A new approach to hypergeometric transformation formulas
We give a new method to prove in a uniform and easy way various transformation formulas for Gauss hypergeometric functions. The key is Jacobi’s canonical form of the hypergeometric differential equation. Analogy for q -hypergeometric functions is also studied.
Gespeichert in:
| Veröffentlicht in: | The Ramanujan journal Jg. 55; H. 2; S. 793 - 816 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.06.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1382-4090, 1572-9303 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We give a new method to prove in a uniform and easy way various transformation formulas for Gauss hypergeometric functions. The key is Jacobi’s canonical form of the hypergeometric differential equation. Analogy for
q
-hypergeometric functions is also studied. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1382-4090 1572-9303 |
| DOI: | 10.1007/s11139-020-00286-7 |