Autism Spectrum Disorder Detection Using Fractional Social Driving Training-Based Optimization Enabled Deep Learning

Autism Spectrum Disorder (ASD) is neurodevelopment-based impact on interactive communication and social skills. Diagnosing ASD is one of serious issues that start manifesting at low ages, and is difficult to diagnose at early stages. Autism is characterized by both environmental and genetic factors....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Multimedia tools and applications Ročník 83; číslo 13; s. 37523 - 37548
Hlavní autoři: Vidyadhari, Ch, Karrothu, Aravind, Manickavasagam, Prabhakar, Anjali Devi, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2024
Springer Nature B.V
Témata:
ISSN:1573-7721, 1380-7501, 1573-7721
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Autism Spectrum Disorder (ASD) is neurodevelopment-based impact on interactive communication and social skills. Diagnosing ASD is one of serious issues that start manifesting at low ages, and is difficult to diagnose at early stages. Autism is characterized by both environmental and genetic factors. Lack of communication issues, social interaction, and limited interest behaviors are possible individuality of autism noticed in children, along other symptoms. This paper aims at ASD detection by Deep Quantum Neural Network (DQNN), wherein this network is trained by proposed Fractional Social Driving Training-Based Optimization (FSDTBO). The initial stage of this processing starts with acquisition of image from dataset, and further pre-processing is carried out using Gaussian filter, and this filtered image is suspended for Regions of Interest (ROI) extraction. Also, extraction of nub region is done by proposed Social Driving Training-Based Optimization (SDTBO), from which classification process is done by considering extracted features too. Here, proposed FSDTBO is integration process among Fractional Calculus (FC) and SDTBO, wherein SDTBO is collaboration between Social Optimization Algorithm (SOA) and Driving Training-Based Optimization (DTBO). Moreover, classification performance of ASD is found based on three metrics, like accuracy, specificity, and sensitivity with superior values of 0.90, 0.94, and 0.96.
AbstractList Autism Spectrum Disorder (ASD) is neurodevelopment-based impact on interactive communication and social skills. Diagnosing ASD is one of serious issues that start manifesting at low ages, and is difficult to diagnose at early stages. Autism is characterized by both environmental and genetic factors. Lack of communication issues, social interaction, and limited interest behaviors are possible individuality of autism noticed in children, along other symptoms. This paper aims at ASD detection by Deep Quantum Neural Network (DQNN), wherein this network is trained by proposed Fractional Social Driving Training-Based Optimization (FSDTBO). The initial stage of this processing starts with acquisition of image from dataset, and further pre-processing is carried out using Gaussian filter, and this filtered image is suspended for Regions of Interest (ROI) extraction. Also, extraction of nub region is done by proposed Social Driving Training-Based Optimization (SDTBO), from which classification process is done by considering extracted features too. Here, proposed FSDTBO is integration process among Fractional Calculus (FC) and SDTBO, wherein SDTBO is collaboration between Social Optimization Algorithm (SOA) and Driving Training-Based Optimization (DTBO). Moreover, classification performance of ASD is found based on three metrics, like accuracy, specificity, and sensitivity with superior values of 0.90, 0.94, and 0.96.
Autism Spectrum Disorder (ASD) is neurodevelopment-based impact on interactive communication and social skills. Diagnosing ASD is one of serious issues that start manifesting at low ages, and is difficult to diagnose at early stages. Autism is characterized by both environmental and genetic factors. Lack of communication issues, social interaction, and limited interest behaviors are possible individuality of autism noticed in children, along other symptoms. This paper aims at ASD detection by Deep Quantum Neural Network (DQNN), wherein this network is trained by proposed Fractional Social Driving Training-Based Optimization (FSDTBO). The initial stage of this processing starts with acquisition of image from dataset, and further pre-processing is carried out using Gaussian filter, and this filtered image is suspended for Regions of Interest (ROI) extraction. Also, extraction of nub region is done by proposed Social Driving Training-Based Optimization (SDTBO), from which classification process is done by considering extracted features too. Here, proposed FSDTBO is integration process among Fractional Calculus (FC) and SDTBO, wherein SDTBO is collaboration between Social Optimization Algorithm (SOA) and Driving Training-Based Optimization (DTBO). Moreover, classification performance of ASD is found based on three metrics, like accuracy, specificity, and sensitivity with superior values of 0.90, 0.94, and 0.96.
Author Vidyadhari, Ch
Anjali Devi, S.
Karrothu, Aravind
Manickavasagam, Prabhakar
Author_xml – sequence: 1
  givenname: Ch
  surname: Vidyadhari
  fullname: Vidyadhari, Ch
  email: chalasanividyadhari@gmail.com
  organization: Department of Information Technology, Gokaraju Rangaraju Institute of Engineering and Technology
– sequence: 2
  givenname: Aravind
  surname: Karrothu
  fullname: Karrothu, Aravind
  organization: Department of Information Technology, GMR Institute of Technology
– sequence: 3
  givenname: Prabhakar
  surname: Manickavasagam
  fullname: Manickavasagam, Prabhakar
  organization: School of Computer Science & Engineering, REVA University
– sequence: 4
  givenname: S.
  surname: Anjali Devi
  fullname: Anjali Devi, S.
  organization: Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation
BookMark eNp9kMtOwzAQRS1UJNrCD7CKxDrgR2I3y9IHIFXqou3asmO3cpUXtoMKX4-bIIFYdDXXM_dYM3cEBlVdaQDuEXxEELInhxBMcAwxiRFlkyQ-XYEhShmJGcNo8EffgJFzRwgRTXEyBH7aeuPKaNPo3Nu2jObG1VZpG821Dy1TV9HOmeoQLa3onqKINnVuQplb83GebK0wVRDxs3BaRevGm9J8iY5dVEIWoTnXuolWWtiz8RZc70Xh9N1PHYPdcrGdvcar9cvbbLqKc4IyHyeUMoVplotUq5xquadEBSkhVSQlOM0YIkjiicRESZlhwSgTBKk0lZqE2Rg89P82tn5vtfP8WLc2XOA4gQQlBCHGgmvSu3JbO2f1nufGd9v7cFjBEeTnjHmfMQ8Z8y5jfgoo_oc21pTCfl6GSA-5YK4O2v5udYH6BlfAkrk
CitedBy_id crossref_primary_10_1007_s12530_025_09705_w
crossref_primary_10_1155_hbe2_1496105
crossref_primary_10_1007_s13369_025_10592_1
Cites_doi 10.1016/S0140-6736(18)31129-2
10.1016/j.patcog.2008.06.010
10.1007/s10619-021-07361-y
10.18280/ts.380332
10.1016/j.compbiomed.2021.104949
10.1088/1757-899X/105/1/012022
10.1016/j.matcom.2022.06.007
10.33969/AIS.2020.21001
10.3390/app11083636
10.1089/cmb.2020.0252
10.3390/s20236762
10.1186/s13637-017-0057-1
10.1016/j.jneumeth.2019.108538
10.11113/jurnalteknologi.v83.16389
10.1016/j.cie.2021.107250
10.3390/computation8030074
10.1109/ISDA.2012.6416547
10.1038/s41598-022-14225-7
10.1016/j.irbm.2021.06.003
10.1109/EMBC.2013.6610336
10.1109/ICME.2019.00055
10.23919/INDIACom49435.2020.9083712
10.1109/CISP-BMEI.2017.8301965
10.1155/2014/396529
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-023-16784-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 37548
ExternalDocumentID 10_1007_s11042_023_16784_x
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7SC
7XB
8AL
8FD
8FK
AFFHD
JQ2
L.-
L7M
L~C
L~D
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-4667d269ca5edc6ebf63d5edb06d3532597131b28b23dbb92a767a31d55be3713
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001082459100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1573-7721
1380-7501
IngestDate Wed Nov 05 08:27:27 EST 2025
Sat Nov 29 06:20:36 EST 2025
Tue Nov 18 22:05:16 EST 2025
Fri Feb 21 02:41:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Social Optimization Algorithm
Fractional Calculus
Autism Spectrum Disorder
Gaussian filter
Driving Training-Based Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-4667d269ca5edc6ebf63d5edb06d3532597131b28b23dbb92a767a31d55be3713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3031431177
PQPubID 54626
PageCount 26
ParticipantIDs proquest_journals_3031431177
crossref_citationtrail_10_1007_s11042_023_16784_x
crossref_primary_10_1007_s11042_023_16784_x
springer_journals_10_1007_s11042_023_16784_x
PublicationCentury 2000
PublicationDate 20240400
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 4
  year: 2024
  text: 20240400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Abualigah, Yousri, Abd Elaziz, Ewees, Al-Qaness, Gandomi (CR30) 2021; 157
Yuan, Holtz, Smith, Luo (CR10) 2016; 2017
Lee, Lee, Bong, Yoo, Kim (CR8) 2020; 20
CR19
Xu, Liu, Yu, Li, Yu, Cheng, Li (CR6) 2020; h331
CR18
CR17
Pan, Zhang, Wang, Snášel, Chu (CR31) 2022; 202
Erkan, Thanh (CR11) 2019; 15
CR16
Khodatars, Shoeibi, Sadeghi, Ghaasemi, Jafari, Moridian, Khadem, Alizadehsani, Zare, Kong, Khosravi (CR12) 2021; 139
CR13
Radhakrishnan, Ramamurthy, Choudhury, Won, Manoharan (CR15) 2021; 38
Lord, Elsabbagh, Baird, Veenstra-Vanderweele (CR9) 2018; 392
Subah, Deb, Dhar, Koshiba (CR1) 2021; 11
Minarno, Munarko, Kurniawardhani, Bimantoro (CR29) 2016; 105
Hemanth (CR25) 2020; 2
Husna, Syafeeza, Hamid, Wong, Raihan (CR14) 2021; 83
CR3
Ali, Syafeeza, Jaafar, Alif, Ali (CR2) 2020; 9
Karimi, Khandani (CR21) 2022; 30
Mohanty, Parida (CR7) 1921; 1
CR28
Yin, Mostafa, Wu (CR5) 2021; 28
CR26
CR24
CR23
Liu, Yang (CR27) 2008; 41
CR22
CR20
Saranya, Anandan (CR4) 2022; 40
Mirri, Delnevo, Roccetti (CR32) 2020; 8
A Saranya (16784_CR4) 2022; 40
16784_CR20
RNS Husna (16784_CR14) 2021; 83
16784_CR13
GH Liu (16784_CR27) 2008; 41
16784_CR17
16784_CR18
C Lord (16784_CR9) 2018; 392
L Abualigah (16784_CR30) 2021; 157
16784_CR16
16784_CR19
NA Ali (16784_CR2) 2020; 9
AS Mohanty (16784_CR7) 1921; 1
U Erkan (16784_CR11) 2019; 15
AE Minarno (16784_CR29) 2016; 105
N Karimi (16784_CR21) 2022; 30
W Yin (16784_CR5) 2021; 28
M Radhakrishnan (16784_CR15) 2021; 38
JH Lee (16784_CR8) 2020; 20
S Mirri (16784_CR32) 2020; 8
FZ Subah (16784_CR1) 2021; 11
16784_CR24
M Khodatars (16784_CR12) 2021; 139
16784_CR22
L Xu (16784_CR6) 2020; h331
16784_CR23
16784_CR3
16784_CR28
JS Pan (16784_CR31) 2022; 202
J Yuan (16784_CR10) 2016; 2017
16784_CR26
DJ Hemanth (16784_CR25) 2020; 2
References_xml – ident: CR22
– volume: 392
  start-page: 508
  issue: 10146
  year: 2018
  end-page: 520
  ident: CR9
  article-title: Autism spectrum disorder
  publication-title: The lancet
  doi: 10.1016/S0140-6736(18)31129-2
– volume: 15
  start-page: 297
  issue: 4
  year: 2019
  end-page: 308
  ident: CR11
  article-title: Autism spectrum disorder detection with machine learning methods
  publication-title: Curr Psychiatr Res Rev Formerly Curr Psychiatr Rev
– ident: CR18
– volume: 1
  start-page: 012006
  year: 1921
  ident: CR7
  article-title: Patra KC (2021) Identification of Autism Spectrum Disorder usingDeep Neural Network
  publication-title: J Phys: Conf Ser
– volume: 41
  start-page: 3521
  issue: 12
  year: 2008
  end-page: 3527
  ident: CR27
  article-title: Image retrieval based on the texton co-occurrence matrix
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2008.06.010
– ident: CR16
– volume: 40
  start-page: 753
  issue: 4
  year: 2022
  end-page: 778
  ident: CR4
  article-title: FIGS-DEAF: an novel implementation of hybrid deep learning algorithm to predict autism spectrum disorders using facial fused gait features
  publication-title: Distrib Parallel Databases
  doi: 10.1007/s10619-021-07361-y
– volume: 38
  start-page: 853
  issue: 3
  year: 2021
  end-page: 863
  ident: CR15
  article-title: Performance analysis of deep learning models for detection of autism spectrum disorder from eeg signals
  publication-title: Traitement du Signal
  doi: 10.18280/ts.380332
– volume: 139
  start-page: 104949
  year: 2021
  ident: CR12
  article-title: Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104949
– volume: 105
  start-page: 012022
  issue: 1
  year: 2016
  ident: CR29
  article-title: Classification of texture using multi texton histogram and probabilistic neural network
  publication-title: In IOP Conf Series: Mater Sci Eng, IOP Publ
  doi: 10.1088/1757-899X/105/1/012022
– volume: 202
  start-page: 343
  year: 2022
  end-page: 373
  ident: CR31
  article-title: Gannet optimization algorithm: A new metaheuristic algorithm for solving engineering optimization problems
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2022.06.007
– volume: 30
  start-page: e12593
  issue: 11
  year: 2022
  ident: CR21
  article-title: Social optimization algorithm with application to economic dispatch problem
  publication-title: Int Trans Electr Energy Systems
– volume: 2
  start-page: 1
  year: 2020
  end-page: 13
  ident: CR25
  article-title: EEG signal based modified Kohonen neural networks for classification of human mental emotions
  publication-title: J Artif Intell Systems
  doi: 10.33969/AIS.2020.21001
– ident: CR23
– ident: CR19
– volume: 11
  start-page: 3636
  issue: 8
  year: 2021
  ident: CR1
  article-title: A deep learning approach to predict autism spectrum disorder using multisite resting-state fMRI
  publication-title: Appl Sci
  doi: 10.3390/app11083636
– ident: CR3
– volume: 28
  start-page: 146
  issue: 2
  year: 2021
  end-page: 165
  ident: CR5
  article-title: Diagnosis of autism spectrum disorder based on functional brain networks with deep learning
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2020.0252
– ident: CR17
– ident: CR13
– volume: 20
  start-page: 6762
  issue: 23
  year: 2020
  ident: CR8
  article-title: Deep-learning-based detection of infants with autism spectrum disorder using auto-encoder feature representation
  publication-title: Sensors
  doi: 10.3390/s20236762
– volume: 2017
  start-page: 1
  issue: 1
  year: 2016
  end-page: 9
  ident: CR10
  article-title: Autism spectrum disorder detection from semi-structured and unstructured medical data
  publication-title: EURASIP J Bioinf Syst Biol
  doi: 10.1186/s13637-017-0057-1
– volume: h331
  start-page: 108538
  year: 2020
  ident: CR6
  article-title: Characterizing autism spectrum disorder by deep learning spontaneous brain activity from functional near-infrared spectroscopy
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2019.108538
– volume: 9
  start-page: 91
  issue: 1
  year: 2020
  end-page: 99
  ident: CR2
  article-title: Autism spectrum disorder classification on electroencephalogram signal using deep learning algorithm
  publication-title: IAES Int J Artif Intell
– volume: 83
  start-page: 45
  issue: 3
  year: 2021
  end-page: 52
  ident: CR14
  article-title: Functional magnetic resonance imaging for autism spectrum disorder detection using deep learning
  publication-title: Jurnal Teknologi
  doi: 10.11113/jurnalteknologi.v83.16389
– ident: CR28
– volume: 157
  year: 2021
  ident: CR30
  article-title: Aquila optimizer: a novel meta-heuristic optimization algorithm
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2021.107250
– volume: 8
  start-page: 1
  issue: 3
  year: 2020
  end-page: 25
  ident: CR32
  article-title: Is a COVID-19 second wave possible in Emilia-Romagna (Italy)? Forecasting a future outbreak with particulate pollution and machine learning
  publication-title: Computation
  doi: 10.3390/computation8030074
– ident: CR26
– ident: CR24
– ident: CR20
– ident: 16784_CR16
– volume: 202
  start-page: 343
  year: 2022
  ident: 16784_CR31
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2022.06.007
– volume: 1
  start-page: 012006
  year: 1921
  ident: 16784_CR7
  publication-title: J Phys: Conf Ser
– ident: 16784_CR22
  doi: 10.1109/ISDA.2012.6416547
– volume: 20
  start-page: 6762
  issue: 23
  year: 2020
  ident: 16784_CR8
  publication-title: Sensors
  doi: 10.3390/s20236762
– ident: 16784_CR20
  doi: 10.1038/s41598-022-14225-7
– volume: 83
  start-page: 45
  issue: 3
  year: 2021
  ident: 16784_CR14
  publication-title: Jurnal Teknologi
  doi: 10.11113/jurnalteknologi.v83.16389
– volume: 8
  start-page: 1
  issue: 3
  year: 2020
  ident: 16784_CR32
  publication-title: Computation
  doi: 10.3390/computation8030074
– volume: 28
  start-page: 146
  issue: 2
  year: 2021
  ident: 16784_CR5
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2020.0252
– ident: 16784_CR26
– volume: 30
  start-page: e12593
  issue: 11
  year: 2022
  ident: 16784_CR21
  publication-title: Int Trans Electr Energy Systems
– volume: 139
  start-page: 104949
  year: 2021
  ident: 16784_CR12
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104949
– ident: 16784_CR24
  doi: 10.1016/j.irbm.2021.06.003
– volume: 392
  start-page: 508
  issue: 10146
  year: 2018
  ident: 16784_CR9
  publication-title: The lancet
  doi: 10.1016/S0140-6736(18)31129-2
– volume: 105
  start-page: 012022
  issue: 1
  year: 2016
  ident: 16784_CR29
  publication-title: In IOP Conf Series: Mater Sci Eng, IOP Publ
  doi: 10.1088/1757-899X/105/1/012022
– volume: 11
  start-page: 3636
  issue: 8
  year: 2021
  ident: 16784_CR1
  publication-title: Appl Sci
  doi: 10.3390/app11083636
– ident: 16784_CR3
– ident: 16784_CR18
  doi: 10.1109/EMBC.2013.6610336
– volume: h331
  start-page: 108538
  year: 2020
  ident: 16784_CR6
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2019.108538
– ident: 16784_CR13
  doi: 10.1109/ICME.2019.00055
– volume: 2
  start-page: 1
  year: 2020
  ident: 16784_CR25
  publication-title: J Artif Intell Systems
  doi: 10.33969/AIS.2020.21001
– volume: 157
  year: 2021
  ident: 16784_CR30
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2021.107250
– ident: 16784_CR17
  doi: 10.23919/INDIACom49435.2020.9083712
– volume: 15
  start-page: 297
  issue: 4
  year: 2019
  ident: 16784_CR11
  publication-title: Curr Psychiatr Res Rev Formerly Curr Psychiatr Rev
– volume: 38
  start-page: 853
  issue: 3
  year: 2021
  ident: 16784_CR15
  publication-title: Traitement du Signal
  doi: 10.18280/ts.380332
– ident: 16784_CR28
  doi: 10.1109/CISP-BMEI.2017.8301965
– ident: 16784_CR23
– volume: 9
  start-page: 91
  issue: 1
  year: 2020
  ident: 16784_CR2
  publication-title: IAES Int J Artif Intell
– ident: 16784_CR19
  doi: 10.1155/2014/396529
– volume: 40
  start-page: 753
  issue: 4
  year: 2022
  ident: 16784_CR4
  publication-title: Distrib Parallel Databases
  doi: 10.1007/s10619-021-07361-y
– volume: 41
  start-page: 3521
  issue: 12
  year: 2008
  ident: 16784_CR27
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2008.06.010
– volume: 2017
  start-page: 1
  issue: 1
  year: 2016
  ident: 16784_CR10
  publication-title: EURASIP J Bioinf Syst Biol
  doi: 10.1186/s13637-017-0057-1
SSID ssj0016524
Score 2.3828301
Snippet Autism Spectrum Disorder (ASD) is neurodevelopment-based impact on interactive communication and social skills. Diagnosing ASD is one of serious issues that...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 37523
SubjectTerms Algorithms
Autism
Classification
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Fractional calculus
Image acquisition
Image filters
Machine learning
Multimedia Information Systems
Neural networks
Optimization
Social factors
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBQgFRKMgDG1g0ce0kEyotFQMUhoLYIjt2EBJ90AbUn885cSggwcIWyYkT5TvfnX2PD-BY-qFMJE8ol01JW0IxGqU8xSsWKGmNfp7y_3Ad9Pvh42N05w7cZi6tstSJuaLW48SekZ8x22ed2RDj-eSVWtYoG111FBrLsGI9G5vSd9PsfEYRBHektmGTomX0XNFMUTrn2cIUtFjUQ33dovPvhmnhbf4IkOZ2p1f97xdvwobzOEm7EJEtWDKjGlRLNgfiFncN1r-0JtyGrI0SORsSy0-fTd-GpGzTSbomy9O3RiRPNyC9aVEbge8oan1Jd_psjynIwNFP0As0lZrconYaurJPcpnXbGmczUyIa_L6tAP3vctB54o6hgaa4NLNEFERaF9EiLbRiTAqFUzjpWoKzTjDrRXugT3lh8pnWqnIl4EIJPM058owHNuFymg8MntApBeIVAmWMJO2pBdGRoUm4mmK_1BorurglfDEiWtfblk0XuJF42ULaYyQxjmk8bwOJ5_PTIrmHX_e3ShxjN1CnsULEOtwWkrCYvj32fb_nu0A1nx0j4ocoAZUEElzCKvJO2I7PcrF-ANPK_i5
  priority: 102
  providerName: ProQuest
Title Autism Spectrum Disorder Detection Using Fractional Social Driving Training-Based Optimization Enabled Deep Learning
URI https://link.springer.com/article/10.1007/s11042-023-16784-x
https://www.proquest.com/docview/3031431177
Volume 83
WOSCitedRecordID wos001082459100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: 7WY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: M0C
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: K7-
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: M2O
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HeDAeIrxmHLgBpHWZknaI49NSMCYeMOlSpoUIbGBtoH4-ThtygABElyiVHm0spPYqf3ZAJsqjFSqeEq5qivaEJrROOMZ1pjUygn93OX_8ki229H1ddzxoLBB6e1emiTzk3oEdgsclARlDA3whG1Q1BwnUdxJ58h3enb5bjsQPGx4eMz34z6LoJFe-cUUmkuYVuV_3zYHs16jJDvFEpiHMdtbgEqZrYH4zbsAMx9CDy7CcAdX3KBLXP75Yf-5S8ownGTfDnP3rB7J3QlIq19gH_AdBZaX7Pfv3W8Icu7TS9BdFIWGnODp0_WwTtLMMVkGZ7NPxAdxvVuCi1bzfO-A-gwMNMWtOUSOCWlCESM3rUmF1ZlgBqu6LgzjDK9OeMcNdBjpkBmt41BJIRULDOfaMmxbhoneY8-uAFGBFJkWLGU2a6ggiq2ObMyzDBU2YbiuQlAyJUl9eHKXJeMhGQVWdkROkMhJTuTktQpb72OeiuAcv_ZeL3md-I06SJgL38-c5boK2yVvR80_z7b6t-5rMB2iOlT4_KzDBHLWbsBU-oK87tdgXF7d1GByt9nunOLToaRYHtf3XBmeYNnht7V8mb8BP0P0OQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dT9swED-xbtK2B9iAiY6P-WF7GhZNHDvJA0JAqVq165BWUN-CHTsIiX6s7Tb4p_gbOScO3ZDoGw97s-TkEtk_353t-90BfJZ-JFPJU8plTdJAKEbjjGfYYqGS1ujnIf_nnbDbjfr9-HQJ7koujA2rLHVirqj1KLVn5HvM5lln9orxYPyT2qpR9na1LKFRwKJtbv_glm2636rj_H7x_cZJ77hJXVUBmiLcZvgXItS-iPEPjU6FUZlgGpuqJjTjDLcDuG_zlB8pn2mlYl-GIpTM05wrw7AP5b6AlwGLhA0ha4f04dZCcFdEN6pRtMSeI-kUVD3PEmHQQlIP7UNAb_41hHPv9tGFbG7nGiv_2wi9g2XnUZPDYgm8hyUzXIWVsloFccprFd7-lXpxDWaHuOKmA_LDMk0nvwakTENK6maWh6cNSR5OQRqTgvuB3yi4zKQ-ubLHMKTnymvQI3QFNPmO2nfgaK3kJOekaZRmxsQlsb1ch7NnGYkPUBmOhmYDiPRCkSnBUmayQHpRbFRkYp5lOGdCc1UFr4RDkrr07LZKyHUyTyxtIZQghJIcQslNFb4-vDMukpMsfHqrxE3iFNU0mYOmCrsl8ubdT0v7uFjaJ3jd7H3rJJ1Wt70Jb3x0BYt4py2o4KyabXiV_sZ5nuzkS4jAxXMj8h6lO1VK
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB7xWCE4AMtDlKcPuyewaOzaSQ4IAaVaBCpIC4hbsGMHIdFS2vL6a_w6xolDWaTlxoGbJSdOZH-eGXvmmwH4pVikUiVSKlRV0ZrUnMaZyLDFQ62c0s9D_s-PwmYzuriIT4bgpeTCuLDKUibmgtrcpu6OfJO7POvcuRg3Mx8WcVJvbHfuqKsg5TytZTmNAiKH9vkRj2-9rYM6rvVvxhr7p3t_qK8wQFOEXh__SIaGyRj_1ppUWp1JbrCpq9JwwfFogGe4QLNIM260jpkKZah4YITQlmMfjjsMo2EN7X4XNsiO3zwYUviCulGVolYOPGGnoO0FjhSD2pIGqCtq9OlfpTiwdD84Z3Od15j6zrM1DZPe0iY7xdb4CUO2PQNTZRUL4oXaDEy8S8k4C_0d3Im9FvnrGKjd-xYp05OSuu3nYWttkodZkEa34ITgNwqOM6l3r931DDn1ZTfoLpoIhhyjVG55uivZz7lqBkezHeKT217NwdmXzMQ8jLRv23YBiApCmWnJU26zmgqi2OrIxiLLcP2kEboCQQmNJPVp2131kJtkkHDawSlBOCU5nJKnCqy_vdMpkpZ8-vRyiaHEC7BeMgBQBTZKFA66_z_a4uejrcEYAjE5OmgeLsE4QwuxCINahhFcVLsCP9IHXObuar6bCFx-NSBfAaKLXkU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autism+Spectrum+Disorder+Detection+Using+Fractional+Social+Driving+Training-Based+Optimization+Enabled+Deep+Learning&rft.jtitle=Multimedia+tools+and+applications&rft.au=Vidyadhari%2C+Ch&rft.au=Karrothu%2C+Aravind&rft.au=Manickavasagam%2C+Prabhakar&rft.au=Anjali+Devi%2C+S.&rft.date=2024-04-01&rft.issn=1573-7721&rft.eissn=1573-7721&rft.volume=83&rft.issue=13&rft.spage=37523&rft.epage=37548&rft_id=info:doi/10.1007%2Fs11042-023-16784-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_16784_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon