Differential fault attacks on the lightweight authenticated encryption algorithm CLX-128
We investigate a technique that needs to apply multiple random faults to the same target location and compare the impact of these faults on the fault-free and faulty output to recover specific secret variable. A mix of random effective and ineffective faults is considered in our analysis. In this pa...
Uloženo v:
| Vydáno v: | Journal of cryptographic engineering Ročník 13; číslo 3; s. 265 - 281 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 2190-8508, 2190-8516 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We investigate a technique that needs to apply multiple random faults to the same target location and compare the impact of these faults on the fault-free and faulty output to recover specific secret variable. A mix of random effective and ineffective faults is considered in our analysis. In this paper, we apply these random faults to CLX-128, a first round candidate in the National Institute of Standards and Technology lightweight cryptography project, to recover the secret key of the cipher. We also investigate the bit-flipping fault applications to CLX-128. We show that both of these fault models can be applied to CLX-128 to recover its internal state. The application of the random fault model to CLX-128 requires 134 faulty queries to recover certain state bits, whereas the bit-flipping fault model requires 54 faulty queries to recover certain state bits. The remaining state bits are recovered by solving a system of linear equations. The complexity of the attacks is
2
36
. In our applications, the random fault model requires comparatively large number of faults, but the underlying assumptions of the random fault model are less strict and hence more practical, as the adversary does not need to have a prior knowledge on the impact of the fault. |
|---|---|
| AbstractList | We investigate a technique that needs to apply multiple random faults to the same target location and compare the impact of these faults on the fault-free and faulty output to recover specific secret variable. A mix of random effective and ineffective faults is considered in our analysis. In this paper, we apply these random faults to CLX-128, a first round candidate in the National Institute of Standards and Technology lightweight cryptography project, to recover the secret key of the cipher. We also investigate the bit-flipping fault applications to CLX-128. We show that both of these fault models can be applied to CLX-128 to recover its internal state. The application of the random fault model to CLX-128 requires 134 faulty queries to recover certain state bits, whereas the bit-flipping fault model requires 54 faulty queries to recover certain state bits. The remaining state bits are recovered by solving a system of linear equations. The complexity of the attacks is
2
36
. In our applications, the random fault model requires comparatively large number of faults, but the underlying assumptions of the random fault model are less strict and hence more practical, as the adversary does not need to have a prior knowledge on the impact of the fault. We investigate a technique that needs to apply multiple random faults to the same target location and compare the impact of these faults on the fault-free and faulty output to recover specific secret variable. A mix of random effective and ineffective faults is considered in our analysis. In this paper, we apply these random faults to CLX-128, a first round candidate in the National Institute of Standards and Technology lightweight cryptography project, to recover the secret key of the cipher. We also investigate the bit-flipping fault applications to CLX-128. We show that both of these fault models can be applied to CLX-128 to recover its internal state. The application of the random fault model to CLX-128 requires 134 faulty queries to recover certain state bits, whereas the bit-flipping fault model requires 54 faulty queries to recover certain state bits. The remaining state bits are recovered by solving a system of linear equations. The complexity of the attacks is 236. In our applications, the random fault model requires comparatively large number of faults, but the underlying assumptions of the random fault model are less strict and hence more practical, as the adversary does not need to have a prior knowledge on the impact of the fault. |
| Author | Pieprzyk, Josef Yau, Wei-Chuen Phan, Raphaël C.-W. Salam, Iftekhar |
| Author_xml | – sequence: 1 givenname: Iftekhar orcidid: 0000-0003-1395-4623 surname: Salam fullname: Salam, Iftekhar organization: School of Computing and Data Science, Xiamen University Malaysia – sequence: 2 givenname: Wei-Chuen orcidid: 0000-0003-4059-6358 surname: Yau fullname: Yau, Wei-Chuen email: wcyau@xmu.edu.my organization: School of Computing and Data Science, Xiamen University Malaysia – sequence: 3 givenname: Raphaël C.-W. surname: Phan fullname: Phan, Raphaël C.-W. organization: School of IT, Monash University, Department of Software Systems and Cybersecurity, Faculty of IT, Monash University – sequence: 4 givenname: Josef surname: Pieprzyk fullname: Pieprzyk, Josef organization: Data61, Commonwealth Scientific and Industrial Research Organisation, Institute of Computer Science, Polish Academy of Sciences |
| BookMark | eNp9kM1KAzEURoNUsNa-gKuA69GbZNJJllJ_oeBGobuQSZM2Op2pSQbx7U0dUXDRzc0lnJN8fKdo1HatReicwCUBqK4iYUzIAigrABidFXCExpRIKAQns9HvDuIETWP0NTBWAucVG6PljXfOBtsmrxvsdN8krFPS5i3irsVpY3Hj15v0YfcT6z7fZNboZFfYtiZ87pLPoG7WXfBps8XzxbIgVJyhY6ebaKc_5wS93N0-zx-KxdP94_x6URhGZCpKAXXFaakr44go6xoMSGlkbbWVjjlOXVmJkkMNdmVnztbGCDAV047Biks2QRfDu7vQvfc2JvXa9aHNXypGOScUmCSZEgNlQhdjsE4Zn_Q-eQraN4qA2lephipVrlJ9V6kgq_Sfugt-q8PnYYkNUsxwu7bhL9UB6wvESYjw |
| CitedBy_id | crossref_primary_10_3390_sym16030348 |
| Cites_doi | 10.1007/978-3-642-34931-7 10.1007/978-3-030-68890-5 10.7873/DATE.2015.0921 10.1007/978-3-540-74735-2 10.1007/978-981-10-2738-3 10.1145/3167918.3167940 10.1007/978-3-642-40349-1 10.1109/JPROC.2012.2188769 10.3390/cryptography2010004 10.1007/978-3-030-40921-0 10.1109/TC.2014.2339854 10.1007/978-3-642-28496-0 10.1109/FDTC.2008.10 10.1007/978-3-319-08302-5 10.1007/978-3-642-33027-8_8 10.1007/s13389-014-0083-9 10.1007/3-540-36400-5 10.1007/s12095-016-0197-2 10.1109/ACCESS.2021.3078845 10.1155/2019/1680263 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s13389-023-00326-0 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2190-8516 |
| EndPage | 281 |
| ExternalDocumentID | 10_1007_s13389_023_00326_0 |
| GrantInformation_xml | – fundername: Xiamen University Malaysia grantid: XMUMRF/2022- C9/IECE/0032 – fundername: Xiamen University Malaysia grantid: XMUMRF/2019-C3/IECE/0005; XMUMRF/2019-C4/IECE/0011 – fundername: Australian Research Council grantid: DP180102199 – fundername: Polish National Science Center (NCN) grantid: 2018/31/B/ST6/03003 – fundername: Ministry of Higher Education, Malaysia grantid: FRGS/1/2021/ICT07/XMU/02/1 |
| GroupedDBID | -EM 0R~ 0VY 203 2VQ 30V 4.4 406 408 409 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AUKKA AXYYD AYJHY BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ8 HF~ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J PT4 RLLFE ROL RSV S27 SCO SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z7R Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-480b7524a7cf184bb0c099c9beae9f3f52f478450b0ede6febcc80c73af30d593 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001020304800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2190-8508 |
| IngestDate | Mon Sep 29 04:22:07 EDT 2025 Tue Nov 18 22:23:28 EST 2025 Sat Nov 29 03:58:05 EST 2025 Fri Feb 21 02:42:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | State recovery NIST LWC project Random fault CLX-128 Key recovery Fault attack |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-480b7524a7cf184bb0c099c9beae9f3f52f478450b0ede6febcc80c73af30d593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1395-4623 0000-0003-4059-6358 |
| PQID | 3255120391 |
| PQPubID | 2043896 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_3255120391 crossref_citationtrail_10_1007_s13389_023_00326_0 crossref_primary_10_1007_s13389_023_00326_0 springer_journals_10_1007_s13389_023_00326_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20230900 2023-09-00 20230901 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 9 year: 2023 text: 20230900 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Journal of cryptographic engineering |
| PublicationTitleAbbrev | J Cryptogr Eng |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski, B.S., Ko,ç ç.K., Paar, C. (eds) Cryptographic Hardware and Embedded Systems—CHES 2002. Lecture Notes in Computer Science, vol. 2523, pp. 2–12, Springer, Berlin (2003). https://doi.org/10.1007/3-540-36400-5 Hutter, M., Schmidt, J.: The temperature side channel and heating fault attacks. In: Francillon, A., Rohatgi, P. (eds.) Smart Card Research and Advanced Applications—CARDIS 2013. Lecture Notes in Computer Science, vol. 8419, pp. 219–235 Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge: single-pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S. (eds) Selected Areas in Cryptography—SAC 2011. Lecture Notes in Computer Science, vol. 7118, pp. 320–337, Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-28496-0 BanikSMaitraSSarkarSImproved differential fault attack on MICKEY 2.0J. Cryptogr. Eng.20155132910.1007/s13389-014-0083-9 Salam, I., Ooi, T.H., Xue, L., Yau, W.-C., Pieprzyk, J., Phan, R.C.-W.: Random differential fault Attacks on the lightweight authenticated encryption stream cipher Grain-128AEAD. IEEE Access 9, 72568–72586 (2021). https://doi.org/10.1109/ACCESS.2021.3078845 Salam, I., Mahri, H.Q., Simpson, L., Bartlett, H., Dawson, E., Wong, K.K.: Fault attacks on Tiaoxin-346. In: Proceedings of the the Australasian Computer Science Week—ASCW 2018, ACM Digital Library, pp. 1–9 (2018). https://doi.org/10.1145/3167918.3167940 CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness. https://competitions.cr.yp.to/index.html SarkarSBanikSMaitraSDifferential fault attack against Grain family with very few faults and minimal assumptionsIEEE Trans. Comput.201564616471657335229310.1109/TC.2014.23398541360.68443 Schmidt, J., Herbst, C.: A practical fault attack on square and multiply. In: 5th Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 53–58 (2008). https://doi.org/10.1109/FDTC.2008.10 SalamISimpsonLBartlettHDawsonEWongKK-HFault attacks on the authenticated encryption stream cipher MORUSCryptography201821410.3390/cryptography2010004 BartlettHDawsonEMahriHASalamMISimpsonLWongKK-HRandom fault attacks on a class of stream ciphersSecur. Commun. Netw.2019201912, 168026310.1155/2019/1680263 Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on the grain family of stream ciphers. In: Prouff, E., Schaumont, P. (eds) Cryptographic Hardware and Embedded Systems—CHES 2012. CHES 2012. Lecture Notes in Computer Science, vol. 7428, pp. 122–139, Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-33027-8_8 Wong, K., Bartlett, H., Simpson, L., Dawson, E.: Differential random fault attacks on certain CAESAR stream ciphers. In: Seo, J. (eds) Information Security and Cryptology—ICISC 2019. Lecture Notes in Computer Science, vol. 11975, pp. 297–315, Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40921-0 Wu, H., Huang, T.: CLX: a family of lightweight authenticated encryption algorithms. NIST Lightweight Cryptography (LWC) Project (2019). https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/CLX-spec.pdf NIST Lightweight Cryptography Project (2019). https://csrc.nist.gov/projects/lightweight-cryptography Dey, P., Rohit, R.S., Sarkar, S., Adhikari, A.: Differential fault analysis on Tiaoxin and AEGIS family of ciphers. In: Mueller, P., Thampi, S., Alam Bhuiyan, M., Ko, R., Doss, R., Alcaraz Calero, J. (eds) Security in Computing and Communications—SSCC 2016, Communications in Computer and Information Science, vol. 625, pp. 74–86, Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-2738-3 Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on the Grain family under reasonable assumptions. In: Galbraith, S., Nandi, M. (eds.) Progress in Cryptology—INDOCRYPT 2012. Lecture Notes in Computer Science, vol. 7668, pp. 191–208, Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-34931-7 Mége, A.: Slide attack on CLX-128. NIST Lightweight Cryptography Workshop (2019). https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2019/documents/papers/slide-attack-on-clx-128-lwc2019.pdf BarenghiABreveglieriLKorenINaccacheDFault injection attacks on cryptographic devices: theory, practice, and countermeasuresProc. IEEE2012100113056307610.1109/JPROC.2012.2188769 Dey, P., Chakraborty, A., Adhikari, A., Mukhopadhyay, D.: Improved practical differential fault analysis of Grain-128. In: 2015 Design, Automation & Test in Europe Conference & Exhibition—DATE 2015. pp. 459–464, IEEE (2015). https://doi.org/10.7873/DATE.2015.0921 Stein, W. et al.: Sage Mathematics Software. The Sage Development Team (2019). http://www.sagemath.org Clavier, C.: Secret external encodings do not prevent transient fault analysis. In: Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hardware and Embedded Systems—CHES 2007. Lecture Notes in Computer Science, vol. 4727, pp. 181–194, Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-74735-2 Banik, S., Maitra, S.: A differential fault attack on MICKEY 2.0. In: Bertoni, G., Coron, JS. (eds.) Cryptographic Hardware and Embedded Systems—CHES 2013. Lecture Notes in Computer Science, vol. 8086, pp. 215–232, Springer, Berlin. https://doi.org/10.1007/978-3-642-40349-1 Salam, I., Law, K.Y., Xue, L., Yau, W.C.: Differential fault based key recovery attacks on TRIAD. In: Hong, D. (eds.) Information Security and Cryptology—ICISC 2020. Lecture Notes in Computer Science, vol. 12593, pp. 273–287, Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68890-5 SarkarSDeyPAdhikariAMaitraSProbabilistic signature based generalized framework for differential fault analysis of stream ciphersCryptogr. Commun.20179523543362758710.1007/s12095-016-0197-21409.94905 Wu, H., Huang, T.: TinyJAMBU: a family of lightweight authenticated encryption algorithms. NIST Lightweight Cryptography (LWC) Project (2019). https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/TinyJAMBU-spec-round2.pdf 326_CR11 326_CR10 S Sarkar (326_CR15) 2015; 64 A Barenghi (326_CR21) 2012; 100 326_CR4 326_CR3 326_CR14 326_CR6 326_CR12 326_CR19 326_CR18 326_CR2 326_CR17 326_CR1 S Sarkar (326_CR9) 2017; 9 S Banik (326_CR13) 2015; 5 326_CR22 326_CR20 326_CR26 326_CR25 326_CR24 326_CR23 I Salam (326_CR16) 2018; 2 H Bartlett (326_CR5) 2019; 2019 326_CR8 326_CR7 |
| References_xml | – reference: Wu, H., Huang, T.: CLX: a family of lightweight authenticated encryption algorithms. NIST Lightweight Cryptography (LWC) Project (2019). https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/CLX-spec.pdf – reference: BartlettHDawsonEMahriHASalamMISimpsonLWongKK-HRandom fault attacks on a class of stream ciphersSecur. Commun. Netw.2019201912, 168026310.1155/2019/1680263 – reference: Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on the Grain family under reasonable assumptions. In: Galbraith, S., Nandi, M. (eds.) Progress in Cryptology—INDOCRYPT 2012. Lecture Notes in Computer Science, vol. 7668, pp. 191–208, Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-34931-7 – reference: Banik, S., Maitra, S.: A differential fault attack on MICKEY 2.0. In: Bertoni, G., Coron, JS. (eds.) Cryptographic Hardware and Embedded Systems—CHES 2013. Lecture Notes in Computer Science, vol. 8086, pp. 215–232, Springer, Berlin. https://doi.org/10.1007/978-3-642-40349-1 – reference: Salam, I., Ooi, T.H., Xue, L., Yau, W.-C., Pieprzyk, J., Phan, R.C.-W.: Random differential fault Attacks on the lightweight authenticated encryption stream cipher Grain-128AEAD. IEEE Access 9, 72568–72586 (2021). https://doi.org/10.1109/ACCESS.2021.3078845 – reference: Schmidt, J., Herbst, C.: A practical fault attack on square and multiply. In: 5th Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 53–58 (2008). https://doi.org/10.1109/FDTC.2008.10 – reference: Mége, A.: Slide attack on CLX-128. NIST Lightweight Cryptography Workshop (2019). https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2019/documents/papers/slide-attack-on-clx-128-lwc2019.pdf – reference: Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski, B.S., Ko,ç ç.K., Paar, C. (eds) Cryptographic Hardware and Embedded Systems—CHES 2002. Lecture Notes in Computer Science, vol. 2523, pp. 2–12, Springer, Berlin (2003). https://doi.org/10.1007/3-540-36400-5 – reference: Salam, I., Mahri, H.Q., Simpson, L., Bartlett, H., Dawson, E., Wong, K.K.: Fault attacks on Tiaoxin-346. In: Proceedings of the the Australasian Computer Science Week—ASCW 2018, ACM Digital Library, pp. 1–9 (2018). https://doi.org/10.1145/3167918.3167940 – reference: Salam, I., Law, K.Y., Xue, L., Yau, W.C.: Differential fault based key recovery attacks on TRIAD. In: Hong, D. (eds.) Information Security and Cryptology—ICISC 2020. Lecture Notes in Computer Science, vol. 12593, pp. 273–287, Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68890-5 – reference: SarkarSBanikSMaitraSDifferential fault attack against Grain family with very few faults and minimal assumptionsIEEE Trans. Comput.201564616471657335229310.1109/TC.2014.23398541360.68443 – reference: NIST Lightweight Cryptography Project (2019). https://csrc.nist.gov/projects/lightweight-cryptography – reference: BanikSMaitraSSarkarSImproved differential fault attack on MICKEY 2.0J. Cryptogr. Eng.20155132910.1007/s13389-014-0083-9 – reference: Dey, P., Chakraborty, A., Adhikari, A., Mukhopadhyay, D.: Improved practical differential fault analysis of Grain-128. In: 2015 Design, Automation & Test in Europe Conference & Exhibition—DATE 2015. pp. 459–464, IEEE (2015). https://doi.org/10.7873/DATE.2015.0921 – reference: Dey, P., Rohit, R.S., Sarkar, S., Adhikari, A.: Differential fault analysis on Tiaoxin and AEGIS family of ciphers. In: Mueller, P., Thampi, S., Alam Bhuiyan, M., Ko, R., Doss, R., Alcaraz Calero, J. (eds) Security in Computing and Communications—SSCC 2016, Communications in Computer and Information Science, vol. 625, pp. 74–86, Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-2738-3 – reference: CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness. https://competitions.cr.yp.to/index.html – reference: Clavier, C.: Secret external encodings do not prevent transient fault analysis. In: Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hardware and Embedded Systems—CHES 2007. Lecture Notes in Computer Science, vol. 4727, pp. 181–194, Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-74735-2 – reference: Wong, K., Bartlett, H., Simpson, L., Dawson, E.: Differential random fault attacks on certain CAESAR stream ciphers. In: Seo, J. (eds) Information Security and Cryptology—ICISC 2019. Lecture Notes in Computer Science, vol. 11975, pp. 297–315, Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40921-0 – reference: Wu, H., Huang, T.: TinyJAMBU: a family of lightweight authenticated encryption algorithms. NIST Lightweight Cryptography (LWC) Project (2019). https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/TinyJAMBU-spec-round2.pdf – reference: Stein, W. et al.: Sage Mathematics Software. The Sage Development Team (2019). http://www.sagemath.org – reference: Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on the grain family of stream ciphers. In: Prouff, E., Schaumont, P. (eds) Cryptographic Hardware and Embedded Systems—CHES 2012. CHES 2012. Lecture Notes in Computer Science, vol. 7428, pp. 122–139, Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-33027-8_8 – reference: SalamISimpsonLBartlettHDawsonEWongKK-HFault attacks on the authenticated encryption stream cipher MORUSCryptography201821410.3390/cryptography2010004 – reference: SarkarSDeyPAdhikariAMaitraSProbabilistic signature based generalized framework for differential fault analysis of stream ciphersCryptogr. Commun.20179523543362758710.1007/s12095-016-0197-21409.94905 – reference: BarenghiABreveglieriLKorenINaccacheDFault injection attacks on cryptographic devices: theory, practice, and countermeasuresProc. IEEE2012100113056307610.1109/JPROC.2012.2188769 – reference: Hutter, M., Schmidt, J.: The temperature side channel and heating fault attacks. In: Francillon, A., Rohatgi, P. (eds.) Smart Card Research and Advanced Applications—CARDIS 2013. Lecture Notes in Computer Science, vol. 8419, pp. 219–235 Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 – reference: Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge: single-pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S. (eds) Selected Areas in Cryptography—SAC 2011. Lecture Notes in Computer Science, vol. 7118, pp. 320–337, Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-28496-0 – ident: 326_CR11 doi: 10.1007/978-3-642-34931-7 – ident: 326_CR7 doi: 10.1007/978-3-030-68890-5 – ident: 326_CR14 doi: 10.7873/DATE.2015.0921 – ident: 326_CR22 doi: 10.1007/978-3-540-74735-2 – ident: 326_CR3 doi: 10.1007/978-981-10-2738-3 – ident: 326_CR6 doi: 10.1145/3167918.3167940 – ident: 326_CR12 doi: 10.1007/978-3-642-40349-1 – volume: 100 start-page: 3056 issue: 11 year: 2012 ident: 326_CR21 publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2188769 – volume: 2 start-page: 4 issue: 1 year: 2018 ident: 326_CR16 publication-title: Cryptography doi: 10.3390/cryptography2010004 – ident: 326_CR1 – ident: 326_CR4 doi: 10.1007/978-3-030-40921-0 – volume: 64 start-page: 1647 issue: 6 year: 2015 ident: 326_CR15 publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2014.2339854 – ident: 326_CR17 – ident: 326_CR23 doi: 10.1007/978-3-642-28496-0 – ident: 326_CR19 doi: 10.1109/FDTC.2008.10 – ident: 326_CR26 – ident: 326_CR24 – ident: 326_CR20 doi: 10.1007/978-3-319-08302-5 – ident: 326_CR10 doi: 10.1007/978-3-642-33027-8_8 – volume: 5 start-page: 13 year: 2015 ident: 326_CR13 publication-title: J. Cryptogr. Eng. doi: 10.1007/s13389-014-0083-9 – ident: 326_CR18 doi: 10.1007/3-540-36400-5 – ident: 326_CR8 – volume: 9 start-page: 523 year: 2017 ident: 326_CR9 publication-title: Cryptogr. Commun. doi: 10.1007/s12095-016-0197-2 – ident: 326_CR25 doi: 10.1109/ACCESS.2021.3078845 – ident: 326_CR2 – volume: 2019 start-page: 12, 1680263 year: 2019 ident: 326_CR5 publication-title: Secur. Commun. Netw. doi: 10.1155/2019/1680263 |
| SSID | ssib033405573 ssib031263732 ssj0002140048 |
| Score | 2.2705925 |
| Snippet | We investigate a technique that needs to apply multiple random faults to the same target location and compare the impact of these faults on the fault-free and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 265 |
| SubjectTerms | Algorithms Circuits and Systems Communications Engineering Computer Communication Networks Computer Science Cryptography Cryptology Data Structures and Information Theory Design Faults Linear equations Networks Operating Systems Queries Regular Paper |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66evDi-sT1RQ7eNNgm6SMnER94EBFU2FtJ0kSF2tXdqvjvnWRTi4JePLcNbWcy881kZj6E9sAnmNLEkvA0hwCFAYYTmnMijSqVsYlKM-3JJrKrq3w4FNch4TYJZZWtTfSGuhxplyM_ZIB9Y-rmmR89vxDHGuVOVwOFxiyac1MSYl-6d9PqE4tpyrKub5Ix7iZOsa8cDI29Bjv-Od9RDWAl9NVMu-sgfBMEnBoB1acQeH_3XR0g_XGG6l3Tef-_H7WEFgMoxcdTLVpGM6ZeQf2W8AGH_b-KhqeBTgXMQoWtfK0aLJvGtenjUY0BS-LKBfvvPt-KpauerxvfZVdiWGL84Q0UltU9vEXz8IRPLocEfNcaujs_uz25IIGagWjYsw3heaSyhHKZaQsxolKRBqiphTLSCMtsQi3Pcp5EKgJVSK1RWueRzpi0LCoTwdZRrx7VZgNhk9g8SaiQSnBeciNonsMTUaoAHAmbDlDc_vRCh7nljj6jKrqJy05QBQiq8IIqogHa_3rmeTq148-7t1vpFGEHT4pONAN00Mq3u_z7apt_r7aFFqhXKVemto16zfjV7KB5_dY8Tsa7Xn8_AXBE8Us priority: 102 providerName: ProQuest |
| Title | Differential fault attacks on the lightweight authenticated encryption algorithm CLX-128 |
| URI | https://link.springer.com/article/10.1007/s13389-023-00326-0 https://www.proquest.com/docview/3255120391 |
| Volume | 13 |
| WOSCitedRecordID | wos001020304800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2190-8516 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002140048 issn: 2190-8508 databaseCode: P5Z dateStart: 20230401 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2190-8516 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002140048 issn: 2190-8508 databaseCode: K7- dateStart: 20230401 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2190-8516 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002140048 issn: 2190-8508 databaseCode: M7S dateStart: 20230401 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2190-8516 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0002140048 issn: 2190-8508 databaseCode: BENPR dateStart: 20230401 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Standard Collection customDbUrl: eissn: 2190-8516 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140048 issn: 2190-8508 databaseCode: RSV dateStart: 20110401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71wYFLS3mILWXlQ29gKfEjsY-0tEKiWq1aQCsuke3YUClk0W7ain_fsZs0AgESXHKJ7Sjz8MzY880AHKJN8LXPDRWFwgCFow-nnRDUeFtbH6QtSpeaTZSzmVos9LwHha2HbPfhSjLt1CPYDaMpTdHGUJREhnHwJmyjuVOxYcP5xadBinjOCl6OaEnORawzxe9PXlie5DZ2nUs4anRRejTN7z_zs8Ua3dBfbk6TQTrd_b9feQQ7vQNK3txJzB5s-PYx7A7NHUiv609g8bZvnYJbQEOCuWo6YrouQvLJsiXoN5ImBvY36WyVmJgp33YJUVcTXGL1I21GxDRflqvL7us3cny2oGinnsLH05MPx-9o34aBOtTPjgqV2VIyYUoXMB60NnPoVjptvfE68CBZEKUSMrMZsr0I3jqnMldyE3hWS82fwVa7bP1zIF4GJSXTxmohauE1UwpnZIVFR0iHYgL5QOrK9TXKY6uMphqrK0fSVUi6KpGuyibw6n7O97sKHX8dfTBwsOq1dV1xjKtyFmvlT-D1wLHx9Z9X2_-34S_gIUtMjylqB7DVra78S3jgrrvL9WoK20cns_n5FDbfl3Qak1Av8DmXn6dJvm8BsBvruA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VpVK5UMpDLBTwoT2BRWI7cXxACLVUrXZZ9dBKewu2YwNSyJbdlKp_it_I2Js0Aoneeug5saVJvnnaMx_ALvoEV7lUU5EXmKBwjOGUFYJqZyrjfGZyaSPZhJxOi9lMnazB774XJlyr7G1iNNTV3IYa-TuOsW_KwjzzD-c_aWCNCqerPYXGChZjd3WJKdvy_fEB_t89xg4_ne4f0Y5VgFqEW0tFkRiZMaGl9ZjeGJNYjJKsMk475bnPmBeyEFliEpQi985YWyRWcu15UmVh-BKa_Hsolgx6NZa0xy9PWc7l0KfJuQgTrvh1zYelUWMC313s4MbgqOvjWXXzYbqoKDpRiqrGMNH_21cOAfA_Z7bRFR5u3bWP-BAedEE3-bjSkm1Yc80j2OoJLUhn3x7D7KCji0GzVxOvL-qW6LYNYwjIvCEYK5M6FDMuYz2Z6NAd0LSxi7AiuMXiKhpgouuvKHX77QfZn8wo-uYncHYr8j2F9WbeuGdAXOaLLGNKGyVEJZxiRYErktxg8Kd8PoK0_8ml7eayB3qQuhwmSgdglAiMMgKjTEbw5nrN-WoqyY1v7_RoKDsLtSwHKIzgbY-n4fH_d3t-826vYfPo9POknBxPxy_gPotwDlfydmC9XVy4l7Bhf7Xfl4tXUXcIfLltnP0Bj7VQBw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BFiEuUFoqFmjxgVuJSGzn4SOCrlqBVkgt1d4i27HbldIsWryg_vuOvQlpqxYJcY4fynjsmc-ebwbgCG2CqUwiI54VCFAY-nBCcx5JoyplbKqyXIdiE_l4XEwm4uo3Fn-Idu-eJJecBp-lqXEnN5U96YlviKxEhPYmQq2kiIlX4QX3gfQer3_-2mkUS2jG8p45yRj3OafYwy0MTYIO-wp0gVON7krLrPn3NH9ar94l_esVNRin0dbzf-slbLaOKTldatI2rJjmFWx1RR9Iewa8hsl5W1IFj4aaWLmoHZHOeao-mTUE_UlSe8B_H-5cifQR9I0LTLuK4BDzn-GQIrL-NptP3fcf5OxyEqH92oHr0YcvZx-jtjxDpHHfuogXscpTymWuLeJEpWKN7qYWykgjLLMptTwveBqrGNUhs0ZpXcQ6Z9KyuEoFewODZtaYXSAmtUWaUiGV4LziRtCiwB5xptBBEjYbQtKJvdRt7nJfQqMu-6zLXnQliq4MoivjIbx_6HOzzNzxaOuDbjXLdhfflgzxVkJ9Dv0hHHer13_-_2h7T2t-COtX56Py8tP4Yh82aFh_H8V2AAM3X5i3sKbv3PR2_i4o9y-KpPMe |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+fault+attacks+on+the+lightweight+authenticated+encryption+algorithm+CLX-128&rft.jtitle=Journal+of+cryptographic+engineering&rft.au=Salam%2C+Iftekhar&rft.au=Yau%2C+Wei-Chuen&rft.au=Phan%2C+Rapha%C3%ABl+C.-W.&rft.au=Pieprzyk%2C+Josef&rft.date=2023-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2190-8508&rft.eissn=2190-8516&rft.volume=13&rft.issue=3&rft.spage=265&rft.epage=281&rft_id=info:doi/10.1007%2Fs13389-023-00326-0&rft.externalDocID=10_1007_s13389_023_00326_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-8508&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-8508&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-8508&client=summon |