Capsule neural network based approach for subject specific and cross-subjects seizure detection from EEG signals

The objective of this study is to propose an approach to detect Seizure and Non-Seizure phenomenon from the highly inconsistent and non-linear EEG signals. In the view of performing cross-subject classification over the inconsistency and non-linear characteristics of EEG signals, we have proposed a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications Jg. 82; H. 23; S. 35221 - 35252
Hauptverfasser: Jana, Gopal Chandra, Swami, Keshav, Agrawal, Anupam
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.09.2023
Springer Nature B.V
Schlagworte:
ISSN:1380-7501, 1573-7721
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The objective of this study is to propose an approach to detect Seizure and Non-Seizure phenomenon from the highly inconsistent and non-linear EEG signals. In the view of performing cross-subject classification over the inconsistency and non-linear characteristics of EEG signals, we have proposed a fine-tuned Capsule Neural Network (CapsNet) based approach to classify the seizure and non-seizure EEG signals through subject specific and cross-subject training and testing. In this experiment, first we have normalized the input data using L2 normalization technique. In the second step, the normalized data have been given to the CapsNet and model level fine-tuning has been carried out. In addition to this, we have performed seizure and non-seizure classification performance evaluation using three more classifiers such as Decision Tree, Logistic Regression, Convolutional Neural Network to compare with the performance of the proposed approach. To estimate the effectiveness of the proposed approach, subject specific and cross-subject training and testing have been performed. In both experiments, we have used multi-channel and single channel EEG datasets. For subject specific experiment, the proposed approach achieved a mean accuracy of 93.50% over the dataset-1 (multi-channel) and an accuracy of 82.61% for dataset-2 (single channel). For cross-subject experiment, the proposed approach achieved a highest mean accuracy of 86.41% over the dataset-1(multi-channel) and a mean accuracy of 48.45% over the dataset-2 (single channel) which shows an advantage of CapsNet in a certain data scenario as described in result section. Overall performance of the proposed approach shown a comparable improvement over the existing approaches.
AbstractList The objective of this study is to propose an approach to detect Seizure and Non-Seizure phenomenon from the highly inconsistent and non-linear EEG signals. In the view of performing cross-subject classification over the inconsistency and non-linear characteristics of EEG signals, we have proposed a fine-tuned Capsule Neural Network (CapsNet) based approach to classify the seizure and non-seizure EEG signals through subject specific and cross-subject training and testing. In this experiment, first we have normalized the input data using L2 normalization technique. In the second step, the normalized data have been given to the CapsNet and model level fine-tuning has been carried out. In addition to this, we have performed seizure and non-seizure classification performance evaluation using three more classifiers such as Decision Tree, Logistic Regression, Convolutional Neural Network to compare with the performance of the proposed approach. To estimate the effectiveness of the proposed approach, subject specific and cross-subject training and testing have been performed. In both experiments, we have used multi-channel and single channel EEG datasets. For subject specific experiment, the proposed approach achieved a mean accuracy of 93.50% over the dataset-1 (multi-channel) and an accuracy of 82.61% for dataset-2 (single channel). For cross-subject experiment, the proposed approach achieved a highest mean accuracy of 86.41% over the dataset-1(multi-channel) and a mean accuracy of 48.45% over the dataset-2 (single channel) which shows an advantage of CapsNet in a certain data scenario as described in result section. Overall performance of the proposed approach shown a comparable improvement over the existing approaches.
Author Swami, Keshav
Agrawal, Anupam
Jana, Gopal Chandra
Author_xml – sequence: 1
  givenname: Gopal Chandra
  orcidid: 0000-0003-2793-1721
  surname: Jana
  fullname: Jana, Gopal Chandra
  email: go.gopal.ch.jana@gmail.com
  organization: Interactive Technologies & Multimedia Research Lab, Department of Information Technology, Indian Institute of Information Technology – Allahabad
– sequence: 2
  givenname: Keshav
  surname: Swami
  fullname: Swami, Keshav
  organization: School of Computer Engineering, KIIT Deemed to be University
– sequence: 3
  givenname: Anupam
  surname: Agrawal
  fullname: Agrawal, Anupam
  organization: Interactive Technologies & Multimedia Research Lab, Department of Information Technology, Indian Institute of Information Technology – Allahabad
BookMark eNp9kM1KAzEUhYNUsK2-gKuA6-jNZDI_Sym1CgU3ug6ZTFJTp5MxmaHo05t2CoKLbnIScr7LuWeGJq1rNUK3FO4pQP4QKIU0IZAwQtOy5GR_gaaU54zkeUIn8c4KIDkHeoVmIWwBaMaTdIq6hezC0Gjc6sHLJkq_d_4TVzLoGsuu806qD2ycx2Gotlr1OHRaWWMVlm2NlXchkNNXwEHbn8FrXOs-vq1rsfFuh5fLFQ5208omXKNLE0XfnHSO3p-Wb4tnsn5dvSwe10QxWvYk5UZRYIqDkpBxbTIpGZNlWpW1LmpmDDVFkUI8Mgl1meaVzBNW5yUwBqpmc3Q3zo0bfA069GLrBn9IIJIiy3gGlNHoKkbXcQ-vjVC2l4fgvZe2ERTEoV8x9itiv-LYr9hHNPmHdt7upP8-D7ERCtHcbrT_S3WG-gWTQpH7
CitedBy_id crossref_primary_10_1016_j_compbiomed_2025_110567
crossref_primary_10_1007_s11571_025_10269_3
crossref_primary_10_1098_rsos_230601
crossref_primary_10_1186_s42494_025_00238_y
Cites_doi 10.1016/j.patrec.2022.04.038
10.1109/TNSRE.2019.2943707
10.1109/ACCESS.2019.2929266
10.1109/TBME.2017.2771468
10.1016/j.procs.2020.03.248
10.1109/JETCAS.2018.2844733
10.1109/TBME.2017.2650259
10.1007/s11571-018-9477-1
10.1109/TNSRE.2018.2864306
10.1016/j.eswa.2004.12.027
10.1109/ACCESS.2019.2915610
10.1109/JBHI.2017.2654479
10.1016/j.seizure.2019.07.009
10.1109/ACCESS.2019.2955285
10.1016/j.cmpb.2004.10.009
10.1109/JETCAS.2018.2842761
10.1016/j.patcog.2017.10.013
10.1109/ACCESS.2018.2853125
10.1016/j.nicl.2019.101684
10.3390/s19092212
10.1016/j.compbiomed.2017.09.017
10.1007/978-1-4842-4470-8
10.1155/2022/3297316
10.1002/sim.4780100718
10.1016/j.compeleceng.2021.107033
10.1103/PhysRevE.64.061907
10.3389/fncom.2021.650050
10.3390/s18061720
10.1016/j.amc.2006.09.022
10.3390/s19132854
10.1142/6604
10.1109/CCIS.2018.8691230
10.1109/BIGCOMP.2019.8678917
10.1891/9781617051807
10.3389/fncom.2015.00038
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-023-14995-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 35252
ExternalDocumentID 10_1007_s11042_023_14995_w
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-45fc103c50ca065ef6aa33a94b9de8d3ff1f8840f886a0d947ba723d790330cd3
IEDL.DBID K7-
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947594500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Wed Nov 05 02:13:58 EST 2025
Sat Nov 29 06:20:26 EST 2025
Tue Nov 18 22:42:18 EST 2025
Fri Feb 21 02:42:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Logistic regression
Electroencephalogram (EEG)
Capsule neural network
Decision tree
Convolutional neural network
Cross-subject seizure detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-45fc103c50ca065ef6aa33a94b9de8d3ff1f8840f886a0d947ba723d790330cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2793-1721
PQID 2866560131
PQPubID 54626
PageCount 32
ParticipantIDs proquest_journals_2866560131
crossref_citationtrail_10_1007_s11042_023_14995_w
crossref_primary_10_1007_s11042_023_14995_w
springer_journals_10_1007_s11042_023_14995_w
PublicationCentury 2000
PublicationDate 20230900
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 9
  year: 2023
  text: 20230900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Goodfellow, Bengio, Courville (CR21) 2016
Mei, Zhao, Chen, Chen (CR32) 2018; 18
CR38
Chiang, Chen, Huang (CR10) 2019; 7
Emami, Kunii, Matsuo, Shinozaki, Kawai, Takahashi (CR17) 2019; 22
CR34
CR33
Liu, Xiao, Hsaio, Tseng (CR31) 2019; 7
Subasi, Erçelebi (CR46) 2005; 78
Engel, Pedley (CR18) 2008
Yan, Wang, Kwok, Allen, Keros, Grinspan (CR51) 2019; 71
CR7
Bisong (CR5) 2019
CR9
CR47
Truong, Nguyen, Kuhlmann, Bonyadi, Yang, Ippolito, Kavehei (CR50) 2018; 8
CR44
Jana, Sharma, Agrawal (CR29) 2020; 167
CR41
CR40
Chao, Dong, Liu, Lu (CR6) 2019; 19
CR19
Ha, Jeong (CR26) 2019; 19
Bhattacharyya, Pachori (CR4) 2017; 64
CR16
Acharya, Oh, Hagiwara, Tan, Adeli (CR2) 2018; 100
CR15
Polat, Güneş (CR36) 2007; 187
CR14
CR13
Praveena, Guptha, Kazemzadeh, Parameshachari, Hemalatha (CR37) 2022; 2022
CR11
Solaija, Saleem, Khurshid, Hassan, Kamboh (CR43) 2018; 6
Qiu, Zhou, Yu, Du (CR39) 2018; 26
Theeranaew, Ryvlin, Surges, Thijs, Schuele, Lhatoo, Loparo, McDonald, Zonjy, Kaffashi, Moseley, Friedman, So, Tao, Nei (CR48) 2018; 65
Ozcan, Erturk (CR35) 2019; 27
Hussain (CR28) 2018; 12
Abdelhameed, Bayoumi (CR1) 2021; 15
Toraman (CR49) 2021; 91
Subasi (CR45) 2005; 28
Chen, Zhang, Chen, Yang (CR8) 2019; 7
Cole (CR12) 1991; 10
Li, Wang, Luo, Li, Yang, Guo (CR30) 2018; 22
Shoaran, Haghi, Taghavi, Farivar, Emami-Neyestanak (CR42) 2018; 8
CR27
CR24
CR23
Guptha, Balamurugan, Megharaj, Sattar, Rose (CR25) 2022; 159
CR20
Andrzejak, Lehnertz, Mormann, Rieke, David, Elger (CR3) 2001; 64
Gu, Wang, Kuen, Ma, Shahroudy, Shuai, Liu, Wang, Wang, Cai, Chen (CR22) 2018; 77
14995_CR38
14995_CR9
C-L Liu (14995_CR31) 2019; 7
14995_CR7
A Subasi (14995_CR46) 2005; 78
I Goodfellow (14995_CR21) 2016
RG Andrzejak (14995_CR3) 2001; 64
14995_CR47
14995_CR44
14995_CR40
MSJ Solaija (14995_CR43) 2018; 6
14995_CR41
ND Truong (14995_CR50) 2018; 8
14995_CR27
Z Mei (14995_CR32) 2018; 18
A Bhattacharyya (14995_CR4) 2017; 64
NS Guptha (14995_CR25) 2022; 159
TJ Cole (14995_CR12) 1991; 10
J Gu (14995_CR22) 2018; 77
S Toraman (14995_CR49) 2021; 91
A Emami (14995_CR17) 2019; 22
14995_CR33
14995_CR34
M Shoaran (14995_CR42) 2018; 8
A Abdelhameed (14995_CR1) 2021; 15
14995_CR19
W Theeranaew (14995_CR48) 2018; 65
H Chao (14995_CR6) 2019; 19
HD Praveena (14995_CR37) 2022; 2022
14995_CR15
14995_CR16
K Polat (14995_CR36) 2007; 187
Y Qiu (14995_CR39) 2018; 26
AR Ozcan (14995_CR35) 2019; 27
GC Jana (14995_CR29) 2020; 167
S Chen (14995_CR8) 2019; 7
E Bisong (14995_CR5) 2019
14995_CR24
14995_CR23
14995_CR20
H-S Chiang (14995_CR10) 2019; 7
PZ Yan (14995_CR51) 2019; 71
A Subasi (14995_CR45) 2005; 28
L Hussain (14995_CR28) 2018; 12
J Engel (14995_CR18) 2008
K-W Ha (14995_CR26) 2019; 19
Y Li (14995_CR30) 2018; 22
