Secure communication routing and attack detection in UAV networks using Gannet Walruses optimization algorithm and Sheppard Convolutional Spinal Network
Unmanned Aerial vehicles (UAV) are high-speed moving machines that attained rapid growth in various activities and are considered an integral component in the Satellite-Air -Ground-Sea (SAGS) incorporated network. However, UAVs are affected by communication delays and malicious attacks. Therefore, a...
Uložené v:
| Vydané v: | Peer-to-peer networking and applications Ročník 17; číslo 5; s. 3269 - 3285 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.09.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1936-6442, 1936-6450 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Unmanned Aerial vehicles (UAV) are high-speed moving machines that attained rapid growth in various activities and are considered an integral component in the Satellite-Air -Ground-Sea (SAGS) incorporated network. However, UAVs are affected by communication delays and malicious attacks. Therefore, an adequate and secure communication routing and attack detection model is necessary for UAV communication networks. This research described a novel approach for initiating secure communication in UAV networks namely Gannet Walruses Optimization Algorithm + Sheppard Convolutional Spinal Network (GWOA + ShCSpinalNet). Initially, the UAV network is simulated, and the data packets are transmitted among the nodes using optimal routing paths. An optimal routing path is computed using the Gannet Walruses Optimization Algorithm (GWOA) by considering some multi-objective functions through the Deep Recurrent Neural Network (DRNN). The developed GWAO integrates Gannet Optimization (GOA) and Walruses Optimization (WaOA). The data communication is done through monitoring agents. The newly devised Sheppard Convolutional Spinal Network
(
ShCSpinalNet) is utilized as a decision-making agent for malicious attack detection. The attributes considered for decision-making are round trip time, packet delivery ratio, the strength of the signal, the size of the packet, and the number of incoming packets. Once the SpinalNet categorizes the normal and attacked nodes the defense agent is implemented for attack migration. The ShCSpinalNet is devised by the combination of the Sheppard Convolutional Neural Network and Spinal Network. The GWOA + ShCSpinalNet accomplishes a diminished delay of 0.614 s, an increased detection rate of 0.930%, an energy of 0.439 J, and a Packet Delivery Ratio (PDR) of 0.749. |
|---|---|
| AbstractList | Unmanned Aerial vehicles (UAV) are high-speed moving machines that attained rapid growth in various activities and are considered an integral component in the Satellite-Air -Ground-Sea (SAGS) incorporated network. However, UAVs are affected by communication delays and malicious attacks. Therefore, an adequate and secure communication routing and attack detection model is necessary for UAV communication networks. This research described a novel approach for initiating secure communication in UAV networks namely Gannet Walruses Optimization Algorithm + Sheppard Convolutional Spinal Network (GWOA + ShCSpinalNet). Initially, the UAV network is simulated, and the data packets are transmitted among the nodes using optimal routing paths. An optimal routing path is computed using the Gannet Walruses Optimization Algorithm (GWOA) by considering some multi-objective functions through the Deep Recurrent Neural Network (DRNN). The developed GWAO integrates Gannet Optimization (GOA) and Walruses Optimization (WaOA). The data communication is done through monitoring agents. The newly devised Sheppard Convolutional Spinal Network
(
ShCSpinalNet) is utilized as a decision-making agent for malicious attack detection. The attributes considered for decision-making are round trip time, packet delivery ratio, the strength of the signal, the size of the packet, and the number of incoming packets. Once the SpinalNet categorizes the normal and attacked nodes the defense agent is implemented for attack migration. The ShCSpinalNet is devised by the combination of the Sheppard Convolutional Neural Network and Spinal Network. The GWOA + ShCSpinalNet accomplishes a diminished delay of 0.614 s, an increased detection rate of 0.930%, an energy of 0.439 J, and a Packet Delivery Ratio (PDR) of 0.749. Unmanned Aerial vehicles (UAV) are high-speed moving machines that attained rapid growth in various activities and are considered an integral component in the Satellite-Air -Ground-Sea (SAGS) incorporated network. However, UAVs are affected by communication delays and malicious attacks. Therefore, an adequate and secure communication routing and attack detection model is necessary for UAV communication networks. This research described a novel approach for initiating secure communication in UAV networks namely Gannet Walruses Optimization Algorithm + Sheppard Convolutional Spinal Network (GWOA + ShCSpinalNet). Initially, the UAV network is simulated, and the data packets are transmitted among the nodes using optimal routing paths. An optimal routing path is computed using the Gannet Walruses Optimization Algorithm (GWOA) by considering some multi-objective functions through the Deep Recurrent Neural Network (DRNN). The developed GWAO integrates Gannet Optimization (GOA) and Walruses Optimization (WaOA). The data communication is done through monitoring agents. The newly devised Sheppard Convolutional Spinal Network (ShCSpinalNet) is utilized as a decision-making agent for malicious attack detection. The attributes considered for decision-making are round trip time, packet delivery ratio, the strength of the signal, the size of the packet, and the number of incoming packets. Once the SpinalNet categorizes the normal and attacked nodes the defense agent is implemented for attack migration. The ShCSpinalNet is devised by the combination of the Sheppard Convolutional Neural Network and Spinal Network. The GWOA + ShCSpinalNet accomplishes a diminished delay of 0.614 s, an increased detection rate of 0.930%, an energy of 0.439 J, and a Packet Delivery Ratio (PDR) of 0.749. |
| Author | Renu, Yuvaraj Sarveshwaran, Velliangiri |
| Author_xml | – sequence: 1 givenname: Yuvaraj surname: Renu fullname: Renu, Yuvaraj organization: Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology – sequence: 2 givenname: Velliangiri surname: Sarveshwaran fullname: Sarveshwaran, Velliangiri email: velliangiris@gmail.com organization: Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Department of Computer Science and Information Engineering, National Chung Cheng University |
| BookMark | eNp9kc1O3DAURq0KpDLQF-jKUtcpvnbiJMvRqB2QULsYfpbWHY8zmEns1HZA8CQ8LplJ1UosWF3LPufTtb4ZOXLeGUK-AvsOjJXnETirRMZ4njEoC5Hln8gJ1EJmMi_Y0b9zzj-TWYwPjEkQBT8hryujh2Co9l03OKsxWe9o8EOybkvRbSimhHpHNyYZfXi0jt7Mb6kz6cmHXaRD3KNLdOMNvcM2DNFE6vtkO_sy5WG79cGm--6QuLo3fY9hQxfePfp22CPY0lVv9-PXlHtGjhtso_nyd56Sm58_rhcX2dXv5eVifpVpAXXKclGXWNZNVdSVqAqRS9BM8zUwXHNdQIPa1JhrgAbkmjUbjZUGCXzEUAKKU_Jtyu2D_zOYmNSDH8K4SFQCgMtS8lKOVDVROvgYg2mUtunwtxTQtgqY2vegph7U2IM69KDyUeXv1D7YDsPzx5KYpDjCbmvC_60-sN4Ayeegbg |
| CitedBy_id | crossref_primary_10_1016_j_rineng_2025_106935 |
| Cites_doi | 10.1007/s11277-021-08839-9 10.22967/HCIS.2022.12.034 10.1155/2022/5428280 10.1007/s11227-020-03462-0 10.1155/2022/4782850 10.3390/electronics10141715 10.1109/TNSM.2024.3357824 10.1038/s41598-023-35863-5 10.3390/app13042682 10.3390/s18051413 10.3390/drones3030059 10.1016/j.adhoc.2021.102560 10.1155/2021/4734023 10.1007/s11831-020-09418-0 10.1016/j.matcom.2022.06.007 10.1080/01969722.2022.2151189 10.1016/j.vehcom.2020.100267 10.1109/MWC.001.1900045 10.1002/int.22800 10.1016/j.adhoc.2022.102790 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- L7M L~C L~D M0N M2O M2P MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s12083-024-01753-4 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Research Library Science Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Research Library Prep |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1936-6450 |
| EndPage | 3285 |
| ExternalDocumentID | 10_1007_s12083_024_01753_4 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .4S .86 .DC 06D 0R~ 0VY 123 1N0 203 29O 29~ 2JN 2JY 2KG 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 5VS 67Z 6NX 875 88I 8AO 8FE 8FG 8G5 8TC 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARCSS AUKKA AXYYD AYJHY AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KOV LLZTM M0N M2O M2P M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P62 P9P PQQKQ PROAC PT4 Q2X QOS R89 RIG RLLFE RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TH9 TSG TSK TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-4397a79f85983853461c0c2b10ab2c51face9a4c11f16b0fdca8c16121c0a61a3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001260436900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1936-6442 |
| IngestDate | Wed Nov 05 09:05:58 EST 2025 Sat Nov 29 02:44:19 EST 2025 Tue Nov 18 22:18:31 EST 2025 Fri Feb 21 02:40:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Agent-based security Unmanned aerial vehicles attacks Sheppard Convolutional Spinal Network Gannet Walruses Optimization Secure routing Deep Recurrent Neural Network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-4397a79f85983853461c0c2b10ab2c51face9a4c11f16b0fdca8c16121c0a61a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3112676276 |
| PQPubID | 54523 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_3112676276 crossref_citationtrail_10_1007_s12083_024_01753_4 crossref_primary_10_1007_s12083_024_01753_4 springer_journals_10_1007_s12083_024_01753_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20240900 2024-09-00 20240901 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 9 year: 2024 text: 20240900 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Norwell |
| PublicationTitle | Peer-to-peer networking and applications |
| PublicationTitleAbbrev | Peer-to-Peer Netw. Appl |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | NawazHAliHMLaghariAA2021. UAV communication networks issues: a reviewArch Comput Methods Eng2018281349136910.1007/s11831-020-09418-0 FotohiRNazemiEShams AlieeFAn agent-based self-protective method to secure communication between UAVs in unmanned aerial vehicle networksVeh Commun20202610026710.1016/j.vehcom.2020.100267 HussainAShahBHussainTAliFKwakDCo-DLSA: cooperative delay and link stability aware with relay strategy routing protocol for Flying Ad-Hoc NetworkHuman-centric Comput Inf Sci202212123410.22967/HCIS.2022.12.034 Chopra P (2021) Progressive spinalnet architecture for fc layers. arXiv preprint arXiv 2103:11373 PanJSZhangLGWangRBSnášelVChuSCGannet optimization algorithm: a new metaheuristic algorithm for solving engineering optimization problemsMath Comput Simul2022202343373444516910.1016/j.matcom.2022.06.007 Luo, H, Wu Y, Sun G, Yu H, Xu S, Guizani M (2023) ESCM: an efficient and secure communication mechanism for UAV networks. preprint arXiv:2304.13244 WangHMZhangXJiangJCUAV-involved wireless physical-layer secure communications: Overview and research directionsIEEE Wirel Commun2019265323910.1109/MWC.001.1900045 TrojovskýPDehghaniMA new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behaviorSci Rep2023131877510.1038/s41598-023-35863-5 Rovira-SugranesARaziAAfghahFChakareskiJA review of AI-enabled routing protocols for UAV networks: Trends, challenges, and future outlookAd Hoc Netw202213010.1016/j.adhoc.2022.102790 Faraji-BireganiMFotohiRSecure communication between UAVs using a method based on smart agents in unmanned aerial vehiclesJ Supercomput20217755076510310.1007/s11227-020-03462-0 Huang J, Zan F, Liu X, Chen D (2022) UAV routing protocol based on link stability and selectivity of neighbor nodes in ETX metrics. Wirel Commun Mob Comput AlessandriniMBiagettiGCrippaPFalaschettiLTurchettiCRecurrent neural network for human activity recognition in embedded systems using ppg and accelerometer dataElectronics20211014171510.3390/electronics10141715 Francis SFV, Gopi P, Sarveshwaran V, Ponnupillai A (2022) An intelligent system using deep learning-based link quality prediction and optimization enabled secure communication in UAV network. Cybernet Syst 1–28 Sangeetha FrancelinVFDanielJVelliangiriSIntelligent agent and optimization-based deep residual network to secure communication in UAV networkInt J Intell Syst20223795508552910.1002/int.22800 ChaSHComprehensive survey on distance/similarity measures between probability density functionsCity2007121 PangXLiuMLiZGaoBGuoXGeographic position based hopeless opportunistic routing for UAV networksAd Hoc Netw202112010.1016/j.adhoc.2021.102560 Kabir HD, Abdar M, Khosravi A, Jalali SMJ, Atiya AF, Nahavandi S, Srinivasan D (2022) Spinalnet: Deep neural network with gradual input. IEEE Transac Artif Intelligence (99):1–13 Ren JS, Xu L, Yan Q, Sun W (2015) Shepard convolutional neural networks”, Advances in neural information processing systems. 28 RyuJImproved Image Quality Assessment by Utilizing Pre-Trained Architecture Features with Unified Learning MechanismAppl Sci2023134268210.3390/app13042682 HildmannHKovacsEUsing unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPs) for disaster response, civil security and public safetyDrones2019335910.3390/drones3030059 HussainAHussainTFaisalFDLSA: Delay and link stability aware routing protocol for Flying Ad-hoc Networks (FANETs)Wireless Pers Commun20211212609263410.1007/s11277-021-08839-9 Abbas A, Shankar Chowdhry B, Saqib M, Dattana V (2021) Dynamic routing and coordination of cluster for unmanned aerial vehicle (UAV) swarms. Mathl Probl Eng 1–11 Zhuo R, Song S, Xu Y (2022) UAV communication network modeling and energy consumption optimization based on routing algorithm. Comput Math Methods Med FitwiHNagothuDChenYBlaschEWinter Simulation Conference (WSC)2019MD, USANational Harbor25482559 Aadil F, Raza A, Khan MF, Maqsood M, Mehmood I, Rho S (2018) Energy-aware cluster-based routing in flying ad-hoc networks. Sensors 18(5):1413 VF Sangeetha Francelin (1753_CR3) 2022; 37 A Rovira-Sugranes (1753_CR11) 2022; 130 1753_CR25 HM Wang (1753_CR14) 2019; 26 A Hussain (1753_CR12) 2021; 121 P Trojovský (1753_CR21) 2023; 13 1753_CR23 H Fitwi (1753_CR15) 2019 1753_CR22 1753_CR6 1753_CR7 1753_CR5 H Hildmann (1753_CR9) 2019; 3 JS Pan (1753_CR20) 2022; 202 1753_CR1 X Pang (1753_CR18) 2021; 120 H Nawaz (1753_CR2) 2018; 28 M Alessandrini (1753_CR19) 2021; 10 J Ryu (1753_CR24) 2023; 13 M Faraji-Biregani (1753_CR16) 2021; 77 1753_CR10 1753_CR17 A Hussain (1753_CR13) 2022; 12 R Fotohi (1753_CR8) 2020; 26 SH Cha (1753_CR4) 2007; 1 |
| References_xml | – reference: FitwiHNagothuDChenYBlaschEWinter Simulation Conference (WSC)2019MD, USANational Harbor25482559 – reference: Ren JS, Xu L, Yan Q, Sun W (2015) Shepard convolutional neural networks”, Advances in neural information processing systems. 28 – reference: ChaSHComprehensive survey on distance/similarity measures between probability density functionsCity2007121 – reference: Aadil F, Raza A, Khan MF, Maqsood M, Mehmood I, Rho S (2018) Energy-aware cluster-based routing in flying ad-hoc networks. Sensors 18(5):1413 – reference: FotohiRNazemiEShams AlieeFAn agent-based self-protective method to secure communication between UAVs in unmanned aerial vehicle networksVeh Commun20202610026710.1016/j.vehcom.2020.100267 – reference: HussainAShahBHussainTAliFKwakDCo-DLSA: cooperative delay and link stability aware with relay strategy routing protocol for Flying Ad-Hoc NetworkHuman-centric Comput Inf Sci202212123410.22967/HCIS.2022.12.034 – reference: Abbas A, Shankar Chowdhry B, Saqib M, Dattana V (2021) Dynamic routing and coordination of cluster for unmanned aerial vehicle (UAV) swarms. Mathl Probl Eng 1–11 – reference: Faraji-BireganiMFotohiRSecure communication between UAVs using a method based on smart agents in unmanned aerial vehiclesJ Supercomput20217755076510310.1007/s11227-020-03462-0 – reference: Francis SFV, Gopi P, Sarveshwaran V, Ponnupillai A (2022) An intelligent system using deep learning-based link quality prediction and optimization enabled secure communication in UAV network. Cybernet Syst 1–28 – reference: PanJSZhangLGWangRBSnášelVChuSCGannet optimization algorithm: a new metaheuristic algorithm for solving engineering optimization problemsMath Comput Simul2022202343373444516910.1016/j.matcom.2022.06.007 – reference: PangXLiuMLiZGaoBGuoXGeographic position based hopeless opportunistic routing for UAV networksAd Hoc Netw202112010.1016/j.adhoc.2021.102560 – reference: RyuJImproved Image Quality Assessment by Utilizing Pre-Trained Architecture Features with Unified Learning MechanismAppl Sci2023134268210.3390/app13042682 – reference: Kabir HD, Abdar M, Khosravi A, Jalali SMJ, Atiya AF, Nahavandi S, Srinivasan D (2022) Spinalnet: Deep neural network with gradual input. IEEE Transac Artif Intelligence (99):1–13 – reference: Zhuo R, Song S, Xu Y (2022) UAV communication network modeling and energy consumption optimization based on routing algorithm. Comput Math Methods Med – reference: HussainAHussainTFaisalFDLSA: Delay and link stability aware routing protocol for Flying Ad-hoc Networks (FANETs)Wireless Pers Commun20211212609263410.1007/s11277-021-08839-9 – reference: AlessandriniMBiagettiGCrippaPFalaschettiLTurchettiCRecurrent neural network for human activity recognition in embedded systems using ppg and accelerometer dataElectronics20211014171510.3390/electronics10141715 – reference: Luo, H, Wu Y, Sun G, Yu H, Xu S, Guizani M (2023) ESCM: an efficient and secure communication mechanism for UAV networks. preprint arXiv:2304.13244 – reference: Chopra P (2021) Progressive spinalnet architecture for fc layers. arXiv preprint arXiv 2103:11373 – reference: HildmannHKovacsEUsing unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPs) for disaster response, civil security and public safetyDrones2019335910.3390/drones3030059 – reference: NawazHAliHMLaghariAA2021. UAV communication networks issues: a reviewArch Comput Methods Eng2018281349136910.1007/s11831-020-09418-0 – reference: Sangeetha FrancelinVFDanielJVelliangiriSIntelligent agent and optimization-based deep residual network to secure communication in UAV networkInt J Intell Syst20223795508552910.1002/int.22800 – reference: Huang J, Zan F, Liu X, Chen D (2022) UAV routing protocol based on link stability and selectivity of neighbor nodes in ETX metrics. Wirel Commun Mob Comput – reference: Rovira-SugranesARaziAAfghahFChakareskiJA review of AI-enabled routing protocols for UAV networks: Trends, challenges, and future outlookAd Hoc Netw202213010.1016/j.adhoc.2022.102790 – reference: WangHMZhangXJiangJCUAV-involved wireless physical-layer secure communications: Overview and research directionsIEEE Wirel Commun2019265323910.1109/MWC.001.1900045 – reference: TrojovskýPDehghaniMA new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behaviorSci Rep2023131877510.1038/s41598-023-35863-5 – volume: 121 start-page: 2609 year: 2021 ident: 1753_CR12 publication-title: Wireless Pers Commun doi: 10.1007/s11277-021-08839-9 – volume: 12 start-page: 12 year: 2022 ident: 1753_CR13 publication-title: Human-centric Comput Inf Sci doi: 10.22967/HCIS.2022.12.034 – ident: 1753_CR17 doi: 10.1155/2022/5428280 – volume: 77 start-page: 5076 issue: 5 year: 2021 ident: 1753_CR16 publication-title: J Supercomput doi: 10.1007/s11227-020-03462-0 – ident: 1753_CR1 doi: 10.1155/2022/4782850 – volume: 10 start-page: 1715 issue: 14 year: 2021 ident: 1753_CR19 publication-title: Electronics doi: 10.3390/electronics10141715 – volume: 1 start-page: 1 issue: 2 year: 2007 ident: 1753_CR4 publication-title: City – ident: 1753_CR5 doi: 10.1109/TNSM.2024.3357824 – volume: 13 start-page: 8775 issue: 1 year: 2023 ident: 1753_CR21 publication-title: Sci Rep doi: 10.1038/s41598-023-35863-5 – ident: 1753_CR25 – ident: 1753_CR23 – volume: 13 start-page: 2682 issue: 4 year: 2023 ident: 1753_CR24 publication-title: Appl Sci doi: 10.3390/app13042682 – ident: 1753_CR10 doi: 10.3390/s18051413 – volume: 3 start-page: 59 issue: 3 year: 2019 ident: 1753_CR9 publication-title: Drones doi: 10.3390/drones3030059 – volume: 120 year: 2021 ident: 1753_CR18 publication-title: Ad Hoc Netw doi: 10.1016/j.adhoc.2021.102560 – ident: 1753_CR7 doi: 10.1155/2021/4734023 – volume: 28 start-page: 1349 year: 2018 ident: 1753_CR2 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-020-09418-0 – volume: 202 start-page: 343 year: 2022 ident: 1753_CR20 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2022.06.007 – ident: 1753_CR6 doi: 10.1080/01969722.2022.2151189 – volume: 26 start-page: 100267 year: 2020 ident: 1753_CR8 publication-title: Veh Commun doi: 10.1016/j.vehcom.2020.100267 – volume: 26 start-page: 32 issue: 5 year: 2019 ident: 1753_CR14 publication-title: IEEE Wirel Commun doi: 10.1109/MWC.001.1900045 – start-page: 2548 volume-title: Winter Simulation Conference (WSC) year: 2019 ident: 1753_CR15 – volume: 37 start-page: 5508 issue: 9 year: 2022 ident: 1753_CR3 publication-title: Int J Intell Syst doi: 10.1002/int.22800 – volume: 130 year: 2022 ident: 1753_CR11 publication-title: Ad Hoc Netw doi: 10.1016/j.adhoc.2022.102790 – ident: 1753_CR22 |
| SSID | ssj0061352 |
| Score | 2.3060138 |
| Snippet | Unmanned Aerial vehicles (UAV) are high-speed moving machines that attained rapid growth in various activities and are considered an integral component in the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3269 |
| SubjectTerms | Algorithms Artificial neural networks Communication Communication networks Communications Engineering Computer Communication Networks Data communication Decision making Engineering Information Systems and Communication Service Multiple objective analysis Networks Neural networks Nodes Optimization Optimization algorithms Packets (communication) Recurrent neural networks Routing (telecommunications) Signal,Image and Speech Processing Special Issue on 2 - Track on Security and Privacy Unmanned aerial vehicles |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG58HfTg27i-Mgdv2oQCS-FojI_Txri-bqSUVjfuwgZYf4s_12kBV42a6JkyadrpfB90vhlCDoOu5qkXBVSnklOfcUYFEhPqa5WakBmGUd1sgvd64cNDdNWIwso22729krSReip2c5EuUMQU_PxFkk39WTKPcBeahg3X_bs2_iI-2T47yEwCimjvNlKZ7218hqMpx_xyLWrR5nzlf_NcJcsNu4ST2h3WyIzK1snSh5qDG-TV_mFXID8qQ6DIJyb_GUSWgqgqIZ8hVZVN08pgkMHtyR1kdcZ4CSZX_hEuhFH0wL0YFpNSlZBj8Bk1qk4Qw8e8GFRPI2ux_6TGpqwjnObZS-PrOM3-2LTkgl5td5Pcnp_dnF7Spj0DlXhuK2qojOCRDrtR6CHq-wGTjnQT5ojElV2mhVSR8CVjmgWJg84gQslMxTLpiIAJb4vMZXmmtgmIkEeJ9B3NdeCrJE3Qs7jGyJu4rkpdr0NYu0uxbGqXmxYaw3haddmseoyrHttVj_0OOXp_Z1xX7vh19F67-XFzisvYM_oqRAsedMhxu9nTxz9b2_nb8F2y6Fp_Malre2SuKiZqnyzIl2pQFgfWu98ABvL20Q priority: 102 providerName: Springer Nature |
| Title | Secure communication routing and attack detection in UAV networks using Gannet Walruses optimization algorithm and Sheppard Convolutional Spinal Network |
| URI | https://link.springer.com/article/10.1007/s12083-024-01753-4 https://www.proquest.com/docview/3112676276 |
| Volume | 17 |
| WOSCitedRecordID | wos001260436900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1936-6450 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061352 issn: 1936-6442 databaseCode: RSV dateStart: 20080301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7x6KEcWvpA3UJXPvTWWo2dbJycKoqgSKjbiC0U9RI5jg2oS7JssvyW_lzGjtOlSOXCxZckI0vz-mLPzAfwPh4ZUYZpTE2pBI2YYFQiMKGR0aUNmUmSdmQTYjxOzs7SzB-4Nb6sso-JLlCXtbJn5J9C2-uCniviz7Nralmj7O2qp9BYhXVENsyWdH3jWR-JMVM5xh3EKDHFvM9900zXOscRfFDMUPgzjZCdRv8mpiXavHdB6vLOwfPH7ngTnnnESXY7E3kBK7p6CRt35hC-gj_u1F0TdbdbhMzrha2JJrIqiWxbqX6TUreudKsilxU52T0lVVdF3hBbP39Ovkrb5UN-yul80eiG1BiQrnynJ5HTc9xee3HlJE4u9MyOeiR7dXXj7R-3OZlZmi4y7uS-hpOD_R97h9RTNlCFvtxSC2-kSE0ySpMQkUAUMxUoXrBAFlyNmJFKpzJSjBkWFwEaiEwUs1PMVCBjJsMtWKvqSr8BIhORFioKjDBxpIuyQGsTBqNxwbkueTgA1usrV36euaXVmObLScxWxznqOHc6zqMBfPj7zayb5vHg2zu9YnPv2U2-1OoAPvamsXz8f2lvH5a2DU-5s0ZbvrYDa-18od_BE3XTXjbzIax_2R9nx0NYPRJ0aK38u1szXLPRL1yPJ6e3IYcGXg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQc-EZsKeADnMAidrxxckCoaimtWlaV2kJvwXGctmKbbDfZIv4Jv4Lf2BknYQsSvfXAebOjxHnz4XjeG4CX0bDQeZhEvMit5kpowQ0WJlwVLqeQGcdJO2xCj0bxwUGyswC_ei4MtVX2MdEH6ryy9I38bUhcF_RcHb2fnHKaGkWnq_0IjRYWW-7Hd9yy1e821_D9vpJy_cPe6gbvpgpwi3BrOGVgo5MiHiZxiMlKRcIGVmYiMJm0Q1EY6xKjrBCFiLIAn8HEVpDQlg1MJEyIdq_BdUXKYtQqKHf6yI-Z0U_4wZoo4lhnyI6k01L1JBY7HDMibt5xi8DVn4lwXt3-dSDr89z63f9the7Bna6iZiutC9yHBVc-gNsXdBYfwk9_quCYvciGYdNqRj3fzJQ5M01j7DeWu8a3ppXsuGT7K59Z2XbJ14z4AYfsoyEWE_tixtNZ7WpWYcA96ZiszIwPcTmaoxNvcffITUjKkq1W5Vnn33ibuxMaQ8ZGrd1HsH8lS_MYFsuqdE-AmVgnmVVBoYtIuSzP0Jt0gdkmk9LlMhyA6PGR2k6vncaGjNO50jRhKkVMpR5TqRrA69__mbRqJZdevdwDKe0iV53OUTSANz0U5z__29rS5dZewM2NvU_b6fbmaOsp3JLeE6hVbxkWm-nMPYMb9qw5rqfPvU8x-HrVED0HPcddIw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAc-EYsFJgDnMBq7GTj5IBQ1bJQFa1WKoWKS-o4dluxTZZNtoh_wm_h1zF2ErYg0VsPnDc7Spw388bxvBmAZ_HQyiJMY2YLLVnEJWeKEhMWWVO4kJkkaTtsQo7Hyf5-OlmBn70WxpVV9jHRB-qi0u4b-XrotC7kuTJet11ZxGRr9Hr2lbkJUu6ktR-n0UJkx3z_Rtu3-tX2Fr3r50KM3nzYfMe6CQNME_Qa5thYydQmwzQJibiimOtAi5wHKhd6yK3SJlWR5tzyOA_oeVSiuWu6pQMVcxWS3UtwWdIe05UTToafexYglvTTfig_ihnlHKIT7LSyPUGJDyN2pI08bRdY9CcpLjPdvw5nPeeNbv7Pq3ULbnSZNm60rnEbVkx5B66f6b94F3740waD-qxKBufVwtWCoyoLVE2j9BcsTONL1ko8LnFv4yOWbfV8jU43cIhvlVM34Sc1nS9qU2NFgfikU7iimh7ScjRHJ97i7pGZuRaXuFmVp53f023uztx4Mhy3du_B3oUszX1YLavSPABUiUxzHQVW2jgyeZGTl0lLLJQLYQoRDoD3WMl018fdjROZZssO1A5fGeEr8_jKogG8-P2fWdvF5Nyr13pQZV1Eq7Mlogbwsofl8ud_W3t4vrWncJWQmb3fHu88gmvCO4Wr4FuD1Wa-MI_hij5tjuv5E-9eCAcXjdBfvS5mDw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secure+communication+routing+and+attack+detection+in+UAV+networks+using+Gannet+Walruses+optimization+algorithm+and+Sheppard+Convolutional+Spinal+Network&rft.jtitle=Peer-to-peer+networking+and+applications&rft.au=Renu%2C+Yuvaraj&rft.au=Sarveshwaran%2C+Velliangiri&rft.date=2024-09-01&rft.issn=1936-6442&rft.eissn=1936-6450&rft.volume=17&rft.issue=5&rft.spage=3269&rft.epage=3285&rft_id=info:doi/10.1007%2Fs12083-024-01753-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12083_024_01753_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-6442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-6442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-6442&client=summon |