A new approach to hypergeometric transformation formulas
We give a new method to prove in a uniform and easy way various transformation formulas for Gauss hypergeometric functions. The key is Jacobi’s canonical form of the hypergeometric differential equation. Analogy for q -hypergeometric functions is also studied.
Uloženo v:
| Vydáno v: | The Ramanujan journal Ročník 55; číslo 2; s. 793 - 816 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.06.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 1382-4090, 1572-9303 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We give a new method to prove in a uniform and easy way various transformation formulas for Gauss hypergeometric functions. The key is Jacobi’s canonical form of the hypergeometric differential equation. Analogy for
q
-hypergeometric functions is also studied. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1382-4090 1572-9303 |
| DOI: | 10.1007/s11139-020-00286-7 |