UR Acharya (14995_CR2) 2018; 100
14995_CR13
14995_CR14
14995_CR11
References_xml – volume: 159
  start-page: 16
  year: 2022
  end-page: 22
  ident: CR25
  article-title: Cross lingual handwritten character recognition using long short term memory network with aid of elephant herding optimization algorithm
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2022.04.038
– volume: 27
  start-page: 2284
  year: 2019
  end-page: 2293
  ident: CR35
  article-title: Seizure prediction in scalp EEG using 3D convolutional neural networks with an image-based approach
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2019.2943707
– volume: 7
  start-page: 103255
  year: 2019
  end-page: 103262
  ident: CR10
  article-title: Wavelet-based EEG processing for epilepsy detection using fuzzy entropy and associative petri net
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929266
– volume: 65
  start-page: 371
  year: 2018
  end-page: 377
  ident: CR48
  article-title: Automated detection of postictal generalized EEG suppression
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2017.2771468
– volume: 167
  start-page: 403
  year: 2020
  end-page: 412
  ident: CR29
  article-title: A 1D-CNN-spectrogram based approach for seizure detection from EEG signal
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.03.248
– year: 2008
  ident: CR18
  publication-title: Epilepsy: a comprehensive textbook
– ident: CR16
– ident: CR19
– ident: CR15
– ident: CR11
– ident: CR9
– volume: 8
  start-page: 693
  year: 2018
  end-page: 707
  ident: CR42
  article-title: Energy-efficient classification for resource-constrained biomedical applications
  publication-title: IEEE J Emerg Sel Topics Circuits Syst
  doi: 10.1109/JETCAS.2018.2844733
– volume: 64
  start-page: 2003
  year: 2017
  end-page: 2015
  ident: CR4
  article-title: A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2017.2650259
– volume: 12
  start-page: 271
  year: 2018
  end-page: 294
  ident: CR28
  article-title: Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-018-9477-1
– volume: 26
  start-page: 1717
  year: 2018
  end-page: 1726
  ident: CR39
  article-title: Denoising sparse autoencoder-based ictal EEG classification
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2018.2864306
– volume: 28
  start-page: 701
  year: 2005
  end-page: 711
  ident: CR45
  article-title: Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2004.12.027
– volume: 7
  start-page: 61046
  year: 2019
  end-page: 61056
  ident: CR8
  article-title: Automatic diagnosis of epileptic seizure in electroencephalography signals using nonlinear dynamics features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2915610
– volume: 22
  start-page: 386
  year: 2018
  end-page: 397
  ident: CR30
  article-title: Epileptic seizure classification of EEGs using time–frequency analysis based multiscale radial basis functions
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2654479
– ident: CR47
– volume: 71
  start-page: 124
  year: 2019
  end-page: 131
  ident: CR51
  article-title: Automated spectrographic seizure detection using convolutional neural networks
  publication-title: Seizure
  doi: 10.1016/j.seizure.2019.07.009
– ident: CR14
– volume: 7
  start-page: 170352
  year: 2019
  end-page: 170361
  ident: CR31
  article-title: Epileptic seizure prediction with multi-view convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2955285
– volume: 78
  start-page: 87
  year: 2005
  end-page: 99
  ident: CR46
  article-title: Classification of EEG signals using neural network and logistic regression
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2004.10.009
– volume: 8
  start-page: 849
  year: 2018
  end-page: 857
  ident: CR50
  article-title: Integer convolutional neural network for seizure detection
  publication-title: IEEE J Emerg Sel Topics Circuits Syst
  doi: 10.1109/JETCAS.2018.2842761
– volume: 77
  start-page: 354
  year: 2018
  end-page: 377
  ident: CR22
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.10.013
– ident: CR33
– volume: 6
  start-page: 38683
  year: 2018
  end-page: 38692
  ident: CR43
  article-title: Dynamic mode decomposition based epileptic seizure detection from scalp EEG
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2853125
– volume: 22
  start-page: 101684
  year: 2019
  ident: CR17
  article-title: Seizure detection by convolutional neural network-based analysis of scalp electroencephalography plot images
  publication-title: NeuroImage: Clin
  doi: 10.1016/j.nicl.2019.101684
– volume: 19
  start-page: 2212
  year: 2019
  ident: CR6
  article-title: Emotion recognition from multiband EEG signals using CapsNet
  publication-title: Sensors
  doi: 10.3390/s19092212
– volume: 100
  start-page: 270
  year: 2018
  end-page: 278
  ident: CR2
  article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.09.017
– ident: CR40
– ident: CR27
– ident: CR23
– year: 2019
  ident: CR5
  publication-title: Google Colaboratory, building machine learning and deep learning models on Google cloud platform
  doi: 10.1007/978-1-4842-4470-8
– ident: CR44
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 9
  ident: CR37
  article-title: Effective CBMIR system using hybrid features-based independent condensed nearest neighbor model
  publication-title: J Healthcare Eng
  doi: 10.1155/2022/3297316
– year: 2016
  ident: CR21
  publication-title: Convolution neural network, deep learning 321–359
– ident: CR38
– volume: 10
  start-page: 1162
  year: 1991
  end-page: 1163
  ident: CR12
  article-title: Applied logistic regression. D. W. Hosmer and S. Lemeshow, Wiley, New York, 1989. No. of pages: xiii + 307. Price: £36.00
  publication-title: Stat Med
  doi: 10.1002/sim.4780100718
– ident: CR13
– volume: 91
  start-page: 107033
  year: 2021
  ident: CR49
  article-title: Automatic recognition of preictal and interictal EEG signals using 1D-capsule networks
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2021.107033
– volume: 64
  year: 2001
  ident: CR3
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.64.061907
– volume: 15
  start-page: 650050
  year: 2021
  ident: CR1
  article-title: A deep learning approach for automatic seizure detection in children with epilepsy
  publication-title: Front Comput Neurosci
  doi: 10.3389/fncom.2021.650050
– volume: 18
  start-page: 1720
  year: 2018
  ident: CR32
  article-title: Bio-signal complexity analysis in epileptic seizure monitoring: a topic review
  publication-title: Sensors
  doi: 10.3390/s18061720
– ident: CR34
– volume: 187
  start-page: 1017
  year: 2007
  end-page: 1026
  ident: CR36
  article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2006.09.022
– volume: 19
  start-page: 2854
  year: 2019
  ident: CR26
  article-title: Motor imagery EEG classification using capsule networks
  publication-title: Sensors
  doi: 10.3390/s19132854
– ident: CR7
– ident: CR41
– ident: CR24
– ident: CR20
– volume: 22
  start-page: 386
  year: 2018
  ident: 14995_CR30
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2654479
– volume: 7
  start-page: 61046
  year: 2019
  ident: 14995_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2915610
– volume: 19
  start-page: 2854
  year: 2019
  ident: 14995_CR26
  publication-title: Sensors
  doi: 10.3390/s19132854
– ident: 14995_CR7
– ident: 14995_CR19
– ident: 14995_CR40
  doi: 10.1142/6604
– volume: 159
  start-page: 16
  year: 2022
  ident: 14995_CR25
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2022.04.038
– ident: 14995_CR15
– ident: 14995_CR11
– volume: 7
  start-page: 170352
  year: 2019
  ident: 14995_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2955285
– volume: 187
  start-page: 1017
  year: 2007
  ident: 14995_CR36
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2006.09.022
– volume: 64
  start-page: 2003
  year: 2017
  ident: 14995_CR4
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2017.2650259
– ident: 14995_CR44
– volume: 7
  start-page: 103255
  year: 2019
  ident: 14995_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929266
– volume: 91
  start-page: 107033
  year: 2021
  ident: 14995_CR49
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2021.107033
– volume-title: Google Colaboratory, building machine learning and deep learning models on Google cloud platform
  year: 2019
  ident: 14995_CR5
  doi: 10.1007/978-1-4842-4470-8
– ident: 14995_CR24
  doi: 10.1109/CCIS.2018.8691230
– volume: 22
  start-page: 101684
  year: 2019
  ident: 14995_CR17
  publication-title: NeuroImage: Clin
  doi: 10.1016/j.nicl.2019.101684
– ident: 14995_CR34
– ident: 14995_CR14
– volume: 6
  start-page: 38683
  year: 2018
  ident: 14995_CR43
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2853125
– ident: 14995_CR38
– volume: 27
  start-page: 2284
  year: 2019
  ident: 14995_CR35
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2019.2943707
– ident: 14995_CR27
  doi: 10.1109/BIGCOMP.2019.8678917
– volume: 71
  start-page: 124
  year: 2019
  ident: 14995_CR51
  publication-title: Seizure
  doi: 10.1016/j.seizure.2019.07.009
– volume: 100
  start-page: 270
  year: 2018
  ident: 14995_CR2
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.09.017
– ident: 14995_CR41
– ident: 14995_CR47
  doi: 10.1891/9781617051807
– ident: 14995_CR9
– ident: 14995_CR33
– volume: 8
  start-page: 849
  year: 2018
  ident: 14995_CR50
  publication-title: IEEE J Emerg Sel Topics Circuits Syst
  doi: 10.1109/JETCAS.2018.2842761
– ident: 14995_CR13
– ident: 14995_CR20
  doi: 10.3389/fncom.2015.00038
– volume-title: Convolution neural network, deep learning 321–359
  year: 2016
  ident: 14995_CR21
– volume: 2022
  start-page: 1
  year: 2022
  ident: 14995_CR37
  publication-title: J Healthcare Eng
  doi: 10.1155/2022/3297316
– volume: 26
  start-page: 1717
  year: 2018
  ident: 14995_CR39
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2018.2864306
– volume-title: Epilepsy: a comprehensive textbook
  year: 2008
  ident: 14995_CR18
– volume: 64
  year: 2001
  ident: 14995_CR3
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.64.061907
– volume: 8
  start-page: 693
  year: 2018
  ident: 14995_CR42
  publication-title: IEEE J Emerg Sel Topics Circuits Syst
  doi: 10.1109/JETCAS.2018.2844733
– ident: 14995_CR23
– volume: 12
  start-page: 271
  year: 2018
  ident: 14995_CR28
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-018-9477-1
– volume: 15
  start-page: 650050
  year: 2021
  ident: 14995_CR1
  publication-title: Front Comput Neurosci
  doi: 10.3389/fncom.2021.650050
– volume: 19
  start-page: 2212
  year: 2019
  ident: 14995_CR6
  publication-title: Sensors
  doi: 10.3390/s19092212
– ident: 14995_CR16
– volume: 10
  start-page: 1162
  year: 1991
  ident: 14995_CR12
  publication-title: Stat Med
  doi: 10.1002/sim.4780100718
– volume: 77
  start-page: 354
  year: 2018
  ident: 14995_CR22
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.10.013
– volume: 28
  start-page: 701
  year: 2005
  ident: 14995_CR45
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2004.12.027
– volume: 167
  start-page: 403
  year: 2020
  ident: 14995_CR29
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.03.248
– volume: 65
  start-page: 371
  year: 2018
  ident: 14995_CR48
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2017.2771468
– volume: 78
  start-page: 87
  year: 2005
  ident: 14995_CR46
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2004.10.009
– volume: 18
  start-page: 1720
  year: 2018
  ident: 14995_CR32
  publication-title: Sensors
  doi: 10.3390/s18061720
SSID ssj0016524
Score 2.3579464
Snippet The objective of this study is to propose an approach to detect Seizure and Non-Seizure phenomenon from the highly inconsistent and non-linear EEG signals. In...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35221
SubjectTerms Accuracy
Artificial neural networks
Classification
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Datasets
Decision trees
Electroencephalography
Multimedia Information Systems
Neural networks
Performance evaluation
Special Purpose and Application-Based Systems
Training
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HfTg6qq4vsjBmwaSTZu2R5FdPYiIL7yVNA8QpC7bXQV_vZNuuquigl56yYM2yXS-ycx8A3CoWdGNnJNURhwNFMkUTWUi0FRR0kiRZIWrSVwvksvL9OEhuwpJYVUT7d64JOs_9SzZjftUEtQxFFF9FtPXeVhEdZd6cby-uZ_6DmQcStmmjKI-5CFV5vs5PqujGcb84hattU2_9b_3XIPVgC7JyeQ4rMOcLdvQaio3kCDIbVj5QEO4AYNThbbykyWe3BKHl5PQcOI1nCEN6zhBeEuqceEvbohP0PRBRkSVhtSfRkNTRSr7-DYeWmLsqI7zKonPYSG93hnx0SJ43jfhrt-7PT2noRID1SiiIxrFTnMmdMy0QsxinVRKCJVFRWZsaoRz3KVoKuJDKmayKClU0hUmyZgQTBuxBQvlc2m3gejEcs0dF7EUUTfRCNAQoUYuihnOVPAO8GZDch1oyn21jKd8RrDsFzjHBc7rBc5fO3A0HTOYkHT82nuv2ec8CGyVdz3vn_TkQx04bvZ11vzzbDt_674Ly75g_SRKbQ8WRsOx3Ycl_TJ6rIYH9UF-Bydk7Zg
  priority: 102
  providerName: Springer Nature
Title Capsule neural network based approach for subject specific and cross-subjects seizure detection from EEG signals
URI https://link.springer.com/article/10.1007/s11042-023-14995-w
https://www.proquest.com/docview/2866560131
Volume 82
WOSCitedRecordID wos000947594500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgM9tFCoulBWPnArFnac2MkJldUWJGC7Kq_CJXL8kCpV6bLZbSV-fceJ04VK7YXLXBxbjmbGM2PPfAPwyrAqSb2XVKYcAxTJNM2lEhiqaGmlUEXlWxDXT2oyyU9Pi2m8cGtiWmV_JrYHtb0w4Y78TRKA2WRAh3k7-01D16jwuhpbaKzBBk8SHuT8o6I3rwgyi01tc0bRMvJYNNOVzvFQmIIWi2KMUGT06l_DtPI2bz2QtnbnaPt_d_wYtqLHSQ47EXkCD1y9A9t9NwcSlXsHNv-CJnwKs5HG-PnckQB4idPrLl2cBKtnSY9ETtDlJc2yCpc5JBRthsQjomtL2p-kcaghjTv7s5w7Yt2izf2qSahrIePxexIySFAHnsG3o_HX0QcauzNQg2q7oGnmDWfCZMxo9GOcl1oLoYu0KqzLrfCe-xzDRyRSM1ukqtIqEVYVTAhmrNiF9fqidntAjHLccM9FJkWaKINOG3qtqU8zhitVfAC8Z01pInR56KBxXq5AlwM7S2Rn2bKzvBrAwc2cWQfcce_X-z0Py6jETbli4ABe91KwGr57tef3r_YCHoWm9V2m2j6sL-ZL9xIemsvFWTMfwpr68XMIG-_Gk-nJsBVopJ_ZKNDkGOk0-4X05Mv3a2cb_QY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQ9UCigLi3gA5zAahw7TnKoEFq2tOqy4lCk3oLjh1SpSpfNblflR_EbmcmjC0j01gOXXBzPwfnmFc98A_DaRmWsQtBcK4EJio4Mz3QqMVUx2mmZ5mVoSFzH6WSSnZ7mX9bgZ98LQ2WVvU1sDLW7sPSPfC8mYjZN7DDvp985TY2i29V-hEYLi2N_tcSUrd4_-ojf900cH4xOhoe8myrALcJtzlUSrIikTSJr0P_6oI2R0uSqzJ3PnAxBhAzTHnxoE7lcpaVJY-nSPMLc3zqJcu_AXaVQHahUMBpe31ropBuim0UcPbHomnTaVj1BjTDoITnmJHnCl386wlV0-9eFbOPnDjb_txN6BA-7iJp9aFXgMaz5ags2-2kVrDNeW7DxG_XiE5gOzbRenHtGhJ64vWrL4Rl5dcd6pnWGIT2rFyX9rGLUlEqFVcxUjjWHyrulmtX-7Mdi5pnz86a2rWLUt8NGo0-MKmRQx5_C11s5hWewXl1UfhuYTb2wIgiZaKni1GJQilG5CiqJUFIpBiB6KBS2o2anCSHnxYpUmuBTIHyKBj7FcgBvr_dMW2KSG9_e7TFTdEaqLlaAGcC7HnWr5X9Le36ztFdw__Dk87gYH02Od-BBTKBvqvJ2YX0-W_gXcM9ezs_q2ctGfRh8u200_gLKqFPS
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglA5UCigLhTwAU5g1Y4TOzkghNpdqFqt9gBSxSU4fkiVqnS72e2K_rT-OsaJ0wUkeuuBSy6O52B_noc98w3AG8OqJPVeUplyDFAk0zSXSmCooqWVQhWVb0lcj9R4nB8fF5M1uOprYUJaZa8TW0Vtz0y4I99NAjGbDOwwuz6mRUz2Rx-n5zR0kAovrX07jQ4ih-7nEsO35sPBPu712yQZDb_ufaGxwwA1CL05TTNvOBMmY0ajLXZeai2ELtKqsC63wnvucwyB8CM1s0WqKq0SYVXBhGDGCpR7B-4qjDFD4DfJvl-_YMgsNtTNGUWrzGPBTle2x0NRDFpLivFJkdHln0Zx5en-9Tjb2rzR5v-8Wo_gYfS0yafuaDyGNVdvwWbfxYJEpbYFD36jZHwC0z09bRanjgSiT5xed2nyJFh7S3oGdoKuPmkWVbjEIqFYNSRcEV1b0i4wjUMNadzJ5WLmiHXzNuetJqGehwyHn0nInMGz_xS-3coqPIP1-qx220CMctxwz0UmRZoog84qeuupTzOGkio-AN7DojSRsj10DjktV2TTAUolQqlsoVQuB_Dues60Iyy58e-dHj9lVF5NuQLPAN73CFwN_1va85ulvYb7CMLy6GB8-AI2koD_NllvB9bns4V7CffMxfykmb1qTxKBH7cNxl_tBVzj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capsule+neural+network+based+approach+for+subject+specific+and+cross-subjects+seizure+detection+from+EEG+signals&rft.jtitle=Multimedia+tools+and+applications&rft.au=Jana%2C+Gopal+Chandra&rft.au=Swami%2C+Keshav&rft.au=Agrawal%2C+Anupam&rft.date=2023-09-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=23&rft.spage=35221&rft.epage=35252&rft_id=info:doi/10.1007%2Fs11042-023-14995-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_14995_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon