Secure communication routing and attack detection in UAV networks using Gannet Walruses optimization algorithm and Sheppard Convolutional Spinal Network

Unmanned Aerial vehicles (UAV) are high-speed moving machines that attained rapid growth in various activities and are considered an integral component in the Satellite-Air -Ground-Sea (SAGS) incorporated network. However, UAVs are affected by communication delays and malicious attacks. Therefore, a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Peer-to-peer networking and applications Ročník 17; číslo 5; s. 3269 - 3285
Hlavní autori: Renu, Yuvaraj, Sarveshwaran, Velliangiri
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.09.2024
Springer Nature B.V
Predmet:
ISSN:1936-6442, 1936-6450
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Unmanned Aerial vehicles (UAV) are high-speed moving machines that attained rapid growth in various activities and are considered an integral component in the Satellite-Air -Ground-Sea (SAGS) incorporated network. However, UAVs are affected by communication delays and malicious attacks. Therefore, an adequate and secure communication routing and attack detection model is necessary for UAV communication networks. This research described a novel approach for initiating secure communication in UAV networks namely Gannet Walruses Optimization Algorithm + Sheppard Convolutional Spinal Network (GWOA + ShCSpinalNet). Initially, the UAV network is simulated, and the data packets are transmitted among the nodes using optimal routing paths. An optimal routing path is computed using the Gannet Walruses Optimization Algorithm (GWOA) by considering some multi-objective functions through the Deep Recurrent Neural Network (DRNN). The developed GWAO integrates Gannet Optimization (GOA) and Walruses Optimization (WaOA). The data communication is done through monitoring agents. The newly devised Sheppard Convolutional Spinal Network ( ShCSpinalNet) is utilized as a decision-making agent for malicious attack detection. The attributes considered for decision-making are round trip time, packet delivery ratio, the strength of the signal, the size of the packet, and the number of incoming packets. Once the SpinalNet categorizes the normal and attacked nodes the defense agent is implemented for attack migration. The ShCSpinalNet is devised by the combination of the Sheppard Convolutional Neural Network and Spinal Network. The GWOA + ShCSpinalNet accomplishes a diminished delay of 0.614 s, an increased detection rate of 0.930%, an energy of 0.439 J, and a Packet Delivery Ratio (PDR) of 0.749.
AbstractList Unmanned Aerial vehicles (UAV) are high-speed moving machines that attained rapid growth in various activities and are considered an integral component in the Satellite-Air -Ground-Sea (SAGS) incorporated network. However, UAVs are affected by communication delays and malicious attacks. Therefore, an adequate and secure communication routing and attack detection model is necessary for UAV communication networks. This research described a novel approach for initiating secure communication in UAV networks namely Gannet Walruses Optimization Algorithm + Sheppard Convolutional Spinal Network (GWOA + ShCSpinalNet). Initially, the UAV network is simulated, and the data packets are transmitted among the nodes using optimal routing paths. An optimal routing path is computed using the Gannet Walruses Optimization Algorithm (GWOA) by considering some multi-objective functions through the Deep Recurrent Neural Network (DRNN). The developed GWAO integrates Gannet Optimization (GOA) and Walruses Optimization (WaOA). The data communication is done through monitoring agents. The newly devised Sheppard Convolutional Spinal Network ( ShCSpinalNet) is utilized as a decision-making agent for malicious attack detection. The attributes considered for decision-making are round trip time, packet delivery ratio, the strength of the signal, the size of the packet, and the number of incoming packets. Once the SpinalNet categorizes the normal and attacked nodes the defense agent is implemented for attack migration. The ShCSpinalNet is devised by the combination of the Sheppard Convolutional Neural Network and Spinal Network. The GWOA + ShCSpinalNet accomplishes a diminished delay of 0.614 s, an increased detection rate of 0.930%, an energy of 0.439 J, and a Packet Delivery Ratio (PDR) of 0.749.
Unmanned Aerial vehicles (UAV) are high-speed moving machines that attained rapid growth in various activities and are considered an integral component in the Satellite-Air -Ground-Sea (SAGS) incorporated network. However, UAVs are affected by communication delays and malicious attacks. Therefore, an adequate and secure communication routing and attack detection model is necessary for UAV communication networks. This research described a novel approach for initiating secure communication in UAV networks namely Gannet Walruses Optimization Algorithm + Sheppard Convolutional Spinal Network (GWOA + ShCSpinalNet). Initially, the UAV network is simulated, and the data packets are transmitted among the nodes using optimal routing paths. An optimal routing path is computed using the Gannet Walruses Optimization Algorithm (GWOA) by considering some multi-objective functions through the Deep Recurrent Neural Network (DRNN). The developed GWAO integrates Gannet Optimization (GOA) and Walruses Optimization (WaOA). The data communication is done through monitoring agents. The newly devised Sheppard Convolutional Spinal Network (ShCSpinalNet) is utilized as a decision-making agent for malicious attack detection. The attributes considered for decision-making are round trip time, packet delivery ratio, the strength of the signal, the size of the packet, and the number of incoming packets. Once the SpinalNet categorizes the normal and attacked nodes the defense agent is implemented for attack migration. The ShCSpinalNet is devised by the combination of the Sheppard Convolutional Neural Network and Spinal Network. The GWOA + ShCSpinalNet accomplishes a diminished delay of 0.614 s, an increased detection rate of 0.930%, an energy of 0.439 J, and a Packet Delivery Ratio (PDR) of 0.749.
Author Renu, Yuvaraj
Sarveshwaran, Velliangiri
Author_xml – sequence: 1
  givenname: Yuvaraj
  surname: Renu
  fullname: Renu, Yuvaraj
  organization: Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology
– sequence: 2
  givenname: Velliangiri
  surname: Sarveshwaran
  fullname: Sarveshwaran, Velliangiri
  email: velliangiris@gmail.com
  organization: Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Department of Computer Science and Information Engineering, National Chung Cheng University
BookMark eNp9kc1O3DAURq0KpDLQF-jKUtcpvnbiJMvRqB2QULsYfpbWHY8zmEns1HZA8CQ8LplJ1UosWF3LPufTtb4ZOXLeGUK-AvsOjJXnETirRMZ4njEoC5Hln8gJ1EJmMi_Y0b9zzj-TWYwPjEkQBT8hryujh2Co9l03OKsxWe9o8EOybkvRbSimhHpHNyYZfXi0jt7Mb6kz6cmHXaRD3KNLdOMNvcM2DNFE6vtkO_sy5WG79cGm--6QuLo3fY9hQxfePfp22CPY0lVv9-PXlHtGjhtso_nyd56Sm58_rhcX2dXv5eVifpVpAXXKclGXWNZNVdSVqAqRS9BM8zUwXHNdQIPa1JhrgAbkmjUbjZUGCXzEUAKKU_Jtyu2D_zOYmNSDH8K4SFQCgMtS8lKOVDVROvgYg2mUtunwtxTQtgqY2vegph7U2IM69KDyUeXv1D7YDsPzx5KYpDjCbmvC_60-sN4Ayeegbg
CitedBy_id crossref_primary_10_1016_j_rineng_2025_106935
Cites_doi 10.1007/s11277-021-08839-9
10.22967/HCIS.2022.12.034
10.1155/2022/5428280
10.1007/s11227-020-03462-0
10.1155/2022/4782850
10.3390/electronics10141715
10.1109/TNSM.2024.3357824
10.1038/s41598-023-35863-5
10.3390/app13042682
10.3390/s18051413
10.3390/drones3030059
10.1016/j.adhoc.2021.102560
10.1155/2021/4734023
10.1007/s11831-020-09418-0
10.1016/j.matcom.2022.06.007
10.1080/01969722.2022.2151189
10.1016/j.vehcom.2020.100267
10.1109/MWC.001.1900045
10.1002/int.22800
10.1016/j.adhoc.2022.102790
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2O
M2P
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s12083-024-01753-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Research Library
Science Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Research Library Prep
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-6450
EndPage 3285
ExternalDocumentID 10_1007_s12083_024_01753_4
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
06D
0R~
0VY
123
1N0
203
29O
29~
2JN
2JY
2KG
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
5VS
67Z
6NX
875
88I
8AO
8FE
8FG
8G5
8TC
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ARCSS
AUKKA
AXYYD
AYJHY
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KOV
LLZTM
M0N
M2O
M2P
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P62
P9P
PQQKQ
PROAC
PT4
Q2X
QOS
R89
RIG
RLLFE
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TH9
TSG
TSK
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-4397a79f85983853461c0c2b10ab2c51face9a4c11f16b0fdca8c16121c0a61a3
IEDL.DBID M2P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001260436900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1936-6442
IngestDate Wed Nov 05 09:05:58 EST 2025
Sat Nov 29 02:44:19 EST 2025
Tue Nov 18 22:18:31 EST 2025
Fri Feb 21 02:40:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Agent-based security
Unmanned aerial vehicles attacks
Sheppard Convolutional Spinal Network
Gannet Walruses Optimization
Secure routing
Deep Recurrent Neural Network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-4397a79f85983853461c0c2b10ab2c51face9a4c11f16b0fdca8c16121c0a61a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3112676276
PQPubID 54523
PageCount 17
ParticipantIDs proquest_journals_3112676276
crossref_citationtrail_10_1007_s12083_024_01753_4
crossref_primary_10_1007_s12083_024_01753_4
springer_journals_10_1007_s12083_024_01753_4
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Norwell
PublicationTitle Peer-to-peer networking and applications
PublicationTitleAbbrev Peer-to-Peer Netw. Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References NawazHAliHMLaghariAA2021. UAV communication networks issues: a reviewArch Comput Methods Eng2018281349136910.1007/s11831-020-09418-0
FotohiRNazemiEShams AlieeFAn agent-based self-protective method to secure communication between UAVs in unmanned aerial vehicle networksVeh Commun20202610026710.1016/j.vehcom.2020.100267
HussainAShahBHussainTAliFKwakDCo-DLSA: cooperative delay and link stability aware with relay strategy routing protocol for Flying Ad-Hoc NetworkHuman-centric Comput Inf Sci202212123410.22967/HCIS.2022.12.034
Chopra P (2021) Progressive spinalnet architecture for fc layers. arXiv preprint arXiv 2103:11373
PanJSZhangLGWangRBSnášelVChuSCGannet optimization algorithm: a new metaheuristic algorithm for solving engineering optimization problemsMath Comput Simul2022202343373444516910.1016/j.matcom.2022.06.007
Luo, H, Wu Y, Sun G, Yu H, Xu S, Guizani M (2023) ESCM: an efficient and secure communication mechanism for UAV networks. preprint arXiv:2304.13244
WangHMZhangXJiangJCUAV-involved wireless physical-layer secure communications: Overview and research directionsIEEE Wirel Commun2019265323910.1109/MWC.001.1900045
TrojovskýPDehghaniMA new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behaviorSci Rep2023131877510.1038/s41598-023-35863-5
Rovira-SugranesARaziAAfghahFChakareskiJA review of AI-enabled routing protocols for UAV networks: Trends, challenges, and future outlookAd Hoc Netw202213010.1016/j.adhoc.2022.102790
Faraji-BireganiMFotohiRSecure communication between UAVs using a method based on smart agents in unmanned aerial vehiclesJ Supercomput20217755076510310.1007/s11227-020-03462-0
Huang J, Zan F, Liu X, Chen D (2022) UAV routing protocol based on link stability and selectivity of neighbor nodes in ETX metrics. Wirel Commun Mob Comput
AlessandriniMBiagettiGCrippaPFalaschettiLTurchettiCRecurrent neural network for human activity recognition in embedded systems using ppg and accelerometer dataElectronics20211014171510.3390/electronics10141715
Francis SFV, Gopi P, Sarveshwaran V, Ponnupillai A (2022) An intelligent system using deep learning-based link quality prediction and optimization enabled secure communication in UAV network. Cybernet Syst 1–28
Sangeetha FrancelinVFDanielJVelliangiriSIntelligent agent and optimization-based deep residual network to secure communication in UAV networkInt J Intell Syst20223795508552910.1002/int.22800
ChaSHComprehensive survey on distance/similarity measures between probability density functionsCity2007121
PangXLiuMLiZGaoBGuoXGeographic position based hopeless opportunistic routing for UAV networksAd Hoc Netw202112010.1016/j.adhoc.2021.102560
Kabir HD, Abdar M, Khosravi A, Jalali SMJ, Atiya AF, Nahavandi S, Srinivasan D (2022) Spinalnet: Deep neural network with gradual input. IEEE Transac Artif Intelligence (99):1–13
Ren JS, Xu L, Yan Q, Sun W (2015) Shepard convolutional neural networks”, Advances in neural information processing systems. 28
RyuJImproved Image Quality Assessment by Utilizing Pre-Trained Architecture Features with Unified Learning MechanismAppl Sci2023134268210.3390/app13042682
HildmannHKovacsEUsing unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPs) for disaster response, civil security and public safetyDrones2019335910.3390/drones3030059
HussainAHussainTFaisalFDLSA: Delay and link stability aware routing protocol for Flying Ad-hoc Networks (FANETs)Wireless Pers Commun20211212609263410.1007/s11277-021-08839-9
Abbas A, Shankar Chowdhry B, Saqib M, Dattana V (2021) Dynamic routing and coordination of cluster for unmanned aerial vehicle (UAV) swarms. Mathl Probl Eng 1–11
Zhuo R, Song S, Xu Y (2022) UAV communication network modeling and energy consumption optimization based on routing algorithm. Comput Math Methods Med
FitwiHNagothuDChenYBlaschEWinter Simulation Conference (WSC)2019MD, USANational Harbor25482559
Aadil F, Raza A, Khan MF, Maqsood M, Mehmood I, Rho S (2018) Energy-aware cluster-based routing in flying ad-hoc networks. Sensors 18(5):1413
VF Sangeetha Francelin (1753_CR3) 2022; 37
A Rovira-Sugranes (1753_CR11) 2022; 130
1753_CR25
HM Wang (1753_CR14) 2019; 26
A Hussain (1753_CR12) 2021; 121
P Trojovský (1753_CR21) 2023; 13
1753_CR23
H Fitwi (1753_CR15) 2019
1753_CR22
1753_CR6
1753_CR7
1753_CR5
H Hildmann (1753_CR9) 2019; 3
JS Pan (1753_CR20) 2022; 202
1753_CR1
X Pang (1753_CR18) 2021; 120
H Nawaz (1753_CR2) 2018; 28
M Alessandrini (1753_CR19) 2021; 10
J Ryu (1753_CR24) 2023; 13
M Faraji-Biregani (1753_CR16) 2021; 77
1753_CR10
1753_CR17
A Hussain (1753_CR13) 2022; 12
R Fotohi (1753_CR8) 2020; 26
SH Cha (1753_CR4) 2007; 1
References_xml – reference: FitwiHNagothuDChenYBlaschEWinter Simulation Conference (WSC)2019MD, USANational Harbor25482559
– reference: Ren JS, Xu L, Yan Q, Sun W (2015) Shepard convolutional neural networks”, Advances in neural information processing systems. 28
– reference: ChaSHComprehensive survey on distance/similarity measures between probability density functionsCity2007121
– reference: Aadil F, Raza A, Khan MF, Maqsood M, Mehmood I, Rho S (2018) Energy-aware cluster-based routing in flying ad-hoc networks. Sensors 18(5):1413
– reference: FotohiRNazemiEShams AlieeFAn agent-based self-protective method to secure communication between UAVs in unmanned aerial vehicle networksVeh Commun20202610026710.1016/j.vehcom.2020.100267
– reference: HussainAShahBHussainTAliFKwakDCo-DLSA: cooperative delay and link stability aware with relay strategy routing protocol for Flying Ad-Hoc NetworkHuman-centric Comput Inf Sci202212123410.22967/HCIS.2022.12.034
– reference: Abbas A, Shankar Chowdhry B, Saqib M, Dattana V (2021) Dynamic routing and coordination of cluster for unmanned aerial vehicle (UAV) swarms. Mathl Probl Eng 1–11
– reference: Faraji-BireganiMFotohiRSecure communication between UAVs using a method based on smart agents in unmanned aerial vehiclesJ Supercomput20217755076510310.1007/s11227-020-03462-0
– reference: Francis SFV, Gopi P, Sarveshwaran V, Ponnupillai A (2022) An intelligent system using deep learning-based link quality prediction and optimization enabled secure communication in UAV network. Cybernet Syst 1–28
– reference: PanJSZhangLGWangRBSnášelVChuSCGannet optimization algorithm: a new metaheuristic algorithm for solving engineering optimization problemsMath Comput Simul2022202343373444516910.1016/j.matcom.2022.06.007
– reference: PangXLiuMLiZGaoBGuoXGeographic position based hopeless opportunistic routing for UAV networksAd Hoc Netw202112010.1016/j.adhoc.2021.102560
– reference: RyuJImproved Image Quality Assessment by Utilizing Pre-Trained Architecture Features with Unified Learning MechanismAppl Sci2023134268210.3390/app13042682
– reference: Kabir HD, Abdar M, Khosravi A, Jalali SMJ, Atiya AF, Nahavandi S, Srinivasan D (2022) Spinalnet: Deep neural network with gradual input. IEEE Transac Artif Intelligence (99):1–13
– reference: Zhuo R, Song S, Xu Y (2022) UAV communication network modeling and energy consumption optimization based on routing algorithm. Comput Math Methods Med
– reference: HussainAHussainTFaisalFDLSA: Delay and link stability aware routing protocol for Flying Ad-hoc Networks (FANETs)Wireless Pers Commun20211212609263410.1007/s11277-021-08839-9
– reference: AlessandriniMBiagettiGCrippaPFalaschettiLTurchettiCRecurrent neural network for human activity recognition in embedded systems using ppg and accelerometer dataElectronics20211014171510.3390/electronics10141715
– reference: Luo, H, Wu Y, Sun G, Yu H, Xu S, Guizani M (2023) ESCM: an efficient and secure communication mechanism for UAV networks. preprint arXiv:2304.13244
– reference: Chopra P (2021) Progressive spinalnet architecture for fc layers. arXiv preprint arXiv 2103:11373
– reference: HildmannHKovacsEUsing unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPs) for disaster response, civil security and public safetyDrones2019335910.3390/drones3030059
– reference: NawazHAliHMLaghariAA2021. UAV communication networks issues: a reviewArch Comput Methods Eng2018281349136910.1007/s11831-020-09418-0
– reference: Sangeetha FrancelinVFDanielJVelliangiriSIntelligent agent and optimization-based deep residual network to secure communication in UAV networkInt J Intell Syst20223795508552910.1002/int.22800
– reference: Huang J, Zan F, Liu X, Chen D (2022) UAV routing protocol based on link stability and selectivity of neighbor nodes in ETX metrics. Wirel Commun Mob Comput
– reference: Rovira-SugranesARaziAAfghahFChakareskiJA review of AI-enabled routing protocols for UAV networks: Trends, challenges, and future outlookAd Hoc Netw202213010.1016/j.adhoc.2022.102790
– reference: WangHMZhangXJiangJCUAV-involved wireless physical-layer secure communications: Overview and research directionsIEEE Wirel Commun2019265323910.1109/MWC.001.1900045
– reference: TrojovskýPDehghaniMA new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behaviorSci Rep2023131877510.1038/s41598-023-35863-5
– volume: 121
  start-page: 2609
  year: 2021
  ident: 1753_CR12
  publication-title: Wireless Pers Commun
  doi: 10.1007/s11277-021-08839-9
– volume: 12
  start-page: 12
  year: 2022
  ident: 1753_CR13
  publication-title: Human-centric Comput Inf Sci
  doi: 10.22967/HCIS.2022.12.034
– ident: 1753_CR17
  doi: 10.1155/2022/5428280
– volume: 77
  start-page: 5076
  issue: 5
  year: 2021
  ident: 1753_CR16
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03462-0
– ident: 1753_CR1
  doi: 10.1155/2022/4782850
– volume: 10
  start-page: 1715
  issue: 14
  year: 2021
  ident: 1753_CR19
  publication-title: Electronics
  doi: 10.3390/electronics10141715
– volume: 1
  start-page: 1
  issue: 2
  year: 2007
  ident: 1753_CR4
  publication-title: City
– ident: 1753_CR5
  doi: 10.1109/TNSM.2024.3357824
– volume: 13
  start-page: 8775
  issue: 1
  year: 2023
  ident: 1753_CR21
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-35863-5
– ident: 1753_CR25
– ident: 1753_CR23
– volume: 13
  start-page: 2682
  issue: 4
  year: 2023
  ident: 1753_CR24
  publication-title: Appl Sci
  doi: 10.3390/app13042682
– ident: 1753_CR10
  doi: 10.3390/s18051413
– volume: 3
  start-page: 59
  issue: 3
  year: 2019
  ident: 1753_CR9
  publication-title: Drones
  doi: 10.3390/drones3030059
– volume: 120
  year: 2021
  ident: 1753_CR18
  publication-title: Ad Hoc Netw
  doi: 10.1016/j.adhoc.2021.102560
– ident: 1753_CR7
  doi: 10.1155/2021/4734023
– volume: 28
  start-page: 1349
  year: 2018
  ident: 1753_CR2
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-020-09418-0
– volume: 202
  start-page: 343
  year: 2022
  ident: 1753_CR20
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2022.06.007
– ident: 1753_CR6
  doi: 10.1080/01969722.2022.2151189
– volume: 26
  start-page: 100267
  year: 2020
  ident: 1753_CR8
  publication-title: Veh Commun
  doi: 10.1016/j.vehcom.2020.100267
– volume: 26
  start-page: 32
  issue: 5
  year: 2019
  ident: 1753_CR14
  publication-title: IEEE Wirel Commun
  doi: 10.1109/MWC.001.1900045
– start-page: 2548
  volume-title: Winter Simulation Conference (WSC)
  year: 2019
  ident: 1753_CR15
– volume: 37
  start-page: 5508
  issue: 9
  year: 2022
  ident: 1753_CR3
  publication-title: Int J Intell Syst
  doi: 10.1002/int.22800
– volume: 130
  year: 2022
  ident: 1753_CR11
  publication-title: Ad Hoc Netw
  doi: 10.1016/j.adhoc.2022.102790
– ident: 1753_CR22
SSID ssj0061352
Score 2.3060138
Snippet Unmanned Aerial vehicles (UAV) are high-speed moving machines that attained rapid growth in various activities and are considered an integral component in the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3269
SubjectTerms Algorithms
Artificial neural networks
Communication
Communication networks
Communications Engineering
Computer Communication Networks
Data communication
Decision making
Engineering
Information Systems and Communication Service
Multiple objective analysis
Networks
Neural networks
Nodes
Optimization
Optimization algorithms
Packets (communication)
Recurrent neural networks
Routing (telecommunications)
Signal,Image and Speech Processing
Special Issue on 2 - Track on Security and Privacy
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG58HfTg27i-Mgdv2oQCS-FojI_Txri-bqSUVjfuwgZYf4s_12kBV42a6JkyadrpfB90vhlCDoOu5qkXBVSnklOfcUYFEhPqa5WakBmGUd1sgvd64cNDdNWIwso22729krSReip2c5EuUMQU_PxFkk39WTKPcBeahg3X_bs2_iI-2T47yEwCimjvNlKZ7218hqMpx_xyLWrR5nzlf_NcJcsNu4ST2h3WyIzK1snSh5qDG-TV_mFXID8qQ6DIJyb_GUSWgqgqIZ8hVZVN08pgkMHtyR1kdcZ4CSZX_hEuhFH0wL0YFpNSlZBj8Bk1qk4Qw8e8GFRPI2ux_6TGpqwjnObZS-PrOM3-2LTkgl5td5Pcnp_dnF7Spj0DlXhuK2qojOCRDrtR6CHq-wGTjnQT5ojElV2mhVSR8CVjmgWJg84gQslMxTLpiIAJb4vMZXmmtgmIkEeJ9B3NdeCrJE3Qs7jGyJu4rkpdr0NYu0uxbGqXmxYaw3haddmseoyrHttVj_0OOXp_Z1xX7vh19F67-XFzisvYM_oqRAsedMhxu9nTxz9b2_nb8F2y6Fp_Malre2SuKiZqnyzIl2pQFgfWu98ABvL20Q
  priority: 102
  providerName: Springer Nature
Title Secure communication routing and attack detection in UAV networks using Gannet Walruses optimization algorithm and Sheppard Convolutional Spinal Network
URI https://link.springer.com/article/10.1007/s12083-024-01753-4
https://www.proquest.com/docview/3112676276
Volume 17
WOSCitedRecordID wos001260436900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1936-6450
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061352
  issn: 1936-6442
  databaseCode: RSV
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7x6KEcWvpA3UJXPvTWWo2dbJycKoqgSKjbiC0U9RI5jg2oS7JssvyW_lzGjtOlSOXCxZckI0vz-mLPzAfwPh4ZUYZpTE2pBI2YYFQiMKGR0aUNmUmSdmQTYjxOzs7SzB-4Nb6sso-JLlCXtbJn5J9C2-uCniviz7Nralmj7O2qp9BYhXVENsyWdH3jWR-JMVM5xh3EKDHFvM9900zXOscRfFDMUPgzjZCdRv8mpiXavHdB6vLOwfPH7ngTnnnESXY7E3kBK7p6CRt35hC-gj_u1F0TdbdbhMzrha2JJrIqiWxbqX6TUreudKsilxU52T0lVVdF3hBbP39Ovkrb5UN-yul80eiG1BiQrnynJ5HTc9xee3HlJE4u9MyOeiR7dXXj7R-3OZlZmi4y7uS-hpOD_R97h9RTNlCFvtxSC2-kSE0ySpMQkUAUMxUoXrBAFlyNmJFKpzJSjBkWFwEaiEwUs1PMVCBjJsMtWKvqSr8BIhORFioKjDBxpIuyQGsTBqNxwbkueTgA1usrV36euaXVmObLScxWxznqOHc6zqMBfPj7zayb5vHg2zu9YnPv2U2-1OoAPvamsXz8f2lvH5a2DU-5s0ZbvrYDa-18od_BE3XTXjbzIax_2R9nx0NYPRJ0aK38u1szXLPRL1yPJ6e3IYcGXg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQc-EZsKeADnMAidrxxckCoaimtWlaV2kJvwXGctmKbbDfZIv4Jv4Lf2BknYQsSvfXAebOjxHnz4XjeG4CX0bDQeZhEvMit5kpowQ0WJlwVLqeQGcdJO2xCj0bxwUGyswC_ei4MtVX2MdEH6ryy9I38bUhcF_RcHb2fnHKaGkWnq_0IjRYWW-7Hd9yy1e821_D9vpJy_cPe6gbvpgpwi3BrOGVgo5MiHiZxiMlKRcIGVmYiMJm0Q1EY6xKjrBCFiLIAn8HEVpDQlg1MJEyIdq_BdUXKYtQqKHf6yI-Z0U_4wZoo4lhnyI6k01L1JBY7HDMibt5xi8DVn4lwXt3-dSDr89z63f9the7Bna6iZiutC9yHBVc-gNsXdBYfwk9_quCYvciGYdNqRj3fzJQ5M01j7DeWu8a3ppXsuGT7K59Z2XbJ14z4AYfsoyEWE_tixtNZ7WpWYcA96ZiszIwPcTmaoxNvcffITUjKkq1W5Vnn33ibuxMaQ8ZGrd1HsH8lS_MYFsuqdE-AmVgnmVVBoYtIuSzP0Jt0gdkmk9LlMhyA6PGR2k6vncaGjNO50jRhKkVMpR5TqRrA69__mbRqJZdevdwDKe0iV53OUTSANz0U5z__29rS5dZewM2NvU_b6fbmaOsp3JLeE6hVbxkWm-nMPYMb9qw5rqfPvU8x-HrVED0HPcddIw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAc-EYsFJgDnMBq7GTj5IBQ1bJQFa1WKoWKS-o4dluxTZZNtoh_wm_h1zF2ErYg0VsPnDc7Spw388bxvBmAZ_HQyiJMY2YLLVnEJWeKEhMWWVO4kJkkaTtsQo7Hyf5-OlmBn70WxpVV9jHRB-qi0u4b-XrotC7kuTJet11ZxGRr9Hr2lbkJUu6ktR-n0UJkx3z_Rtu3-tX2Fr3r50KM3nzYfMe6CQNME_Qa5thYydQmwzQJibiimOtAi5wHKhd6yK3SJlWR5tzyOA_oeVSiuWu6pQMVcxWS3UtwWdIe05UTToafexYglvTTfig_ihnlHKIT7LSyPUGJDyN2pI08bRdY9CcpLjPdvw5nPeeNbv7Pq3ULbnSZNm60rnEbVkx5B66f6b94F3740waD-qxKBufVwtWCoyoLVE2j9BcsTONL1ko8LnFv4yOWbfV8jU43cIhvlVM34Sc1nS9qU2NFgfikU7iimh7ScjRHJ97i7pGZuRaXuFmVp53f023uztx4Mhy3du_B3oUszX1YLavSPABUiUxzHQVW2jgyeZGTl0lLLJQLYQoRDoD3WMl018fdjROZZssO1A5fGeEr8_jKogG8-P2fWdvF5Nyr13pQZV1Eq7Mlogbwsofl8ud_W3t4vrWncJWQmb3fHu88gmvCO4Wr4FuD1Wa-MI_hij5tjuv5E-9eCAcXjdBfvS5mDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secure+communication+routing+and+attack+detection+in+UAV+networks+using+Gannet+Walruses+optimization+algorithm+and+Sheppard+Convolutional+Spinal+Network&rft.jtitle=Peer-to-peer+networking+and+applications&rft.au=Renu%2C+Yuvaraj&rft.au=Sarveshwaran%2C+Velliangiri&rft.date=2024-09-01&rft.issn=1936-6442&rft.eissn=1936-6450&rft.volume=17&rft.issue=5&rft.spage=3269&rft.epage=3285&rft_id=info:doi/10.1007%2Fs12083-024-01753-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12083_024_01753_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-6442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-6442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-6442&client=summon