Automatic bug localization using a combination of deep learning and model transformation through node classification

Bug localization is the task of automatically locating suspicious commands in the source code. Many automated bug localization approaches have been proposed for reducing costs and speeding up the bug localization process. These approaches allow developers to focus on critical commands. In this paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Software quality journal Jg. 31; H. 4; S. 1045 - 1063
Hauptverfasser: Yousofvand, Leila, Soleimani, Seyfollah, Rafe, Vahid
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.12.2023
Springer Nature B.V
Schlagworte:
ISSN:0963-9314, 1573-1367
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Bug localization is the task of automatically locating suspicious commands in the source code. Many automated bug localization approaches have been proposed for reducing costs and speeding up the bug localization process. These approaches allow developers to focus on critical commands. In this paper, we propose to treat the bug localization problem as a node classification problem. As in the existing training sets, where whole graphs are labeled as buggy and bug-free, it is required first to label all nodes in each graph. To do this, we use the Gumtree algorithm, which labels the nodes by comparing the buggy graphs with their corresponding fixed graphs. In classification, we propose to use a type of graph neural networks (GNNs), GraphSAGE. The used dataset for training and testing is JavaScript buggy code and their corresponding fixed code. The results demonstrate that the proposed method outperforms other related methods.
AbstractList Bug localization is the task of automatically locating suspicious commands in the source code. Many automated bug localization approaches have been proposed for reducing costs and speeding up the bug localization process. These approaches allow developers to focus on critical commands. In this paper, we propose to treat the bug localization problem as a node classification problem. As in the existing training sets, where whole graphs are labeled as buggy and bug-free, it is required first to label all nodes in each graph. To do this, we use the Gumtree algorithm, which labels the nodes by comparing the buggy graphs with their corresponding fixed graphs. In classification, we propose to use a type of graph neural networks (GNNs), GraphSAGE. The used dataset for training and testing is JavaScript buggy code and their corresponding fixed code. The results demonstrate that the proposed method outperforms other related methods.
Bug localization is the task of automatically locating suspicious commands in the source code. Many automated bug localization approaches have been proposed for reducing costs and speeding up the bug localization process. These approaches allow developers to focus on critical commands. In this paper, we propose to treat the bug localization problem as a node classification problem. As in the existing training sets, where whole graphs are labeled as buggy and bug-free, it is required first to label all nodes in each graph. To do this, we use the Gumtree algorithm, which labels the nodes by comparing the buggy graphs with their corresponding fixed graphs. In classification, we propose to use a type of graph neural networks (GNNs), GraphSAGE. The used dataset for training and testing is JavaScript buggy code and their corresponding fixed code. The results demonstrate that the proposed method outperforms other related methods.
Author Yousofvand, Leila
Rafe, Vahid
Soleimani, Seyfollah
Author_xml – sequence: 1
  givenname: Leila
  surname: Yousofvand
  fullname: Yousofvand, Leila
  organization: Department of Computer Engineering, Faculty of Engineering, Arak University
– sequence: 2
  givenname: Seyfollah
  surname: Soleimani
  fullname: Soleimani, Seyfollah
  email: s-soleimani@araku.ac.ir
  organization: Department of Computer Engineering, Faculty of Engineering, Arak University
– sequence: 3
  givenname: Vahid
  surname: Rafe
  fullname: Rafe, Vahid
  organization: Department of Computer Engineering, Faculty of Engineering, Arak University, Department of Computing, Goldsmiths University of London
BookMark eNp9kMtOwzAQRS1UJNrCD7CyxNrgR5zHsqp4SZXYwNqyHSd1ldjFdhbw9aQJEhKLrqyZe49n5q7AwnlnALgl-J5gXDxEQiipEKYM4SqnHPELsCS8YIiwvFiA5dhlqGIkuwKrGA8Yn7BsCdJmSL6XyWqohhZ2XsvOfo-1d3CI1rVQQu17Zd3c8w2sjTnCzsjgJtnVsPe16WAK0sXGh352pn3wQ7uHbhSh7mSMtrF60q7BZSO7aG5-3zX4eHp8376g3dvz63azQ5qRKqGsMorQUud1YxTjUtasIlgTVZk641rzQuWsLBXXVBHNVSFJwzPDcM0oxjJna3A3_3sM_nMwMYmDH4IbRwpalmVW8orw0VXOLh18jME0Qts07TleZDtBsDiFJeaMxZixmDIWJ5T-Q4_B9jJ8nYfYDMXR7FoT_rY6Q_0A1hiTfw
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3587202
crossref_primary_10_1109_TR_2024_3374410
crossref_primary_10_1007_s11432_023_4127_5
crossref_primary_10_1016_j_infsof_2025_107722
crossref_primary_10_1007_s10462_023_10686_y
crossref_primary_10_1002_qre_70052
Cites_doi 10.1145/2000791.2000795
10.1609/aaai.v32i1.11782
10.1109/ICSE.2015.101
10.1142/S021819400900426X
10.1109/ICSME.2014.39
10.1016/S0020-7373(85)80054-7
10.1109/TAIC.PART.2007.13
10.1016/j.jss.2009.09.037
10.1007/s11432-019-2720-1
10.1109/TSE.2009.87
10.1007/3-540-48035-8_72
10.1109/3477.809023
10.1145/1985441.1985451
10.1016/j.entcs.2006.12.030
10.1145/2659118.2659125
10.1145/1101908.1101949
10.1109/52.88940
10.1145/3437963.3441720
10.1109/DSN.2002.1029005
10.1109/TNNLS.2020.2978386
10.1145/2001420.2001446
10.1109/ASE.2013.6693093
10.1109/TNN.2008.2005605
10.1016/j.aiopen.2021.01.001
10.1145/1028664.1028717
10.1109/TSMCC.2011.2118751
10.1109/LATW.2009.4813783
10.1145/2642937.2642982
10.1145/2771783.2771797
10.1109/ASE.2003.1240292
10.1109/32.6169
10.1109/MSR.2012.6224299
10.1142/S0218001409007326
10.1109/TSE.2013.24
10.1016/j.infsof.2010.04.002
10.1007/978-3-642-03237-0_17
10.1109/TSE.2017.2755013
10.1109/ASE.2008.23
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11219-023-09625-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-1367
EndPage 1063
ExternalDocumentID 10_1007_s11219_023_09625_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-49eb128c6dfeb35aad3910c1b9ed45cc57b6388b5c2b1c5b7a1f54e30d3200a63
IEDL.DBID M0C
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000956294600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0963-9314
IngestDate Wed Nov 05 03:34:07 EST 2025
Tue Nov 18 21:33:20 EST 2025
Sat Nov 29 03:13:13 EST 2025
Fri Feb 21 02:42:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
Graph neural networks
Bug localization
Node classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-49eb128c6dfeb35aad3910c1b9ed45cc57b6388b5c2b1c5b7a1f54e30d3200a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2888485915
PQPubID 29106
PageCount 19
ParticipantIDs proquest_journals_2888485915
crossref_citationtrail_10_1007_s11219_023_09625_5
crossref_primary_10_1007_s11219_023_09625_5
springer_journals_10_1007_s11219_023_09625_5
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Software quality journal
PublicationTitleAbbrev Software Qual J
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Mayer, W., & Stumptner, M. (2007). Model-based debugging: State of the art and future challenges. Electronic Notes in Theoretical Computer Science, 174(4).
Zakas, N. C. (2013). ESLint. https://eslint.org
Saha, R. K., Lease, M., Khurshid, S., & Perry, D. E. (2013). Improving bug localization using structured information retrieval. In Proceedings of IEEE/ACM International Conference on Automated Software Engineering (ASE).
Naish, L., Lee, H., & Ramamohanarao, K. (2011). A model for spectra-based software diagnosis. Journal of the ACM Transactions on Software Engineering and Methodology, 20(3).
Wang, Q., Parnin, C., & Orso, A. (2015). Evaluating the usefulness of IR-based fault localization techniques. In Proceedings of International Symposium on Software Testing and Analysis (ISSTA).
Zhong, H., & Mei, H. (2020). Learning a graph-based classifier for fault localization. Science China Information Sciences, 63.
Wong, W. E., Debroy, V., & Xu, D. (2012). Towards better fault localization: A crosstab-based statistical approach. IEEE Trans, 42(3).
Dinella, E., Dai, H., Li, Z., Naik, M., Song, L., & Wang, K. (2020). Hoppity: Learning graph transformations to detect and fix bugs in programs. In International Conference on Learning Representations (ICLR).
Mateis, C., Stumptner, M., & Wotawa, F. (2000). Modeling Java Programs for Diagnosis. In Proceedings of European Conference on Artificial Intelligence.
Falleri, J. R., Morandat, F., Blanc, X., Martinez, M., & Monperrus, M. (2014). Fine-grained and accurate source code differencing. In Proceedings of the 29th ACM/IEEE international conference on Automated software engineering.
Renieris, M., & Reiss, S. (2003). Fault localization with nearest neighbor queries. In Proceedings of International Conference on Automated Software Engineering.
Agarwal, P., & Agrawal, A. (2014). Fault-localization techniques for software systems: A literature review. In SIGSOFT Software Engineering Notes.
Hao, D., Xie, T., Zhang, L., Wang, X., Sun, J., & Mei, H. (2012). Test input reduction for result inspection to facilitate fault localization. Automated Software Engineering.
Qiong, G., Xian-Ming, W., Zhao, W., Bing, N., & Chun-Sheng, X. (2016). An improved SMOTE algorithm based on genetic algorithm for imbalanced data classification. Journal of Digital Information Management, 14(2).
Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer networks. In Advances in Neural Information Processing Systems.
Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Inductive representation learning on large graphs. In Proceedings of the 31st International Conference on Neural Information Processing Systems.
Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In The International Conference on Learning Representations (ICLR).
Wotawa, F., Stumptner, M., & Mayer, W. (2002). Model-based debugging or how to diagnose programs automatically. In Proceedings of International Conference on Industrial and Engineering, Applications of Artificial Intelligence and Expert Systems.
Kim, D., Tao, Y., Kim, S., & Zeller, A. (2013). Where should we fix this bug? A two-phase recommendation model. IEEE Transactions on Software Engineering, 39(11).
Paszke, A., Sam, G., Francisco, M., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). PyTorch: An imperative style, high-performance deep learning library.
Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural network model. IEEE Transactions on Neural Networks, 61–80.
Lee, C.-C., Chung, P.-C., Tsai, J.-R., & Chang, C.-I. (1999). Robust radial basis function neural networks. IEEE Transactions on Systems, 29(6).
Rao, S., & Kak, A. (2011). “Retrieval from software libraries for bug localization: A comparative study of generic and composite text models. In MSR.
Chen, M., Kiciman, E., Fratkin, E., Fox, A., & Brewer, E. (2002). Pinpoint: Problem determination in large, dynamic internet services. In International Conference on Dependable Systems and Networks (DSN).
Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2018). Graph attention networks. In ICLR.
Sisman, B., & Kak, A. C. (2012). Incorporating version histories in information retrieval based bug localization. In Proceedings of 9th IEEE Working Conference on Mining Software Repositories.
Wong, W. E., & Qi, Y. (2009). BP neural network-based effective fault localization. International Journal of Software Engineering and Knowledge Engineering, 19(4).
Lukins, S. K., Kraft, N. A., & Etzkorn, L. H. (2012). Bug localization using latent Dirichlet allocation. Information and Software Technology, 52(9).
Jones, J. A., & Harrold, M. J. (2005). Empirical evaluation of the Tarantula automatic fault-localization technique. In International Conference on Automated Software Engineering (ASE).
Korel, B. (1998). PELAS – program error-locating assistant system. IEEE Transactions on Software Engineering, 14(9).
Vessey, I. (1985). Expertise in debugging computer programs: A process analysis. International Journal of Man-Machine Studies, 23(5).
Agrawal, H., De Millo, R. A., & Spafford, E. (1991). An execution backtracking approach to program debugging. IEEE Software, 8(5).
Jensen, S. H., Møller, A., & Thiemann, P. (2009). Type analysis for javascript. In Proceedings of the 16th International Symposium on Static Analysis.
Hovemeyer, D., & Pugh, W. (2004). Finding bugs is easy. In Companion to the Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). ACM.
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2020). A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 1–21.
Baah, G. K., Podgurski, A., & Harrold, M. J. (2010). The probabilistic program dependence graph and its application to fault diagnosis. IEEE Transactions on Software Engineering, 36(4).
Meyers, R. A. (2001). Encyclopedia of physical science and technology, third edition. Academic Press.
Zhong, H., & Su, Z. (2015). An empirical study on real bug fixes. In Proceedings of the International Conference on Software Engineering (ICSE).
Mayer, W., Stumptner, M., Wieland, D., & Wotawa, F. (2002). Can AI help to improve debugging substantially? Debugging experiences with value-based models. In Proceedings of European Conference on Artificial Intelligence.
Gazzola, L., Micucci, D., & Mariani, L. (2017). Automatic software repair: A survey. IEEE Transactions on Software Engineering, 45(1).
Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T., Karypis, G., Li, J., & Zhang, Z. (2020). Deep graph library: A graph-centric, highly-performant package for graph neural networks. In arXiv:1909.01315
Ascari, L. C., Araki, L. Y., Pozo, A. R., & Vergilio, S. R. (2009). Exploring machine learning techniques for fault localization. In Proceedings of 10th Latin American Test Workshop.
WongWEDebroyVChoiBA family of code coveragebased heuristics for effective faultThe Journal of Systems and Software (JSS)201083218820810.1016/j.jss.2009.09.037
Pmd. (2021). PMD 6.41.0.  https://pmd.github.io/.  Accessed 22 January 2022.
Allamanis, M., Brockschmidt, M., & Khademi, M. (2018). Learning to represent programs with graphs. In International Conference on Learning Representations(ICLR).
Wong, W. E., & Qi, Y. (2019). BP Neural Network-based Effective Fault Localization. International Journal of Software Engineering and Knowledge Engineering, 19(4).
Le Goues, C. (2013). Automatic program repair using genetic programming. University of Virginia: Ph.D. dissertation.
Wang, S., Lo, D., & Lawall, J. (2014). Compositional vector space models for improved bug localization. In Proceedings of IEEE International Conference on Software Maintenance and Evolution (ICSME).
Zhao, T., Zhang, X., & Wang, S. (2021). GraphSMOTE: Imbalanced node classification on graphs with graph neural networks. In Proceedings of the Fourteenth ACM International Conference on Web Search and Data Mining (WSDM ’21).
Abreu, R., & van Gemund, A. J. C. (2009). A low-cost approximate minimal hitting set algorithm and its application to model-based diagnosis. In Proceedings of the Eight Symposium on Abstraction, Reformulation, and Approximation.
Abreu, R., Zoeteweij, P. & van Gemund, A. J. C. (2007). On the accuracy of spectrum-based fault localization. In Academic and Industrial Conference Practice and Research Techniques -Mutation (Taicpart-mutation).
DiGiuseppe, N., & Jones, J. A. (2011). On the influence of multiple faults on coverage-based fault localization. In Proceedings of the 2011 International Symposium on Software Testing and Analysis (ISSTA).
https://github.com/AI-nstein/hoppity. [Online].
Zhang, M., Cui, Z., Neumann, M., & Chen, Y. (2018). An end-to-end deep learning architecture for graph classification. In Proceedings of AAAI, Marion Neumann, and Yixin Chen.
ZhouJCuiGHuSZhangZYangCLiuZWangLLiCSunMGraph neural networks: A review of methods and applicationsAI Open20201578110.1016/j.aiopen.2021.01.001
Mayer, W., & Stumptner, M. (2008). Evaluating models for model-based debugging. in Proceedings of ACM International Conference on Automated Software Engineering.
Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., & Leskovec, J. (2020). Open graph benchmark: Datasets for machine learning on graphs. In Thirty-fifth Annual Conference on Neural Information Processing Systems. NeurIPS.
State of the octoverse. (2021). [Online]. Available: https://octoverse.github.com/#top-languages-over-the-years
Sun, Y., Wong, A. K. C., & Kamel, M. S. (2009). Classification of imbalancd data: A review. International Journal of Pattern Recognition and Artificial Intelligence, 23(4).
9625_CR49
J Zhou (9625_CR56) 2020; 1
9625_CR48
9625_CR47
9625_CR46
9625_CR44
9625_CR43
9625_CR42
9625_CR6
9625_CR41
9625_CR7
9625_CR40
9625_CR8
9625_CR9
9625_CR2
9625_CR3
9625_CR4
9625_CR5
9625_CR1
9625_CR39
9625_CR38
9625_CR37
9625_CR36
9625_CR35
9625_CR34
9625_CR33
9625_CR32
9625_CR31
9625_CR30
9625_CR29
9625_CR28
WE Wong (9625_CR45) 2010; 83
9625_CR27
9625_CR26
9625_CR25
9625_CR24
9625_CR23
9625_CR22
9625_CR21
9625_CR20
9625_CR19
9625_CR18
9625_CR17
9625_CR16
9625_CR15
9625_CR59
9625_CR14
9625_CR58
9625_CR13
9625_CR57
9625_CR12
9625_CR11
9625_CR55
9625_CR10
9625_CR54
9625_CR53
9625_CR52
9625_CR51
9625_CR50
References_xml – reference: Saha, R. K., Lease, M., Khurshid, S., & Perry, D. E. (2013). Improving bug localization using structured information retrieval. In Proceedings of IEEE/ACM International Conference on Automated Software Engineering (ASE).
– reference: Abreu, R., & van Gemund, A. J. C. (2009). A low-cost approximate minimal hitting set algorithm and its application to model-based diagnosis. In Proceedings of the Eight Symposium on Abstraction, Reformulation, and Approximation.
– reference: Zhao, T., Zhang, X., & Wang, S. (2021). GraphSMOTE: Imbalanced node classification on graphs with graph neural networks. In Proceedings of the Fourteenth ACM International Conference on Web Search and Data Mining (WSDM ’21).
– reference: DiGiuseppe, N., & Jones, J. A. (2011). On the influence of multiple faults on coverage-based fault localization. In Proceedings of the 2011 International Symposium on Software Testing and Analysis (ISSTA).
– reference: Zhang, M., Cui, Z., Neumann, M., & Chen, Y. (2018). An end-to-end deep learning architecture for graph classification. In Proceedings of AAAI, Marion Neumann, and Yixin Chen.
– reference: Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., & Leskovec, J. (2020). Open graph benchmark: Datasets for machine learning on graphs. In Thirty-fifth Annual Conference on Neural Information Processing Systems. NeurIPS.
– reference: Wotawa, F., Stumptner, M., & Mayer, W. (2002). Model-based debugging or how to diagnose programs automatically. In Proceedings of International Conference on Industrial and Engineering, Applications of Artificial Intelligence and Expert Systems.
– reference: Vessey, I. (1985). Expertise in debugging computer programs: A process analysis. International Journal of Man-Machine Studies, 23(5).
– reference: Wong, W. E., Debroy, V., & Xu, D. (2012). Towards better fault localization: A crosstab-based statistical approach. IEEE Trans, 42(3).
– reference: Abreu, R., Zoeteweij, P. & van Gemund, A. J. C. (2007). On the accuracy of spectrum-based fault localization. In Academic and Industrial Conference Practice and Research Techniques -Mutation (Taicpart-mutation).
– reference: Chen, M., Kiciman, E., Fratkin, E., Fox, A., & Brewer, E. (2002). Pinpoint: Problem determination in large, dynamic internet services. In International Conference on Dependable Systems and Networks (DSN).
– reference: Gazzola, L., Micucci, D., & Mariani, L. (2017). Automatic software repair: A survey. IEEE Transactions on Software Engineering, 45(1).
– reference: Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In The International Conference on Learning Representations (ICLR).
– reference: ZhouJCuiGHuSZhangZYangCLiuZWangLLiCSunMGraph neural networks: A review of methods and applicationsAI Open20201578110.1016/j.aiopen.2021.01.001
– reference: Wang, S., Lo, D., & Lawall, J. (2014). Compositional vector space models for improved bug localization. In Proceedings of IEEE International Conference on Software Maintenance and Evolution (ICSME).
– reference: Mayer, W., & Stumptner, M. (2008). Evaluating models for model-based debugging. in Proceedings of ACM International Conference on Automated Software Engineering.
– reference: Baah, G. K., Podgurski, A., & Harrold, M. J. (2010). The probabilistic program dependence graph and its application to fault diagnosis. IEEE Transactions on Software Engineering, 36(4).
– reference: Wong, W. E., & Qi, Y. (2009). BP neural network-based effective fault localization. International Journal of Software Engineering and Knowledge Engineering, 19(4).
– reference: Agrawal, H., De Millo, R. A., & Spafford, E. (1991). An execution backtracking approach to program debugging. IEEE Software, 8(5).
– reference: Kim, D., Tao, Y., Kim, S., & Zeller, A. (2013). Where should we fix this bug? A two-phase recommendation model. IEEE Transactions on Software Engineering, 39(11).
– reference: Hao, D., Xie, T., Zhang, L., Wang, X., Sun, J., & Mei, H. (2012). Test input reduction for result inspection to facilitate fault localization. Automated Software Engineering.
– reference: Mateis, C., Stumptner, M., & Wotawa, F. (2000). Modeling Java Programs for Diagnosis. In Proceedings of European Conference on Artificial Intelligence.
– reference: Paszke, A., Sam, G., Francisco, M., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). PyTorch: An imperative style, high-performance deep learning library.
– reference: State of the octoverse. (2021). [Online]. Available: https://octoverse.github.com/#top-languages-over-the-years
– reference: Jensen, S. H., Møller, A., & Thiemann, P. (2009). Type analysis for javascript. In Proceedings of the 16th International Symposium on Static Analysis.
– reference: Mayer, W., Stumptner, M., Wieland, D., & Wotawa, F. (2002). Can AI help to improve debugging substantially? Debugging experiences with value-based models. In Proceedings of European Conference on Artificial Intelligence.
– reference: Lukins, S. K., Kraft, N. A., & Etzkorn, L. H. (2012). Bug localization using latent Dirichlet allocation. Information and Software Technology, 52(9).
– reference: Dinella, E., Dai, H., Li, Z., Naik, M., Song, L., & Wang, K. (2020). Hoppity: Learning graph transformations to detect and fix bugs in programs. In International Conference on Learning Representations (ICLR).
– reference: Korel, B. (1998). PELAS – program error-locating assistant system. IEEE Transactions on Software Engineering, 14(9).
– reference: Naish, L., Lee, H., & Ramamohanarao, K. (2011). A model for spectra-based software diagnosis. Journal of the ACM Transactions on Software Engineering and Methodology, 20(3).
– reference: Zhong, H., & Su, Z. (2015). An empirical study on real bug fixes. In Proceedings of the International Conference on Software Engineering (ICSE).
– reference: Jones, J. A., & Harrold, M. J. (2005). Empirical evaluation of the Tarantula automatic fault-localization technique. In International Conference on Automated Software Engineering (ASE).
– reference: Wong, W. E., & Qi, Y. (2019). BP Neural Network-based Effective Fault Localization. International Journal of Software Engineering and Knowledge Engineering, 19(4).
– reference: Sisman, B., & Kak, A. C. (2012). Incorporating version histories in information retrieval based bug localization. In Proceedings of 9th IEEE Working Conference on Mining Software Repositories.
– reference: Zakas, N. C. (2013). ESLint. https://eslint.org/
– reference: https://github.com/AI-nstein/hoppity. [Online].
– reference: Renieris, M., & Reiss, S. (2003). Fault localization with nearest neighbor queries. In Proceedings of International Conference on Automated Software Engineering.
– reference: Agarwal, P., & Agrawal, A. (2014). Fault-localization techniques for software systems: A literature review. In SIGSOFT Software Engineering Notes.
– reference: Ascari, L. C., Araki, L. Y., Pozo, A. R., & Vergilio, S. R. (2009). Exploring machine learning techniques for fault localization. In Proceedings of 10th Latin American Test Workshop.
– reference: Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T., Karypis, G., Li, J., & Zhang, Z. (2020). Deep graph library: A graph-centric, highly-performant package for graph neural networks. In arXiv:1909.01315
– reference: Le Goues, C. (2013). Automatic program repair using genetic programming. University of Virginia: Ph.D. dissertation.
– reference: Wang, Q., Parnin, C., & Orso, A. (2015). Evaluating the usefulness of IR-based fault localization techniques. In Proceedings of International Symposium on Software Testing and Analysis (ISSTA).
– reference: Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2018). Graph attention networks. In ICLR.
– reference: Allamanis, M., Brockschmidt, M., & Khademi, M. (2018). Learning to represent programs with graphs. In International Conference on Learning Representations(ICLR).
– reference: Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer networks. In Advances in Neural Information Processing Systems.
– reference: Falleri, J. R., Morandat, F., Blanc, X., Martinez, M., & Monperrus, M. (2014). Fine-grained and accurate source code differencing. In Proceedings of the 29th ACM/IEEE international conference on Automated software engineering.
– reference: Zhong, H., & Mei, H. (2020). Learning a graph-based classifier for fault localization. Science China Information Sciences, 63.
– reference: Lee, C.-C., Chung, P.-C., Tsai, J.-R., & Chang, C.-I. (1999). Robust radial basis function neural networks. IEEE Transactions on Systems, 29(6).
– reference: Hovemeyer, D., & Pugh, W. (2004). Finding bugs is easy. In Companion to the Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). ACM.
– reference: Meyers, R. A. (2001). Encyclopedia of physical science and technology, third edition. Academic Press.
– reference: Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2020). A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 1–21.
– reference: Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Inductive representation learning on large graphs. In Proceedings of the 31st International Conference on Neural Information Processing Systems.
– reference: Sun, Y., Wong, A. K. C., & Kamel, M. S. (2009). Classification of imbalancd data: A review. International Journal of Pattern Recognition and Artificial Intelligence, 23(4).
– reference: WongWEDebroyVChoiBA family of code coveragebased heuristics for effective faultThe Journal of Systems and Software (JSS)201083218820810.1016/j.jss.2009.09.037
– reference: Pmd. (2021). PMD 6.41.0.  https://pmd.github.io/.  Accessed 22 January 2022.
– reference: Rao, S., & Kak, A. (2011). “Retrieval from software libraries for bug localization: A comparative study of generic and composite text models. In MSR.
– reference: Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural network model. IEEE Transactions on Neural Networks, 61–80.
– reference: Mayer, W., & Stumptner, M. (2007). Model-based debugging: State of the art and future challenges. Electronic Notes in Theoretical Computer Science, 174(4).
– reference: Qiong, G., Xian-Ming, W., Zhao, W., Bing, N., & Chun-Sheng, X. (2016). An improved SMOTE algorithm based on genetic algorithm for imbalanced data classification. Journal of Digital Information Management, 14(2).
– ident: 9625_CR31
  doi: 10.1145/2000791.2000795
– ident: 9625_CR55
  doi: 10.1609/aaai.v32i1.11782
– ident: 9625_CR27
– ident: 9625_CR58
  doi: 10.1109/ICSE.2015.101
– ident: 9625_CR10
– ident: 9625_CR47
  doi: 10.1142/S021819400900426X
– ident: 9625_CR14
– ident: 9625_CR42
  doi: 10.1109/ICSME.2014.39
– ident: 9625_CR52
  doi: 10.1016/S0020-7373(85)80054-7
– ident: 9625_CR2
  doi: 10.1109/TAIC.PART.2007.13
– volume: 83
  start-page: 188
  issue: 2
  year: 2010
  ident: 9625_CR45
  publication-title: The Journal of Systems and Software (JSS)
  doi: 10.1016/j.jss.2009.09.037
– ident: 9625_CR57
  doi: 10.1007/s11432-019-2720-1
– ident: 9625_CR7
  doi: 10.1109/TSE.2009.87
– ident: 9625_CR33
– ident: 9625_CR20
– ident: 9625_CR49
  doi: 10.1007/3-540-48035-8_72
– ident: 9625_CR23
  doi: 10.1109/3477.809023
– ident: 9625_CR35
  doi: 10.1145/1985441.1985451
– ident: 9625_CR26
  doi: 10.1016/j.entcs.2006.12.030
– ident: 9625_CR28
– ident: 9625_CR24
– ident: 9625_CR4
  doi: 10.1145/2659118.2659125
– ident: 9625_CR19
  doi: 10.1145/1101908.1101949
– ident: 9625_CR3
  doi: 10.1109/52.88940
– ident: 9625_CR51
– ident: 9625_CR13
– ident: 9625_CR59
  doi: 10.1145/3437963.3441720
– ident: 9625_CR30
– ident: 9625_CR8
  doi: 10.1109/DSN.2002.1029005
– ident: 9625_CR50
  doi: 10.1109/TNNLS.2020.2978386
– ident: 9625_CR9
  doi: 10.1145/2001420.2001446
– ident: 9625_CR17
– ident: 9625_CR34
– ident: 9625_CR44
– ident: 9625_CR37
  doi: 10.1109/ASE.2013.6693093
– ident: 9625_CR38
  doi: 10.1109/TNN.2008.2005605
– ident: 9625_CR1
– ident: 9625_CR48
– volume: 1
  start-page: 57
  year: 2020
  ident: 9625_CR56
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
– ident: 9625_CR15
  doi: 10.1145/1028664.1028717
– ident: 9625_CR40
– ident: 9625_CR46
  doi: 10.1109/TSMCC.2011.2118751
– ident: 9625_CR6
  doi: 10.1109/LATW.2009.4813783
– ident: 9625_CR11
  doi: 10.1145/2642937.2642982
– ident: 9625_CR43
  doi: 10.1145/2771783.2771797
– ident: 9625_CR5
– ident: 9625_CR36
  doi: 10.1109/ASE.2003.1240292
– ident: 9625_CR54
– ident: 9625_CR16
– ident: 9625_CR21
  doi: 10.1109/32.6169
– ident: 9625_CR39
  doi: 10.1109/MSR.2012.6224299
– ident: 9625_CR41
  doi: 10.1142/S0218001409007326
– ident: 9625_CR22
  doi: 10.1109/TSE.2013.24
– ident: 9625_CR25
  doi: 10.1016/j.infsof.2010.04.002
– ident: 9625_CR32
– ident: 9625_CR18
  doi: 10.1007/978-3-642-03237-0_17
– ident: 9625_CR12
  doi: 10.1109/TSE.2017.2755013
– ident: 9625_CR53
– ident: 9625_CR29
  doi: 10.1109/ASE.2008.23
SSID ssj0010074
Score 2.3630874
Snippet Bug localization is the task of automatically locating suspicious commands in the source code. Many automated bug localization approaches have been proposed...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1045
SubjectTerms Algorithms
Classification
Compilers
Computer Science
Data Structures and Information Theory
Deep learning
Graph neural networks
Graphs
Interpreters
Labels
Localization
Machine learning
Nodes
Operating Systems
Programming Languages
Software Engineering/Programming and Operating Systems
Source code
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcODCeIrBQDlwg0hr0zTNcUJMnCbES7tVeXVCQh3aOn4_TpqugAAJrnWaVnEcf1ZsfwidZw4EcyMItZkiCS8ikiltCBWAXiOhB9rWZBN8PM4mE3EbisIWTbZ7cyXpT-q22C2KXcFNTAnA7pgRto42wN1ljrDh7v5pdXfgvKLvsJdSImiUhFKZ7-f47I5ajPnlWtR7m1H3f_-5g7YDusTDejvsojVb7qFuw9yAgyHvo2q4rGa-WStWyyn2Di0UZGKXCT_FEsPXIGqun80KbKx9xYFjAsSlwZ5EB1cfkC-MDLw_uAQh1g6au1wkLztAj6Prh6sbEvgXiAbDrEgi4CCPM52aAkJuJqWhAC50pIQ1CdOacQXWmymmYxVppriMCpZYOjAUbE-m9BB1yllpjxCWqTSMCqWYFAmnXGpbCGWZVAlPAUT2UNSoIdehObnjyHjJ27bKbllzWNbcL2vOeuhi9c5r3Zrj19H9Rrt5MNNFHkP8n7gOfiC-bLTZin-e7fhvw0_QlqOpr9Ng-qhTzZf2FG3qt-p5MT_z2_cdFJzrDQ
  priority: 102
  providerName: Springer Nature
Title Automatic bug localization using a combination of deep learning and model transformation through node classification
URI https://link.springer.com/article/10.1007/s11219-023-09625-5
https://www.proquest.com/docview/2888485915
Volume 31
WOSCitedRecordID wos000956294600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1367
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010074
  issn: 0963-9314
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6Vx6EXoNCK5bHyoTew2MRxHJ8QIFClqtsVLa9eIr-CKlXZhc3y-xk7DgtIcOnFUjLOQxqP57M9Mx_A18KDYGElZa7QNBNVQgttLGUS0WsizcC4lmxCDIfF9bUcxQ23aQyr7ObEMFHbsfF75AcpLtUyX2yNH07uqGeN8qerkUJjAZY8svEhfT8GJ0-nCN4_hlp7OaOSJVlMmmlT55LUp--kjKI45ZS_dExztPnqgDT4nbPV__3jNViJiJMctUPkE3xw9TqsdmwOJBr3BjRHs2YcCrgSPbslwcnFJE3io-NviSL4YVxJt_fGFbHOTUjknUBxbUkg1iHNMzSMPSMXEKlRSIyH6z4-Kcg-w8XZ6e-TbzRyMlCDxtrQTOLknhYmtxUuw7lSliHgMImWzmbcGC40WnShuUl1YrgWKql45tjAMrRHlbMvsFiPa7cJROXKcia15kpmggllXCW140pnIkdg2YOkU0hpYsFyz5vxr5yXWvZKLFGJZVBiyXuw9_TMpC3X8W7vnU5zZTTdaTlXWw_2O93PxW-_bev9t23DR09V34bC7MBicz9zu7BsHpq_0_s-LIirmz4sHZ8OR-d49V3QfhjMvk1_Yjvif7A9_3X5CKVK-5I
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFgkutLzEQik-0BNYNH7E8QGhClq12rLqoUi9Bb9SVULZpZsF8af4jYwdpwtI7a2HnsexZOfzPOyZ-QBeV9EJVl5THipLhWoKWlnnKdfovRba7bjQk02oyaQ6PdXHK_B7qIWJaZWDTkyK2k9dvCN_xzBUE7HZmvww-04ja1R8XR0oNHpYjMOvnxiyzd8ffsL_u83Y_t7JxwOaWQWoQ7h1VGhUT6xypW8wkJTGeI4m0xVWBy-kc1JZxGRlpWO2cNIqUzRSBL7jOSLKlBznvQNrglcqnquxopevFtEep95-JaeaFyIX6fSlegWL5UKMUxQzSeW_hnDp3f73IJvs3P76bduhDXiQPWqy2x-Bh7AS2kewPrBVkKy8HkO3u-imqUEtsYszkox4LkIlMfv_jBiCC7Xn_f0omTbEhzAjmVcDxa0niTiIdH95-zgycx2RFoXExXAk5l8l2RP4ciNrfwqr7bQNz4CY0njJtbXSaKG4Mi402gZprFAlOs4jKAYA1C43ZI-8IN_qZSvpCJoaQVMn0NRyBG8uv5n17UiuHb05IKXOqmleL2EygrcD1pbiq2d7fv1sr-Dewcnno_rocDJ-AfdZhHpK-9mE1e5iEV7CXfejO59fbKVDQ-DrTWPwD__ZUw0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RWlVcoE-xFFof2lNrQew4jg8VQtBVEdVqD62Eekn9CkKqsgubBfHX-HWMHYdtkcqNQ8_jWLLzeR72zHwA78vgBEunKPelobmsM1oa6yhX6L1myu5Y35FNyNGoPD5W4yW47mthQlplrxOjonYTG-7ItxmGanlotia265QWMT4Y7k7PaGCQCi-tPZ1GB5Ejf3WJ4dvs8-EB_usPjA2_fN__ShPDALUIvZbmClUVK23hagwqhdaOo_m0mVHe5cJaIQ3iszTCMpNZYaTOapF7vuM4oksXHOd9BI8lxpghnXAsft6-YATbHPv8FZwqnuWpYKcr28tYKB1inKKYCSr-NooLT_fO42y0ecO1_3m3nsFq8rTJXnc0nsOSb17AWs9iQZJSewnt3rydxMa1xMxPSDTuqTiVhKqAE6IJLtqcdvemZFIT5_2UJL4NFDeOREIh0v4RBeDIxIFEGhQSG8KUkJcVZa_gx4Os_TUsN5PGrwPRhXaCK2OEVrnkUltfK-OFNrks0KEeQNaDobKpUXvgC_ldLVpMBwBVCKAqAqgSA_h4-820a1Ny7-jNHjVVUlmzagGZAXzqcbcQ_3u2jftnewdPEXrVt8PR0RtYYQH1MRtoE5bb87nfgif2oj2dnb-N54fAr4eG4A3eY1wx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+bug+localization+using+a+combination+of+deep+learning+and+model+transformation+through+node+classification&rft.jtitle=Software+quality+journal&rft.au=Yousofvand%2C+Leila&rft.au=Soleimani%2C+Seyfollah&rft.au=Rafe%2C+Vahid&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0963-9314&rft.eissn=1573-1367&rft.volume=31&rft.issue=4&rft.spage=1045&rft.epage=1063&rft_id=info:doi/10.1007%2Fs11219-023-09625-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-9314&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-9314&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-9314&client=summon