Capsule neural network based approach for subject specific and cross-subjects seizure detection from EEG signals
The objective of this study is to propose an approach to detect Seizure and Non-Seizure phenomenon from the highly inconsistent and non-linear EEG signals. In the view of performing cross-subject classification over the inconsistency and non-linear characteristics of EEG signals, we have proposed a...
Saved in:
| Published in: | Multimedia tools and applications Vol. 82; no. 23; pp. 35221 - 35252 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.09.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1380-7501, 1573-7721 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The objective of this study is to propose an approach to detect Seizure and Non-Seizure phenomenon from the highly inconsistent and non-linear EEG signals. In the view of performing cross-subject classification over the inconsistency and non-linear characteristics of EEG signals, we have proposed a fine-tuned Capsule Neural Network (CapsNet) based approach to classify the seizure and non-seizure EEG signals through subject specific and cross-subject training and testing. In this experiment, first we have normalized the input data using L2 normalization technique. In the second step, the normalized data have been given to the CapsNet and model level fine-tuning has been carried out. In addition to this, we have performed seizure and non-seizure classification performance evaluation using three more classifiers such as Decision Tree, Logistic Regression, Convolutional Neural Network to compare with the performance of the proposed approach. To estimate the effectiveness of the proposed approach, subject specific and cross-subject training and testing have been performed. In both experiments, we have used multi-channel and single channel EEG datasets. For subject specific experiment, the proposed approach achieved a mean accuracy of 93.50% over the dataset-1 (multi-channel) and an accuracy of 82.61% for dataset-2 (single channel). For cross-subject experiment, the proposed approach achieved a highest mean accuracy of 86.41% over the dataset-1(multi-channel) and a mean accuracy of 48.45% over the dataset-2 (single channel) which shows an advantage of CapsNet in a certain data scenario as described in result section. Overall performance of the proposed approach shown a comparable improvement over the existing approaches. |
|---|---|
| AbstractList | The objective of this study is to propose an approach to detect Seizure and Non-Seizure phenomenon from the highly inconsistent and non-linear EEG signals. In the view of performing cross-subject classification over the inconsistency and non-linear characteristics of EEG signals, we have proposed a fine-tuned Capsule Neural Network (CapsNet) based approach to classify the seizure and non-seizure EEG signals through subject specific and cross-subject training and testing. In this experiment, first we have normalized the input data using L2 normalization technique. In the second step, the normalized data have been given to the CapsNet and model level fine-tuning has been carried out. In addition to this, we have performed seizure and non-seizure classification performance evaluation using three more classifiers such as Decision Tree, Logistic Regression, Convolutional Neural Network to compare with the performance of the proposed approach. To estimate the effectiveness of the proposed approach, subject specific and cross-subject training and testing have been performed. In both experiments, we have used multi-channel and single channel EEG datasets. For subject specific experiment, the proposed approach achieved a mean accuracy of 93.50% over the dataset-1 (multi-channel) and an accuracy of 82.61% for dataset-2 (single channel). For cross-subject experiment, the proposed approach achieved a highest mean accuracy of 86.41% over the dataset-1(multi-channel) and a mean accuracy of 48.45% over the dataset-2 (single channel) which shows an advantage of CapsNet in a certain data scenario as described in result section. Overall performance of the proposed approach shown a comparable improvement over the existing approaches. |
| Author | Swami, Keshav Agrawal, Anupam Jana, Gopal Chandra |
| Author_xml | – sequence: 1 givenname: Gopal Chandra orcidid: 0000-0003-2793-1721 surname: Jana fullname: Jana, Gopal Chandra email: go.gopal.ch.jana@gmail.com organization: Interactive Technologies & Multimedia Research Lab, Department of Information Technology, Indian Institute of Information Technology – Allahabad – sequence: 2 givenname: Keshav surname: Swami fullname: Swami, Keshav organization: School of Computer Engineering, KIIT Deemed to be University – sequence: 3 givenname: Anupam surname: Agrawal fullname: Agrawal, Anupam organization: Interactive Technologies & Multimedia Research Lab, Department of Information Technology, Indian Institute of Information Technology – Allahabad |
| BookMark | eNp9kM1KAzEUhYNUsK2-gKuA6-jNZDI_Sym1CgU3ug6ZTFJTp5MxmaHo05t2CoKLbnIScr7LuWeGJq1rNUK3FO4pQP4QKIU0IZAwQtOy5GR_gaaU54zkeUIn8c4KIDkHeoVmIWwBaMaTdIq6hezC0Gjc6sHLJkq_d_4TVzLoGsuu806qD2ycx2Gotlr1OHRaWWMVlm2NlXchkNNXwEHbn8FrXOs-vq1rsfFuh5fLFQ5208omXKNLE0XfnHSO3p-Wb4tnsn5dvSwe10QxWvYk5UZRYIqDkpBxbTIpGZNlWpW1LmpmDDVFkUI8Mgl1meaVzBNW5yUwBqpmc3Q3zo0bfA069GLrBn9IIJIiy3gGlNHoKkbXcQ-vjVC2l4fgvZe2ERTEoV8x9itiv-LYr9hHNPmHdt7upP8-D7ERCtHcbrT_S3WG-gWTQpH7 |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2025_110567 crossref_primary_10_1007_s11571_025_10269_3 crossref_primary_10_1098_rsos_230601 crossref_primary_10_1186_s42494_025_00238_y |
| Cites_doi | 10.1016/j.patrec.2022.04.038 10.1109/TNSRE.2019.2943707 10.1109/ACCESS.2019.2929266 10.1109/TBME.2017.2771468 10.1016/j.procs.2020.03.248 10.1109/JETCAS.2018.2844733 10.1109/TBME.2017.2650259 10.1007/s11571-018-9477-1 10.1109/TNSRE.2018.2864306 10.1016/j.eswa.2004.12.027 10.1109/ACCESS.2019.2915610 10.1109/JBHI.2017.2654479 10.1016/j.seizure.2019.07.009 10.1109/ACCESS.2019.2955285 10.1016/j.cmpb.2004.10.009 10.1109/JETCAS.2018.2842761 10.1016/j.patcog.2017.10.013 10.1109/ACCESS.2018.2853125 10.1016/j.nicl.2019.101684 10.3390/s19092212 10.1016/j.compbiomed.2017.09.017 10.1007/978-1-4842-4470-8 10.1155/2022/3297316 10.1002/sim.4780100718 10.1016/j.compeleceng.2021.107033 10.1103/PhysRevE.64.061907 10.3389/fncom.2021.650050 10.3390/s18061720 10.1016/j.amc.2006.09.022 10.3390/s19132854 10.1142/6604 10.1109/CCIS.2018.8691230 10.1109/BIGCOMP.2019.8678917 10.1891/9781617051807 10.3389/fncom.2015.00038 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11042-023-14995-w |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 35252 |
| ExternalDocumentID | 10_1007_s11042_023_14995_w |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-45fc103c50ca065ef6aa33a94b9de8d3ff1f8840f886a0d947ba723d790330cd3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000947594500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1380-7501 |
| IngestDate | Wed Nov 05 02:13:58 EST 2025 Sat Nov 29 06:20:26 EST 2025 Tue Nov 18 22:42:18 EST 2025 Fri Feb 21 02:42:05 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | Logistic regression Electroencephalogram (EEG) Capsule neural network Decision tree Convolutional neural network Cross-subject seizure detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-45fc103c50ca065ef6aa33a94b9de8d3ff1f8840f886a0d947ba723d790330cd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2793-1721 |
| PQID | 2866560131 |
| PQPubID | 54626 |
| PageCount | 32 |
| ParticipantIDs | proquest_journals_2866560131 crossref_citationtrail_10_1007_s11042_023_14995_w crossref_primary_10_1007_s11042_023_14995_w springer_journals_10_1007_s11042_023_14995_w |
| PublicationCentury | 2000 |
| PublicationDate | 20230900 2023-09-00 20230901 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 9 year: 2023 text: 20230900 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Goodfellow, Bengio, Courville (CR21) 2016 Mei, Zhao, Chen, Chen (CR32) 2018; 18 CR38 Chiang, Chen, Huang (CR10) 2019; 7 Emami, Kunii, Matsuo, Shinozaki, Kawai, Takahashi (CR17) 2019; 22 CR34 CR33 Liu, Xiao, Hsaio, Tseng (CR31) 2019; 7 Subasi, Erçelebi (CR46) 2005; 78 Engel, Pedley (CR18) 2008 Yan, Wang, Kwok, Allen, Keros, Grinspan (CR51) 2019; 71 CR7 Bisong (CR5) 2019 CR9 CR47 Truong, Nguyen, Kuhlmann, Bonyadi, Yang, Ippolito, Kavehei (CR50) 2018; 8 CR44 Jana, Sharma, Agrawal (CR29) 2020; 167 CR41 CR40 Chao, Dong, Liu, Lu (CR6) 2019; 19 CR19 Ha, Jeong (CR26) 2019; 19 Bhattacharyya, Pachori (CR4) 2017; 64 CR16 Acharya, Oh, Hagiwara, Tan, Adeli (CR2) 2018; 100 CR15 Polat, Güneş (CR36) 2007; 187 CR14 CR13 Praveena, Guptha, Kazemzadeh, Parameshachari, Hemalatha (CR37) 2022; 2022 CR11 Solaija, Saleem, Khurshid, Hassan, Kamboh (CR43) 2018; 6 Qiu, Zhou, Yu, Du (CR39) 2018; 26 Theeranaew, Ryvlin, Surges, Thijs, Schuele, Lhatoo, Loparo, McDonald, Zonjy, Kaffashi, Moseley, Friedman, So, Tao, Nei (CR48) 2018; 65 Ozcan, Erturk (CR35) 2019; 27 Hussain (CR28) 2018; 12 Abdelhameed, Bayoumi (CR1) 2021; 15 Toraman (CR49) 2021; 91 Subasi (CR45) 2005; 28 Chen, Zhang, Chen, Yang (CR8) 2019; 7 Cole (CR12) 1991; 10 Li, Wang, Luo, Li, Yang, Guo (CR30) 2018; 22 Shoaran, Haghi, Taghavi, Farivar, Emami-Neyestanak (CR42) 2018; 8 CR27 CR24 CR23 Guptha, Balamurugan, Megharaj, Sattar, Rose (CR25) 2022; 159 CR20 Andrzejak, Lehnertz, Mormann, Rieke, David, Elger (CR3) 2001; 64 Gu, Wang, Kuen, Ma, Shahroudy, Shuai, Liu, Wang, Wang, Cai, Chen (CR22) 2018; 77 14995_CR38 14995_CR9 C-L Liu (14995_CR31) 2019; 7 14995_CR7 A Subasi (14995_CR46) 2005; 78 I Goodfellow (14995_CR21) 2016 RG Andrzejak (14995_CR3) 2001; 64 14995_CR47 14995_CR44 14995_CR40 MSJ Solaija (14995_CR43) 2018; 6 14995_CR41 ND Truong (14995_CR50) 2018; 8 14995_CR27 Z Mei (14995_CR32) 2018; 18 A Bhattacharyya (14995_CR4) 2017; 64 NS Guptha (14995_CR25) 2022; 159 TJ Cole (14995_CR12) 1991; 10 J Gu (14995_CR22) 2018; 77 S Toraman (14995_CR49) 2021; 91 A Emami (14995_CR17) 2019; 22 14995_CR33 14995_CR34 M Shoaran (14995_CR42) 2018; 8 A Abdelhameed (14995_CR1) 2021; 15 14995_CR19 W Theeranaew (14995_CR48) 2018; 65 H Chao (14995_CR6) 2019; 19 HD Praveena (14995_CR37) 2022; 2022 14995_CR15 14995_CR16 K Polat (14995_CR36) 2007; 187 Y Qiu (14995_CR39) 2018; 26 AR Ozcan (14995_CR35) 2019; 27 GC Jana (14995_CR29) 2020; 167 S Chen (14995_CR8) 2019; 7 E Bisong (14995_CR5) 2019 14995_CR24 14995_CR23 14995_CR20 H-S Chiang (14995_CR10) 2019; 7 PZ Yan (14995_CR51) 2019; 71 A Subasi (14995_CR45) 2005; 28 L Hussain (14995_CR28) 2018; 12 J Engel (14995_CR18) 2008 K-W Ha (14995_CR26) 2019; 19 Y Li (14995_CR30) 2018; 22 UR Acharya (14995_CR2) 2018; 100 14995_CR13 14995_CR14 14995_CR11 |
| References_xml | – volume: 159 start-page: 16 year: 2022 end-page: 22 ident: CR25 article-title: Cross lingual handwritten character recognition using long short term memory network with aid of elephant herding optimization algorithm publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2022.04.038 – volume: 27 start-page: 2284 year: 2019 end-page: 2293 ident: CR35 article-title: Seizure prediction in scalp EEG using 3D convolutional neural networks with an image-based approach publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2019.2943707 – volume: 7 start-page: 103255 year: 2019 end-page: 103262 ident: CR10 article-title: Wavelet-based EEG processing for epilepsy detection using fuzzy entropy and associative petri net publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929266 – volume: 65 start-page: 371 year: 2018 end-page: 377 ident: CR48 article-title: Automated detection of postictal generalized EEG suppression publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2017.2771468 – volume: 167 start-page: 403 year: 2020 end-page: 412 ident: CR29 article-title: A 1D-CNN-spectrogram based approach for seizure detection from EEG signal publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.03.248 – year: 2008 ident: CR18 publication-title: Epilepsy: a comprehensive textbook – ident: CR16 – ident: CR19 – ident: CR15 – ident: CR11 – ident: CR9 – volume: 8 start-page: 693 year: 2018 end-page: 707 ident: CR42 article-title: Energy-efficient classification for resource-constrained biomedical applications publication-title: IEEE J Emerg Sel Topics Circuits Syst doi: 10.1109/JETCAS.2018.2844733 – volume: 64 start-page: 2003 year: 2017 end-page: 2015 ident: CR4 article-title: A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2017.2650259 – volume: 12 start-page: 271 year: 2018 end-page: 294 ident: CR28 article-title: Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach publication-title: Cogn Neurodyn doi: 10.1007/s11571-018-9477-1 – volume: 26 start-page: 1717 year: 2018 end-page: 1726 ident: CR39 article-title: Denoising sparse autoencoder-based ictal EEG classification publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2018.2864306 – volume: 28 start-page: 701 year: 2005 end-page: 711 ident: CR45 article-title: Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2004.12.027 – volume: 7 start-page: 61046 year: 2019 end-page: 61056 ident: CR8 article-title: Automatic diagnosis of epileptic seizure in electroencephalography signals using nonlinear dynamics features publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2915610 – volume: 22 start-page: 386 year: 2018 end-page: 397 ident: CR30 article-title: Epileptic seizure classification of EEGs using time–frequency analysis based multiscale radial basis functions publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2654479 – ident: CR47 – volume: 71 start-page: 124 year: 2019 end-page: 131 ident: CR51 article-title: Automated spectrographic seizure detection using convolutional neural networks publication-title: Seizure doi: 10.1016/j.seizure.2019.07.009 – ident: CR14 – volume: 7 start-page: 170352 year: 2019 end-page: 170361 ident: CR31 article-title: Epileptic seizure prediction with multi-view convolutional neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2955285 – volume: 78 start-page: 87 year: 2005 end-page: 99 ident: CR46 article-title: Classification of EEG signals using neural network and logistic regression publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2004.10.009 – volume: 8 start-page: 849 year: 2018 end-page: 857 ident: CR50 article-title: Integer convolutional neural network for seizure detection publication-title: IEEE J Emerg Sel Topics Circuits Syst doi: 10.1109/JETCAS.2018.2842761 – volume: 77 start-page: 354 year: 2018 end-page: 377 ident: CR22 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.10.013 – ident: CR33 – volume: 6 start-page: 38683 year: 2018 end-page: 38692 ident: CR43 article-title: Dynamic mode decomposition based epileptic seizure detection from scalp EEG publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2853125 – volume: 22 start-page: 101684 year: 2019 ident: CR17 article-title: Seizure detection by convolutional neural network-based analysis of scalp electroencephalography plot images publication-title: NeuroImage: Clin doi: 10.1016/j.nicl.2019.101684 – volume: 19 start-page: 2212 year: 2019 ident: CR6 article-title: Emotion recognition from multiband EEG signals using CapsNet publication-title: Sensors doi: 10.3390/s19092212 – volume: 100 start-page: 270 year: 2018 end-page: 278 ident: CR2 article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.09.017 – ident: CR40 – ident: CR27 – ident: CR23 – year: 2019 ident: CR5 publication-title: Google Colaboratory, building machine learning and deep learning models on Google cloud platform doi: 10.1007/978-1-4842-4470-8 – ident: CR44 – volume: 2022 start-page: 1 year: 2022 end-page: 9 ident: CR37 article-title: Effective CBMIR system using hybrid features-based independent condensed nearest neighbor model publication-title: J Healthcare Eng doi: 10.1155/2022/3297316 – year: 2016 ident: CR21 publication-title: Convolution neural network, deep learning 321–359 – ident: CR38 – volume: 10 start-page: 1162 year: 1991 end-page: 1163 ident: CR12 article-title: Applied logistic regression. D. W. Hosmer and S. Lemeshow, Wiley, New York, 1989. No. of pages: xiii + 307. Price: £36.00 publication-title: Stat Med doi: 10.1002/sim.4780100718 – ident: CR13 – volume: 91 start-page: 107033 year: 2021 ident: CR49 article-title: Automatic recognition of preictal and interictal EEG signals using 1D-capsule networks publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2021.107033 – volume: 64 year: 2001 ident: CR3 article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys Rev E doi: 10.1103/PhysRevE.64.061907 – volume: 15 start-page: 650050 year: 2021 ident: CR1 article-title: A deep learning approach for automatic seizure detection in children with epilepsy publication-title: Front Comput Neurosci doi: 10.3389/fncom.2021.650050 – volume: 18 start-page: 1720 year: 2018 ident: CR32 article-title: Bio-signal complexity analysis in epileptic seizure monitoring: a topic review publication-title: Sensors doi: 10.3390/s18061720 – ident: CR34 – volume: 187 start-page: 1017 year: 2007 end-page: 1026 ident: CR36 article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform publication-title: Appl Math Comput doi: 10.1016/j.amc.2006.09.022 – volume: 19 start-page: 2854 year: 2019 ident: CR26 article-title: Motor imagery EEG classification using capsule networks publication-title: Sensors doi: 10.3390/s19132854 – ident: CR7 – ident: CR41 – ident: CR24 – ident: CR20 – volume: 22 start-page: 386 year: 2018 ident: 14995_CR30 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2017.2654479 – volume: 7 start-page: 61046 year: 2019 ident: 14995_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2915610 – volume: 19 start-page: 2854 year: 2019 ident: 14995_CR26 publication-title: Sensors doi: 10.3390/s19132854 – ident: 14995_CR7 – ident: 14995_CR19 – ident: 14995_CR40 doi: 10.1142/6604 – volume: 159 start-page: 16 year: 2022 ident: 14995_CR25 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2022.04.038 – ident: 14995_CR15 – ident: 14995_CR11 – volume: 7 start-page: 170352 year: 2019 ident: 14995_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2955285 – volume: 187 start-page: 1017 year: 2007 ident: 14995_CR36 publication-title: Appl Math Comput doi: 10.1016/j.amc.2006.09.022 – volume: 64 start-page: 2003 year: 2017 ident: 14995_CR4 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2017.2650259 – ident: 14995_CR44 – volume: 7 start-page: 103255 year: 2019 ident: 14995_CR10 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929266 – volume: 91 start-page: 107033 year: 2021 ident: 14995_CR49 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2021.107033 – volume-title: Google Colaboratory, building machine learning and deep learning models on Google cloud platform year: 2019 ident: 14995_CR5 doi: 10.1007/978-1-4842-4470-8 – ident: 14995_CR24 doi: 10.1109/CCIS.2018.8691230 – volume: 22 start-page: 101684 year: 2019 ident: 14995_CR17 publication-title: NeuroImage: Clin doi: 10.1016/j.nicl.2019.101684 – ident: 14995_CR34 – ident: 14995_CR14 – volume: 6 start-page: 38683 year: 2018 ident: 14995_CR43 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2853125 – ident: 14995_CR38 – volume: 27 start-page: 2284 year: 2019 ident: 14995_CR35 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2019.2943707 – ident: 14995_CR27 doi: 10.1109/BIGCOMP.2019.8678917 – volume: 71 start-page: 124 year: 2019 ident: 14995_CR51 publication-title: Seizure doi: 10.1016/j.seizure.2019.07.009 – volume: 100 start-page: 270 year: 2018 ident: 14995_CR2 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.09.017 – ident: 14995_CR41 – ident: 14995_CR47 doi: 10.1891/9781617051807 – ident: 14995_CR9 – ident: 14995_CR33 – volume: 8 start-page: 849 year: 2018 ident: 14995_CR50 publication-title: IEEE J Emerg Sel Topics Circuits Syst doi: 10.1109/JETCAS.2018.2842761 – ident: 14995_CR13 – ident: 14995_CR20 doi: 10.3389/fncom.2015.00038 – volume-title: Convolution neural network, deep learning 321–359 year: 2016 ident: 14995_CR21 – volume: 2022 start-page: 1 year: 2022 ident: 14995_CR37 publication-title: J Healthcare Eng doi: 10.1155/2022/3297316 – volume: 26 start-page: 1717 year: 2018 ident: 14995_CR39 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2018.2864306 – volume-title: Epilepsy: a comprehensive textbook year: 2008 ident: 14995_CR18 – volume: 64 year: 2001 ident: 14995_CR3 publication-title: Phys Rev E doi: 10.1103/PhysRevE.64.061907 – volume: 8 start-page: 693 year: 2018 ident: 14995_CR42 publication-title: IEEE J Emerg Sel Topics Circuits Syst doi: 10.1109/JETCAS.2018.2844733 – ident: 14995_CR23 – volume: 12 start-page: 271 year: 2018 ident: 14995_CR28 publication-title: Cogn Neurodyn doi: 10.1007/s11571-018-9477-1 – volume: 15 start-page: 650050 year: 2021 ident: 14995_CR1 publication-title: Front Comput Neurosci doi: 10.3389/fncom.2021.650050 – volume: 19 start-page: 2212 year: 2019 ident: 14995_CR6 publication-title: Sensors doi: 10.3390/s19092212 – ident: 14995_CR16 – volume: 10 start-page: 1162 year: 1991 ident: 14995_CR12 publication-title: Stat Med doi: 10.1002/sim.4780100718 – volume: 77 start-page: 354 year: 2018 ident: 14995_CR22 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.10.013 – volume: 28 start-page: 701 year: 2005 ident: 14995_CR45 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2004.12.027 – volume: 167 start-page: 403 year: 2020 ident: 14995_CR29 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.03.248 – volume: 65 start-page: 371 year: 2018 ident: 14995_CR48 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2017.2771468 – volume: 78 start-page: 87 year: 2005 ident: 14995_CR46 publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2004.10.009 – volume: 18 start-page: 1720 year: 2018 ident: 14995_CR32 publication-title: Sensors doi: 10.3390/s18061720 |
| SSID | ssj0016524 |
| Score | 2.3579464 |
| Snippet | The objective of this study is to propose an approach to detect Seizure and Non-Seizure phenomenon from the highly inconsistent and non-linear EEG signals. In... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 35221 |
| SubjectTerms | Accuracy Artificial neural networks Classification Computer Communication Networks Computer Science Data Structures and Information Theory Datasets Decision trees Electroencephalography Multimedia Information Systems Neural networks Performance evaluation Special Purpose and Application-Based Systems Training |
| SummonAdditionalLinks | – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60etCD1apYrbIHb7qQZPPYHKW0epAivugtbLIbKJRYmtSCv97ZZNOoqKAEctkHyc5M5tvszDcA54FgnmQyoIIHirpSCcodpYuZaX4xiRBClOz6t8FoxMfj8M4kheV1tHt9JFl-qZtkN1unkqCPoYjqQ48u12ED3R3X5nj_8Lw6O_A9U8qWWxT9oW1SZb6f47M7ajDml2PR0tsM2_97zl3YMeiSXFXqsAdrKutAu67cQIwhd2D7Aw3hPsz6AvfKU0U0uSUOz6rQcKI9nCQ16zhBeEvyRax_3BCdoKmDjIjIJClfjZqmnORq8raYKyJVUcZ5ZUTnsJDB4JroaBHU9wN4Gg4e-zfUVGKgCZpoQV0vTWyLJZ6VCMQsKvWFYEyEbhxKxSVLUzvluFXEmy8sGbpBLAIHVSC0GLMSyQ6hlb1k6giIa-PFEidlMXdTO-S4Z0HYqDxfOChM1QW7FkiUGJpyXS1jGjUEy3qBI1zgqFzgaNmFi9WYWUXS8WvvXi3nyBhsHjma98_X5ENduKzl2jT_PNvx37qfwJYuWF9FqfWgVcwX6hQ2k9diks_PSkV-Bz4Z7as priority: 102 providerName: Springer Nature |
| Title | Capsule neural network based approach for subject specific and cross-subjects seizure detection from EEG signals |
| URI | https://link.springer.com/article/10.1007/s11042-023-14995-w https://www.proquest.com/docview/2866560131 |
| Volume | 82 |
| WOSCitedRecordID | wos000947594500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature Consortium list (Orbis Cascade Alliance) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOpQDUB5iC6x86K21Gsd5OKcKVgtItNsVhRa4RF7bkZBQ2G52QeqvZyZxWFqpXKpIc3FsJZoZz4w98w3A-1TL2Eqbcq1SxyPrNFeho2ZmhC9m0YXQNbr-l3QwUFdX2dAfuFU-rbLdE-uN2t4bOiP_FBIwW0LoMJ_Hvzh1jaLbVd9CYxGWRRgKkvOzlD_fIiSxb2qrAo6WUfiimaZ0TlBhClosjjFCFvPHPw3T3Nv864K0tjvH6__7xRuw5j1OdtiIyFtYcOUmrLfdHJhX7k1YfQFNuAXjnsb4-c4xArzE6WWTLs7I6lnWIpEzdHlZNRvRYQ6jok1KPGK6tKz-Se6HKla529-ziWPWTevcr5JRXQvr908YZZCgDmzD5XH_onfKfXcGblBtpzyKCyMCaeLAaPRjXJFoLaXOolFmnbKyKEShMHxEkujAZlE60mmIYpEFUgbGyh1YKu9LtwssEvhIExZypKJCZArjGHQlXZzoMMiU64BoWZMbD11OHTTu8jnoMrEzR3bmNTvzxw58eJ4zboA7Xn17v-Vh7pW4yucM7MDHVgrmw_9e7d3rq-3BG2pa32Sq7cPSdDJzB7BiHqa31aQLi-nP6y4sH_UHw_NuLdBIvwY9ouE3pMP4Bun59x9PiPr9GQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RWqnlAJSCWB7tHNpTa5HEeTgHhNCyFMSy6oFK3FKv7UhIKGw3u6zoj-pvZCYPllYqNw5VpFwSW4rzzcue-QbgY6JlZKVNhFaJE6F1WqjAcTMz5hez5ELoil2_nwwG6vIy_bYAv9taGE6rbHVipajtjeE98r2AidliZoc5GP0U3DWKT1fbFho1LM7c3YxCtnL_9Ij-76cgOO5ddE9E01VAGILbRIRRbnxPmsgzmuyvy2OtpdRpOEytU1bmuZ8rCnvoFmvPpmEy1ElAn5N6FPsbK2neF_AyDEkcOFXQ6z6cWsRR00RXeYIssd8U6dSlej4XwpCFFBSTpJGY_WkI597tXweylZ07XvnfVmgVlhuPGg9rEXgLC65Yg5W2WwU2ymsNlh5RL76DUVePyum1Qyb0pOFFnQ6PbNUttkzrSC49ltMhb1YhF6VyYhXqwmK1qKJ5VGLprn5Nxw6tm1S5bQVy3Q72el-RM2RIxtfh-7OswgYsFjeF2wQMfbqkCXI5VGHup4riNHKVXRTrwEuV64DfQiEzDTU7dwi5zuak0gyfjOCTVfDJZh34_DBmVBOTPPn2TouZrFFSZTYHTAe-tKibP_73bFtPz_YBXp9cnPez_ungbBveBAz6KitvBxYn46nbhVfmdnJVjt9X4oPw47nReA9cwVPl |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAc6IOibikwh3ICq0mch3OoEGp3odpq1QNIvQWv7UiVqnS72WUFP41fx0zidNtK9NYDipRLYktxvnnZM98A7GVaJlbaTGiVORFbp4WKHDczY34xSy6Ebtj1T7LRSJ2d5acr8KerheG0yk4nNoraXhreI9-PmJgtZXaY_dKnRZweDT5NrgR3kOKT1q6dRguRofu1oPCtPjg-on_9PooG_W-HX4XvMCAMQW8m4qQ0YSBNEhhNttiVqdZS6jwe59YpK8syLBWFQHRLdWDzOBvrLKJPywMpA2MlzfsIHpMVTljGhpm4PsFIE99QVwWCrHLoC3basr2Qi2LIWgqKT_JELG4bxaWne-dwtrF5g7X_ebXW4YX3tPFzKxobsOKqTVjruligV2qb8PwGJeNLmBzqST2_cMhEnzS8atPkka29xY6BHcnVx3o-5k0s5GJVTrhCXVlsFlj4RzXW7vz3fOrQulmT81Yh1_Ngv_8FOXOGZH8Lvj_IKryC1eqyctuAcUiXNFEpxyouw1xR_EYutEtSHQW5cj0IO1gUxlO2c-eQi2JJNs1QKghKRQOlYtGDD9djJi1hyb1v73b4KbzyqosleHrwsUPg8vG_Z9u5f7Z38JRAWJwcj4av4VnE-G-S9XZhdTaduzfwxPycndfTt40kIfx4aDD-BZ42XIs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capsule+neural+network+based+approach+for+subject+specific+and+cross-subjects+seizure+detection+from+EEG+signals&rft.jtitle=Multimedia+tools+and+applications&rft.au=Jana%2C+Gopal+Chandra&rft.au=Swami%2C+Keshav&rft.au=Agrawal%2C+Anupam&rft.date=2023-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=23&rft.spage=35221&rft.epage=35252&rft_id=info:doi/10.1007%2Fs11042-023-14995-w&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |