Autism Spectrum Disorder Detection Using Fractional Social Driving Training-Based Optimization Enabled Deep Learning
Autism Spectrum Disorder (ASD) is neurodevelopment-based impact on interactive communication and social skills. Diagnosing ASD is one of serious issues that start manifesting at low ages, and is difficult to diagnose at early stages. Autism is characterized by both environmental and genetic factors....
Uloženo v:
| Vydáno v: | Multimedia tools and applications Ročník 83; číslo 13; s. 37523 - 37548 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.04.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 1573-7721, 1380-7501, 1573-7721 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Autism Spectrum Disorder (ASD) is neurodevelopment-based impact on interactive communication and social skills. Diagnosing ASD is one of serious issues that start manifesting at low ages, and is difficult to diagnose at early stages. Autism is characterized by both environmental and genetic factors. Lack of communication issues, social interaction, and limited interest behaviors are possible individuality of autism noticed in children, along other symptoms. This paper aims at ASD detection by Deep Quantum Neural Network (DQNN), wherein this network is trained by proposed Fractional Social Driving Training-Based Optimization (FSDTBO). The initial stage of this processing starts with acquisition of image from dataset, and further pre-processing is carried out using Gaussian filter, and this filtered image is suspended for Regions of Interest (ROI) extraction. Also, extraction of nub region is done by proposed Social Driving Training-Based Optimization (SDTBO), from which classification process is done by considering extracted features too. Here, proposed FSDTBO is integration process among Fractional Calculus (FC) and SDTBO, wherein SDTBO is collaboration between Social Optimization Algorithm (SOA) and Driving Training-Based Optimization (DTBO). Moreover, classification performance of ASD is found based on three metrics, like accuracy, specificity, and sensitivity with superior values of 0.90, 0.94, and 0.96. |
|---|---|
| AbstractList | Autism Spectrum Disorder (ASD) is neurodevelopment-based impact on interactive communication and social skills. Diagnosing ASD is one of serious issues that start manifesting at low ages, and is difficult to diagnose at early stages. Autism is characterized by both environmental and genetic factors. Lack of communication issues, social interaction, and limited interest behaviors are possible individuality of autism noticed in children, along other symptoms. This paper aims at ASD detection by Deep Quantum Neural Network (DQNN), wherein this network is trained by proposed Fractional Social Driving Training-Based Optimization (FSDTBO). The initial stage of this processing starts with acquisition of image from dataset, and further pre-processing is carried out using Gaussian filter, and this filtered image is suspended for Regions of Interest (ROI) extraction. Also, extraction of nub region is done by proposed Social Driving Training-Based Optimization (SDTBO), from which classification process is done by considering extracted features too. Here, proposed FSDTBO is integration process among Fractional Calculus (FC) and SDTBO, wherein SDTBO is collaboration between Social Optimization Algorithm (SOA) and Driving Training-Based Optimization (DTBO). Moreover, classification performance of ASD is found based on three metrics, like accuracy, specificity, and sensitivity with superior values of 0.90, 0.94, and 0.96. Autism Spectrum Disorder (ASD) is neurodevelopment-based impact on interactive communication and social skills. Diagnosing ASD is one of serious issues that start manifesting at low ages, and is difficult to diagnose at early stages. Autism is characterized by both environmental and genetic factors. Lack of communication issues, social interaction, and limited interest behaviors are possible individuality of autism noticed in children, along other symptoms. This paper aims at ASD detection by Deep Quantum Neural Network (DQNN), wherein this network is trained by proposed Fractional Social Driving Training-Based Optimization (FSDTBO). The initial stage of this processing starts with acquisition of image from dataset, and further pre-processing is carried out using Gaussian filter, and this filtered image is suspended for Regions of Interest (ROI) extraction. Also, extraction of nub region is done by proposed Social Driving Training-Based Optimization (SDTBO), from which classification process is done by considering extracted features too. Here, proposed FSDTBO is integration process among Fractional Calculus (FC) and SDTBO, wherein SDTBO is collaboration between Social Optimization Algorithm (SOA) and Driving Training-Based Optimization (DTBO). Moreover, classification performance of ASD is found based on three metrics, like accuracy, specificity, and sensitivity with superior values of 0.90, 0.94, and 0.96. |
| Author | Vidyadhari, Ch Anjali Devi, S. Karrothu, Aravind Manickavasagam, Prabhakar |
| Author_xml | – sequence: 1 givenname: Ch surname: Vidyadhari fullname: Vidyadhari, Ch email: chalasanividyadhari@gmail.com organization: Department of Information Technology, Gokaraju Rangaraju Institute of Engineering and Technology – sequence: 2 givenname: Aravind surname: Karrothu fullname: Karrothu, Aravind organization: Department of Information Technology, GMR Institute of Technology – sequence: 3 givenname: Prabhakar surname: Manickavasagam fullname: Manickavasagam, Prabhakar organization: School of Computer Science & Engineering, REVA University – sequence: 4 givenname: S. surname: Anjali Devi fullname: Anjali Devi, S. organization: Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation |
| BookMark | eNp9kMtOwzAQRS1UJNrCD7CKxDrgR2I3y9IHIFXqou3asmO3cpUXtoMKX4-bIIFYdDXXM_dYM3cEBlVdaQDuEXxEELInhxBMcAwxiRFlkyQ-XYEhShmJGcNo8EffgJFzRwgRTXEyBH7aeuPKaNPo3Nu2jObG1VZpG821Dy1TV9HOmeoQLa3onqKINnVuQplb83GebK0wVRDxs3BaRevGm9J8iY5dVEIWoTnXuolWWtiz8RZc70Xh9N1PHYPdcrGdvcar9cvbbLqKc4IyHyeUMoVplotUq5xquadEBSkhVSQlOM0YIkjiicRESZlhwSgTBKk0lZqE2Rg89P82tn5vtfP8WLc2XOA4gQQlBCHGgmvSu3JbO2f1nufGd9v7cFjBEeTnjHmfMQ8Z8y5jfgoo_oc21pTCfl6GSA-5YK4O2v5udYH6BlfAkrk |
| CitedBy_id | crossref_primary_10_1007_s12530_025_09705_w crossref_primary_10_1155_hbe2_1496105 crossref_primary_10_1007_s13369_025_10592_1 |
| Cites_doi | 10.1016/S0140-6736(18)31129-2 10.1016/j.patcog.2008.06.010 10.1007/s10619-021-07361-y 10.18280/ts.380332 10.1016/j.compbiomed.2021.104949 10.1088/1757-899X/105/1/012022 10.1016/j.matcom.2022.06.007 10.33969/AIS.2020.21001 10.3390/app11083636 10.1089/cmb.2020.0252 10.3390/s20236762 10.1186/s13637-017-0057-1 10.1016/j.jneumeth.2019.108538 10.11113/jurnalteknologi.v83.16389 10.1016/j.cie.2021.107250 10.3390/computation8030074 10.1109/ISDA.2012.6416547 10.1038/s41598-022-14225-7 10.1016/j.irbm.2021.06.003 10.1109/EMBC.2013.6610336 10.1109/ICME.2019.00055 10.23919/INDIACom49435.2020.9083712 10.1109/CISP-BMEI.2017.8301965 10.1155/2014/396529 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s11042-023-16784-x |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 37548 |
| ExternalDocumentID | 10_1007_s11042_023_16784_x |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7SC 7XB 8AL 8FD 8FK AFFHD JQ2 L.- L7M L~C L~D MBDVC PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-4667d269ca5edc6ebf63d5edb06d3532597131b28b23dbb92a767a31d55be3713 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001082459100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1573-7721 1380-7501 |
| IngestDate | Wed Nov 05 08:27:27 EST 2025 Sat Nov 29 06:20:36 EST 2025 Tue Nov 18 22:05:16 EST 2025 Fri Feb 21 02:41:14 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | Social Optimization Algorithm Fractional Calculus Autism Spectrum Disorder Gaussian filter Driving Training-Based Optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-4667d269ca5edc6ebf63d5edb06d3532597131b28b23dbb92a767a31d55be3713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3031431177 |
| PQPubID | 54626 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_3031431177 crossref_citationtrail_10_1007_s11042_023_16784_x crossref_primary_10_1007_s11042_023_16784_x springer_journals_10_1007_s11042_023_16784_x |
| PublicationCentury | 2000 |
| PublicationDate | 20240400 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 4 year: 2024 text: 20240400 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Abualigah, Yousri, Abd Elaziz, Ewees, Al-Qaness, Gandomi (CR30) 2021; 157 Yuan, Holtz, Smith, Luo (CR10) 2016; 2017 Lee, Lee, Bong, Yoo, Kim (CR8) 2020; 20 CR19 Xu, Liu, Yu, Li, Yu, Cheng, Li (CR6) 2020; h331 CR18 CR17 Pan, Zhang, Wang, Snášel, Chu (CR31) 2022; 202 Erkan, Thanh (CR11) 2019; 15 CR16 Khodatars, Shoeibi, Sadeghi, Ghaasemi, Jafari, Moridian, Khadem, Alizadehsani, Zare, Kong, Khosravi (CR12) 2021; 139 CR13 Radhakrishnan, Ramamurthy, Choudhury, Won, Manoharan (CR15) 2021; 38 Lord, Elsabbagh, Baird, Veenstra-Vanderweele (CR9) 2018; 392 Subah, Deb, Dhar, Koshiba (CR1) 2021; 11 Minarno, Munarko, Kurniawardhani, Bimantoro (CR29) 2016; 105 Hemanth (CR25) 2020; 2 Husna, Syafeeza, Hamid, Wong, Raihan (CR14) 2021; 83 CR3 Ali, Syafeeza, Jaafar, Alif, Ali (CR2) 2020; 9 Karimi, Khandani (CR21) 2022; 30 Mohanty, Parida (CR7) 1921; 1 CR28 Yin, Mostafa, Wu (CR5) 2021; 28 CR26 CR24 CR23 Liu, Yang (CR27) 2008; 41 CR22 CR20 Saranya, Anandan (CR4) 2022; 40 Mirri, Delnevo, Roccetti (CR32) 2020; 8 A Saranya (16784_CR4) 2022; 40 16784_CR20 RNS Husna (16784_CR14) 2021; 83 16784_CR13 GH Liu (16784_CR27) 2008; 41 16784_CR17 16784_CR18 C Lord (16784_CR9) 2018; 392 L Abualigah (16784_CR30) 2021; 157 16784_CR16 16784_CR19 NA Ali (16784_CR2) 2020; 9 AS Mohanty (16784_CR7) 1921; 1 U Erkan (16784_CR11) 2019; 15 AE Minarno (16784_CR29) 2016; 105 N Karimi (16784_CR21) 2022; 30 W Yin (16784_CR5) 2021; 28 M Radhakrishnan (16784_CR15) 2021; 38 JH Lee (16784_CR8) 2020; 20 S Mirri (16784_CR32) 2020; 8 FZ Subah (16784_CR1) 2021; 11 16784_CR24 M Khodatars (16784_CR12) 2021; 139 16784_CR22 L Xu (16784_CR6) 2020; h331 16784_CR23 16784_CR3 16784_CR28 JS Pan (16784_CR31) 2022; 202 J Yuan (16784_CR10) 2016; 2017 16784_CR26 DJ Hemanth (16784_CR25) 2020; 2 |
| References_xml | – ident: CR22 – volume: 392 start-page: 508 issue: 10146 year: 2018 end-page: 520 ident: CR9 article-title: Autism spectrum disorder publication-title: The lancet doi: 10.1016/S0140-6736(18)31129-2 – volume: 15 start-page: 297 issue: 4 year: 2019 end-page: 308 ident: CR11 article-title: Autism spectrum disorder detection with machine learning methods publication-title: Curr Psychiatr Res Rev Formerly Curr Psychiatr Rev – ident: CR18 – volume: 1 start-page: 012006 year: 1921 ident: CR7 article-title: Patra KC (2021) Identification of Autism Spectrum Disorder usingDeep Neural Network publication-title: J Phys: Conf Ser – volume: 41 start-page: 3521 issue: 12 year: 2008 end-page: 3527 ident: CR27 article-title: Image retrieval based on the texton co-occurrence matrix publication-title: Pattern Recogn doi: 10.1016/j.patcog.2008.06.010 – ident: CR16 – volume: 40 start-page: 753 issue: 4 year: 2022 end-page: 778 ident: CR4 article-title: FIGS-DEAF: an novel implementation of hybrid deep learning algorithm to predict autism spectrum disorders using facial fused gait features publication-title: Distrib Parallel Databases doi: 10.1007/s10619-021-07361-y – volume: 38 start-page: 853 issue: 3 year: 2021 end-page: 863 ident: CR15 article-title: Performance analysis of deep learning models for detection of autism spectrum disorder from eeg signals publication-title: Traitement du Signal doi: 10.18280/ts.380332 – volume: 139 start-page: 104949 year: 2021 ident: CR12 article-title: Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104949 – volume: 105 start-page: 012022 issue: 1 year: 2016 ident: CR29 article-title: Classification of texture using multi texton histogram and probabilistic neural network publication-title: In IOP Conf Series: Mater Sci Eng, IOP Publ doi: 10.1088/1757-899X/105/1/012022 – volume: 202 start-page: 343 year: 2022 end-page: 373 ident: CR31 article-title: Gannet optimization algorithm: A new metaheuristic algorithm for solving engineering optimization problems publication-title: Math Comput Simul doi: 10.1016/j.matcom.2022.06.007 – volume: 30 start-page: e12593 issue: 11 year: 2022 ident: CR21 article-title: Social optimization algorithm with application to economic dispatch problem publication-title: Int Trans Electr Energy Systems – volume: 2 start-page: 1 year: 2020 end-page: 13 ident: CR25 article-title: EEG signal based modified Kohonen neural networks for classification of human mental emotions publication-title: J Artif Intell Systems doi: 10.33969/AIS.2020.21001 – ident: CR23 – ident: CR19 – volume: 11 start-page: 3636 issue: 8 year: 2021 ident: CR1 article-title: A deep learning approach to predict autism spectrum disorder using multisite resting-state fMRI publication-title: Appl Sci doi: 10.3390/app11083636 – ident: CR3 – volume: 28 start-page: 146 issue: 2 year: 2021 end-page: 165 ident: CR5 article-title: Diagnosis of autism spectrum disorder based on functional brain networks with deep learning publication-title: J Comput Biol doi: 10.1089/cmb.2020.0252 – ident: CR17 – ident: CR13 – volume: 20 start-page: 6762 issue: 23 year: 2020 ident: CR8 article-title: Deep-learning-based detection of infants with autism spectrum disorder using auto-encoder feature representation publication-title: Sensors doi: 10.3390/s20236762 – volume: 2017 start-page: 1 issue: 1 year: 2016 end-page: 9 ident: CR10 article-title: Autism spectrum disorder detection from semi-structured and unstructured medical data publication-title: EURASIP J Bioinf Syst Biol doi: 10.1186/s13637-017-0057-1 – volume: h331 start-page: 108538 year: 2020 ident: CR6 article-title: Characterizing autism spectrum disorder by deep learning spontaneous brain activity from functional near-infrared spectroscopy publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2019.108538 – volume: 9 start-page: 91 issue: 1 year: 2020 end-page: 99 ident: CR2 article-title: Autism spectrum disorder classification on electroencephalogram signal using deep learning algorithm publication-title: IAES Int J Artif Intell – volume: 83 start-page: 45 issue: 3 year: 2021 end-page: 52 ident: CR14 article-title: Functional magnetic resonance imaging for autism spectrum disorder detection using deep learning publication-title: Jurnal Teknologi doi: 10.11113/jurnalteknologi.v83.16389 – ident: CR28 – volume: 157 year: 2021 ident: CR30 article-title: Aquila optimizer: a novel meta-heuristic optimization algorithm publication-title: Comput Ind Eng doi: 10.1016/j.cie.2021.107250 – volume: 8 start-page: 1 issue: 3 year: 2020 end-page: 25 ident: CR32 article-title: Is a COVID-19 second wave possible in Emilia-Romagna (Italy)? Forecasting a future outbreak with particulate pollution and machine learning publication-title: Computation doi: 10.3390/computation8030074 – ident: CR26 – ident: CR24 – ident: CR20 – ident: 16784_CR16 – volume: 202 start-page: 343 year: 2022 ident: 16784_CR31 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2022.06.007 – volume: 1 start-page: 012006 year: 1921 ident: 16784_CR7 publication-title: J Phys: Conf Ser – ident: 16784_CR22 doi: 10.1109/ISDA.2012.6416547 – volume: 20 start-page: 6762 issue: 23 year: 2020 ident: 16784_CR8 publication-title: Sensors doi: 10.3390/s20236762 – ident: 16784_CR20 doi: 10.1038/s41598-022-14225-7 – volume: 83 start-page: 45 issue: 3 year: 2021 ident: 16784_CR14 publication-title: Jurnal Teknologi doi: 10.11113/jurnalteknologi.v83.16389 – volume: 8 start-page: 1 issue: 3 year: 2020 ident: 16784_CR32 publication-title: Computation doi: 10.3390/computation8030074 – volume: 28 start-page: 146 issue: 2 year: 2021 ident: 16784_CR5 publication-title: J Comput Biol doi: 10.1089/cmb.2020.0252 – ident: 16784_CR26 – volume: 30 start-page: e12593 issue: 11 year: 2022 ident: 16784_CR21 publication-title: Int Trans Electr Energy Systems – volume: 139 start-page: 104949 year: 2021 ident: 16784_CR12 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104949 – ident: 16784_CR24 doi: 10.1016/j.irbm.2021.06.003 – volume: 392 start-page: 508 issue: 10146 year: 2018 ident: 16784_CR9 publication-title: The lancet doi: 10.1016/S0140-6736(18)31129-2 – volume: 105 start-page: 012022 issue: 1 year: 2016 ident: 16784_CR29 publication-title: In IOP Conf Series: Mater Sci Eng, IOP Publ doi: 10.1088/1757-899X/105/1/012022 – volume: 11 start-page: 3636 issue: 8 year: 2021 ident: 16784_CR1 publication-title: Appl Sci doi: 10.3390/app11083636 – ident: 16784_CR3 – ident: 16784_CR18 doi: 10.1109/EMBC.2013.6610336 – volume: h331 start-page: 108538 year: 2020 ident: 16784_CR6 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2019.108538 – ident: 16784_CR13 doi: 10.1109/ICME.2019.00055 – volume: 2 start-page: 1 year: 2020 ident: 16784_CR25 publication-title: J Artif Intell Systems doi: 10.33969/AIS.2020.21001 – volume: 157 year: 2021 ident: 16784_CR30 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2021.107250 – ident: 16784_CR17 doi: 10.23919/INDIACom49435.2020.9083712 – volume: 15 start-page: 297 issue: 4 year: 2019 ident: 16784_CR11 publication-title: Curr Psychiatr Res Rev Formerly Curr Psychiatr Rev – volume: 38 start-page: 853 issue: 3 year: 2021 ident: 16784_CR15 publication-title: Traitement du Signal doi: 10.18280/ts.380332 – ident: 16784_CR28 doi: 10.1109/CISP-BMEI.2017.8301965 – ident: 16784_CR23 – volume: 9 start-page: 91 issue: 1 year: 2020 ident: 16784_CR2 publication-title: IAES Int J Artif Intell – ident: 16784_CR19 doi: 10.1155/2014/396529 – volume: 40 start-page: 753 issue: 4 year: 2022 ident: 16784_CR4 publication-title: Distrib Parallel Databases doi: 10.1007/s10619-021-07361-y – volume: 41 start-page: 3521 issue: 12 year: 2008 ident: 16784_CR27 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2008.06.010 – volume: 2017 start-page: 1 issue: 1 year: 2016 ident: 16784_CR10 publication-title: EURASIP J Bioinf Syst Biol doi: 10.1186/s13637-017-0057-1 |
| SSID | ssj0016524 |
| Score | 2.3827424 |
| Snippet | Autism Spectrum Disorder (ASD) is neurodevelopment-based impact on interactive communication and social skills. Diagnosing ASD is one of serious issues that... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 37523 |
| SubjectTerms | Algorithms Autism Classification Computer Communication Networks Computer Science Data Structures and Information Theory Deep learning Fractional calculus Image acquisition Image filters Machine learning Multimedia Information Systems Neural networks Optimization Social factors Special Purpose and Application-Based Systems |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Collection dbid: 7WY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1BYYCBQgFRKMgDG1g0H3aSCRXaigEVhgJliuzYQUj0g7ag_nzOidMCEl3YIjm5RLrznWPfew_gVPihcqUjqcEpUl8JTYUO8cdVRQIjSok0o118vA06nbDXi-7thtvEtlUWOTFL1GqYmD3yC8_wrHvmiPFy9E6NapQ5XbUSGquwhoWaGQWD4Ol5forAmRW1DesUK6NjQTM5dM4xwBSsWNTBfO3T2c_CtFht_jogzepOu_zfL96GLbviJI08RHZgRQ8qUC7UHIid3BXY_EZNuAvTBkbkpE-MPv10_NEnBU0naepp1r41IFm7AWmPc2wEviPH-pLm-NVsU5CulZ-gV1gqFbnD7NS3sE_SyjBbCq3pEbEkry978NBuda9vqFVooAlO3Sn1OQ-Uy6NEMK0SrmXKPYWXss6Vxzz8tcIQcKQbStdTUkauCHggPEcxJrWHY_tQGgwH-gCIMrSVXDLhK-arNIwCFkidioihTS1FFZzCPXFi6cuNisZbvCBeNi6N0aVx5tJ4VoWz-TOjnLxj6d21wo-xnciTeOHEKpwXkbAY_tva4XJrR7Dh4vIo7wGqQQk9qY9hPflE345PsjD-AuG9-Wo priority: 102 providerName: ProQuest |
| Title | Autism Spectrum Disorder Detection Using Fractional Social Driving Training-Based Optimization Enabled Deep Learning |
| URI | https://link.springer.com/article/10.1007/s11042-023-16784-x https://www.proquest.com/docview/3031431177 |
| Volume | 83 |
| WOSCitedRecordID | wos001082459100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-7721 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7721 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7721 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: K7- dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7721 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1573-7721 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: M2O dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPTqfi_Bh58E0D60fS9nHqhqDOoVOnLyVpUhHcHNsU_3wvbepUVNCX0JI0LblLcund73cAu8IPlSsdSQ1OkfpKaCp0iAdXFQnUKCXSjHbx-jRot8NeL-pYUNi4iHYvXJLZSj0FuzkGSoJ7DHVwhfUpWo5zzLDNmDP65fW774Az17fwmO-f-7wFTe3KL67QbIdplf_3bcuwZC1K0shVYAVm9KAC5SJbA7GTtwKLH6gHV2HSQI0b94nJPz8ZPfdJQcNJjvQkC88akCycgLRGOfYB35FjecnR6MH8hiBdm16CHuBWqMg5rj59C-skzQyTpbA3PSSWxPV-Da5aze7hMbUZGGiCU3NCfc4D5fIoEUyrhGuZck_hpaxz5TEPj04oYke6oXQ9JWXkioAHwnMUY1J7WLcOpcHTQG8AUYaWkksmfMV8lYZRwAKpUxEx7FNLUQWnEEqcWHpykyXjMZ4SK5tBjnGQ42yQ49cq7L0_M8zJOX5tvV3IOrYTdRx7hr7fM57rKuwXsp1W_9zb5t-ab8GCi-ZQHvOzDSWUrN6B-eQFZT2qwWxwc1uDuYNmu3OBdycBxfKsfmhK9xzLDrurZWr-Bl9y9Jc |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB7xkoADsDxEefqwe2Itmjh2kgNCQKlA7XaR6CJuwY5dhERLacvrT_EbGScOBSS4cdhbpCSTyP48Y3v8fQPwUwaR9pWnqOUp0kBLQ6WJcOGqY4mI0rKVyS6e1cNGIzo_j09G4LngwthjlYVPzBy1vkntHvk2szrrzKYYd7u31FaNstnVooRGDouaeXrAJVt_57iC_fvL96uHzYMj6qoK0BThNqCBEKH2RZxKbnQqjGoJpvFSlYVmnOFyAH_bU36kfKaVin0ZilAyT3OuDMN7aHcUxgMWCTuiaiF9zVoI7oroRmWKkdhzJJ2cqudZIgxGSOphfAjo4_tAOJzdfkjIZnGuOvu_tdAczLgZNdnLh8APGDGdeZgtqlUQ57zmYfqN9OICDPZwxPXb5NQyTXt3bVLIkJKKGWTH0zokO05Bqr2c-4HfyLnMpNK7stswpOnKa9B9nApo8he9b9vRWslhxknTaM10iROxvVyEf9_SEksw1rnpmGUg2spyCsVloHmgW1Ec8lCZlow52jRKlsAr4JCkTp7dVgm5TobC0hZCCUIoySCUPJZg6_Wdbi5O8uXTawVuEueo-skQNCX4XSBvePtzaytfW9uEyaPmn3pSP27UVmHKx6lgft5pDcawV806TKT32M-9jWwIEbj4bkS-ADdbVag |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9swFH7qCprgAIyBKD82H8Zps0ri2EkOCAFtNQQq1cYmbsGOHYRES2kLlH-Nv47nxKEwadw4cIuU5EWxP7_nH-_7HsA3GUTaV56ilqdIAy0NlSbChauOJSJKyyyXXfx7FLbb0elp3KnAQ8mFsWmVpU_MHbW-Su0eeZ1ZnXVmjxjrmUuL6DRaO_1raitI2ZPWspxGAZFDc3-Hy7fh9kED-3rT91vNk_2f1FUYoClCb0QDIULtiziV3OhUGJUJpvFSbQnNOMOlAf6Cp_xI-UwrFfsyFKFknuZcGYb30O4HmAoZLnqqMLXXbHd-PZ1hCO5K6kZbFOOy5yg7BXHPs7QYjJfUw2gR0PHLsDiZ6_5zPJtHvdb8e26vBZhzc22yWwyOT1AxvUWYL-tYEOfWFmH2mSjjZxjt4lgcdslvy0Ed3HRJKVBKGmaUJ671SJ5oQVqDghWC3yhYzqQxuLAbNOTEFd6gezhJ0OQY_XLXEV5JM2erabRm-sTJ254vwZ83aYllqPauemYFiLaCnUJxGWge6CyKQx4qk8mYo02jZA28EhpJ6oTbbf2Qy2QiOW3hlCCckhxOybgG35_e6ReyJa8-vV5iKHEubJhMAFSDHyUKJ7f_b231dWtf4SMCMTk6aB-uwYyPc8QiEWodqtipZgOm01vs5sEXN54InL01JB8BGtVf-g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autism+Spectrum+Disorder+Detection+Using+Fractional+Social+Driving+Training-Based+Optimization+Enabled+Deep+Learning&rft.jtitle=Multimedia+tools+and+applications&rft.au=Vidyadhari%2C+Ch&rft.au=Karrothu%2C+Aravind&rft.au=Manickavasagam%2C+Prabhakar&rft.au=Anjali+Devi%2C+S.&rft.date=2024-04-01&rft.pub=Springer+US&rft.eissn=1573-7721&rft.volume=83&rft.issue=13&rft.spage=37523&rft.epage=37548&rft_id=info:doi/10.1007%2Fs11042-023-16784-x&rft.externalDocID=10_1007_s11042_023_16784_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |