16440_CR80
  publication-title: Advances in Neural Information Processing Systems
– ident: 16440_CR38
  doi: 10.1145/3394486.3403088
– ident: 16440_CR65
– ident: 16440_CR88
– volume: 20
  start-page: 61
  issue: 1
  year: 2009
  ident: 16440_CR61
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2008.2005605
– volume: 34
  start-page: 249
  issue: 1
  year: 2022
  ident: 16440_CR79
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2020.2981333
– ident: 16440_CR3
– ident: 16440_CR32
– volume: 14
  start-page: 1
  issue: 3
  year: 2020
  ident: 16440_CR28
  publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning
  doi: 10.1007/978-3-031-01588-5
– ident: 16440_CR51
  doi: 10.1609/aimag.v29i3.2157
– ident: 16440_CR55
– ident: 16440_CR71
– volume: 35
  start-page: 19414
  year: 2022
  ident: 16440_CR43
  publication-title: Advances in Neural Information Processing Systems
– volume: 33
  start-page: 190
  issue: 14
  year: 2017
  ident: 16440_CR86
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx252
– ident: 16440_CR7
– ident: 16440_CR13
– volume: 35
  start-page: 19746
  year: 2022
  ident: 16440_CR8
  publication-title: Advances in Neural Information Processing Systems
– ident: 16440_CR62
  doi: 10.1109/TNN.2008.2005605
– ident: 16440_CR75
– ident: 16440_CR27
– ident: 16440_CR37
  doi: 10.1109/ICDMW58026.2022.00094
– ident: 16440_CR2
  doi: 10.1609/icwsm.v14i1.7347
– volume: 35
  start-page: 22518
  year: 2022
  ident: 16440_CR56
  publication-title: Advances in Neural Information Processing Systems
– volume: 1
  start-page: 57
  year: 2020
  ident: 16440_CR83
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
– ident: 16440_CR46
– ident: 16440_CR23
– ident: 16440_CR42
– ident: 16440_CR26
  doi: 10.2200/S01045ED1V01Y202009AIM046
– volume: 198
  start-page: 40
  year: 2022
  ident: 16440_CR29
  publication-title: Proceedings of the First Learning on Graphs Conference
– ident: 16440_CR39
– volume: 35
  start-page: 20635
  year: 2022
  ident: 16440_CR17
  publication-title: Advances in Neural Information Processing Systems
– volume: 29
  start-page: 4292
  year: 2015
  ident: 16440_CR58
  publication-title: AAAI Conference on Artificial Intelligence
– ident: 16440_CR4
– ident: 16440_CR18
– ident: 16440_CR50
  doi: 10.1155/2023/1566123
– start-page: 120
  volume-title: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties
  year: 2018
  ident: 16440_CR72
– ident: 16440_CR14
– ident: 16440_CR31
– ident: 16440_CR66
  doi: 10.1145/3534678.3539387
– ident: 16440_CR76
  doi: 10.1038/s41598-021-96723-8
– ident: 16440_CR78
  doi: 10.1007/s41019-023-00206-x
– volume: 145
  start-page: 356
  year: 2022
  ident: 16440_CR36
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.11.001
– ident: 16440_CR49
– ident: 16440_CR12
  doi: 10.1109/TNN.2008.2005141
– ident: 16440_CR59
  doi: 10.1609/aaai.v29i1.9277
– volume: 2020
  start-page: 2704
  year: 2020
  ident: 16440_CR33
  publication-title: Proceedings of The Web Conference
– ident: 16440_CR20
– ident: 16440_CR84
  doi: 10.1016/j.aiopen.2021.01.001
– volume: 198
  start-page: 8
  year: 2022
  ident: 16440_CR34
  publication-title: Proceedings of the First Learning on Graphs Conference
– ident: 16440_CR45
– ident: 16440_CR41
– ident: 16440_CR57
  doi: 10.1609/aaai.v34i04.5997
– ident: 16440_CR24
– volume: 8
  start-page: 36
  year: 2023
  ident: 16440_CR77
  publication-title: Data Science and Engineering
  doi: 10.1007/s41019-023-00206-x
– ident: 16440_CR15
  doi: 10.1145/3575637.3575646
– ident: 16440_CR53
– ident: 16440_CR63
  doi: 10.24963/ijcai.2021/214
– volume: 9
  start-page: 12
  year: 1968
  ident: 16440_CR69
  publication-title: Nauchno-Tekhnicheskaya Informatsiya
– ident: 16440_CR5
– ident: 16440_CR30
– volume: 198
  start-page: 9
  year: 2022
  ident: 16440_CR21
  publication-title: Proceedings of the First Learning on Graphs Conference
– ident: 16440_CR25
– volume: 35
  start-page: 21358
  year: 2022
  ident: 16440_CR44
  publication-title: Advances in Neural Information Processing Systems
– ident: 16440_CR64
  doi: 10.1109/CVPR42600.2020.00178
– ident: 16440_CR67
– ident: 16440_CR82
– ident: 16440_CR40
– ident: 16440_CR1
  doi: 10.1016/j.patcog.2020.107637
– ident: 16440_CR19
  doi: 10.1109/CVPR.2018.00097
– ident: 16440_CR52
  doi: 10.1609/aimag.v29i3.2157
– volume: 20
  start-page: 81
  issue: 1
  year: 2009
  ident: 16440_CR11
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2008.2005141
– ident: 16440_CR85
– volume: 32
  start-page: 4
  issue: 1
  year: 2021
  ident: 16440_CR70
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2020.2978386
– ident: 16440_CR54
– ident: 16440_CR73
  doi: 10.1103/PhysRevLett.120.145301
– ident: 16440_CR6
– ident: 16440_CR16
– ident: 16440_CR87
  doi: 10.1093/bioinformatics/btx252
– ident: 16440_CR9
– ident: 16440_CR10
  doi: 10.1609/aaai.v24i1.7519
– ident: 16440_CR35
  doi: 10.1016/j.neunet.2021.11.001
– volume: 72
  start-page: 943
  year: 2021
  ident: 16440_CR47
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.1.13225
– ident: 16440_CR68
– ident: 16440_CR81
– ident: 16440_CR74
  doi: 10.1609/aaai.v33i01.33014602
– ident: 16440_CR60
– ident: 16440_CR22
SSID ssj0016524
Score 2.4770327
Snippet Graph Neural Networks (GNN) is one of the promising machine learning areas in solving real world problems such as social networks, recommender systems,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 23413
SubjectTerms Algorithms
Classification
Computer Communication Networks
Computer Science
Computer vision
Data Structures and Information Theory
Datasets
Graph neural networks
Graphs
Machine learning
Multimedia
Multimedia Information Systems
Neural networks
Operators (mathematics)
Pattern recognition
R&D
Recommender systems
Research & development
Social networks
Special Purpose and Application-Based Systems
Structured data
SummonAdditionalLinks – databaseName: Springer Standard Collection
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9KAHp1NxOiUHD4IGmjZdGm8iTg8yRcfYraRpAoLUsU7_fl_6saqooOcmIbzkvfdLf-8D4FiZ0CbaSCq1TShnyqPS-BaNoRHcpqwfFs1gxrdiOIwmE3lfJYXldbR7TUkWlrpJdmMulQR9DEWIzz3Kl2EF3V3kGjY8PI4X3AEuz6v0mO_nfXZBDa78QoUWHmbQ_t_eNmGjQpTkorwCW7Bksg60624NpFLeDqx_KD24DSfXrlI1cbU5cPKwDAYnd1NT0O75OVGkpA12YDS4Gl3e0KprAtWoTnPKFUtEwlMH_FKLeJArK33LpAh0yJT0mWHSCM-axIsEvn4iaVO0MjwRLLFhsAut7CUze0BkqoWvg8BIFXKDb1nhqBiNJsCqvqfDLrBajrGuKoq7xhbPcVML2cklRrnEhVxi3oXTxZxpWU_j19G9-njiSrfyGAGK-w_jBbILZ_VxNJ9_Xm3_b8MPYM1HBFMGnPWgNZ-9mkNY1W_zp3x2VNy5d2l_zlI
  priority: 102
  providerName: Springer Nature
Title Graph Neural Network Operators: a Review
URI https://link.springer.com/article/10.1007/s11042-023-16440-4
https://www.proquest.com/docview/2930093039
Volume 83
WOSCitedRecordID wos001051759100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest research library
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: M2O
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_4ddCDH1NxfowePAgabNrULF5Ex6agzjHHnF5KmyYgyJx2-vf70qarCu7iJVDapOG95H3kvbwfwH6kAh1LJYiQOiaMRi4RytMoDBVnOqEnQQYG07_h7XZ9MBAde-CW2rTKQiZmgjp5leaM_BjVkvG-XV-cjd6IQY0y0VULoTEL88ayMSl9t25jEkXAH-WgtnWXoGak9tJMfnWOmospqLEIOgzMJeynYiqtzV8B0kzvtFb-O-NVWLYWp3OeL5E1mFHDCqwUaA6O3dwVWPpWmnAdDi5NJWvH1O7Azu08Wdy5G6ksLJ-eOpGThxU2oNdq9hpXxKIqEInbbUxYRGMes8QYholGe5FFWniaCu7LgEbCo4oKxV2tYrfO0TuqC52gFGIxp7EO_E2YG74O1RY4IpHck76vRBQwhb4uN6EaiSJCRyeuDKpAC4qG0lYcN8AXL2FZK9lwIUQuhBkXQlaFw0mfUV5vY-rXuwXpQ7v30rCkexWOCuaVr_8ebXv6aDuw6KFFkyeg7cLc-P1D7cGC_Bw_p-81mOUPjzWYv2i2O118uuaklq1G03p32HaCJ2y79_0vCnvgmg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5EBfXgoyrWZw4Kgi5mk42bFURErS2t1UMRb0uy2QVB2tpUxR_lf3Q2D6uC3jx4TnZJMrPfzGQeH8B2pAMTKy2IUCYmjEYuEdozCIaaM5PQwyAjg7lt8XY7vLsTN2PwVvbC2LLKEhMzoE56yv4jP0CzZKNv1xcn_UdiWaNsdrWk0MjVoqlfXzBkS48b5yjfHc-rXXTO6qRgFSAK1W1IWERjHrPEOkaJQX-JRUZ4hgruq4BGwqOaCs1do2M35BgdhMIkeApZzGlsLEkEIv4E80Nuj1WTk4-kBb5XzqEbugQNMS16dPJOPWr7YNBAEoxPmEvYVzs4cm6_5WMzM1eb-2cfaB5mC3_aOc0PwAKM6W4F5kquCqeArgrMfBq8uAi7l3ZOt2Mnk-Didl4K71z3dVZ0kB45kZMnTZag8xcPvwzj3V5Xr4AjEsU95ftaRAHTGMlzm4hSCIAmOnRVUAVaClCqYp66pfV4kKNJ0FboEoUuM6FLVoW9jzX9fJrIr3evl5KWBbKkciTmKuyXujK6_PNuq7_vtgVT9c5VS7Ya7eYaTHvou-WlduswPhw86Q2YVM_D-3SwmSm9A_KPdegdTIQ0pg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS8MwFD6IiuiD84rTqX1QEDSsadNlEUREncrG3IOI-BLaNAFBtrlNxZ_mv_Okl1UFffPB5zah7flyLj2XD2An1IGJlBZEKBMRRkOXCO0ZVIaaMxPTWpCQwdy2eLtdv7sTnQl4z3thbFllrhMTRR33lP1HXkWzZKNv1xdVk5VFdM4ax_0nYhmkbKY1p9NIIdLUb68Yvg2Prs5Q1rue1zi_Ob0kGcMAUQi9EWEhjXjEYuskxQZ9JxYa4RkquK8CGgqPaio0d42O3DrHSKEuTIwnkkWcRsYSRqD2n-IYYtpqwk5wP05g4DumfLp1l6BRplm_Ttq1R21PDBpLgrEKcwn7ahMLR_dbbjYxeY3SP_5YCzCf-dnOSXowFmFCd5eglHNYOJlKW4K5TwMZl2Hvws7vduzEElzcTkvkneu-TooRhodO6KTJlBW4-YuHX4XJbq-r18ARseKe8n0twoBpjPC5TVApVIwmrLkqKAPNhSlVNmfd0n08ymJCtAWARADIBACSlWF_vKafThn59e5KLnWZaZyhLERehoMcN8Xln3db_323bZhB6MjWVbu5AbMeunRpBV4FJkeDZ70J0-pl9DAcbCX4d0D-MYQ-AOkHPco
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Neural+Network+Operators%3A+a+Review&rft.jtitle=Multimedia+tools+and+applications&rft.au=Sharma%2C+Anuj&rft.au=Singh%2C+Sukhdeep&rft.au=Ratna%2C+S&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=8&rft.spage=23413&rft.epage=23436&rft_id=info:doi/10.1007%2Fs11042-023-16440-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon