A new approach to hypergeometric transformation formulas
We give a new method to prove in a uniform and easy way various transformation formulas for Gauss hypergeometric functions. The key is Jacobi’s canonical form of the hypergeometric differential equation. Analogy for q -hypergeometric functions is also studied.
Uloženo v:
| Vydáno v: | The Ramanujan journal Ročník 55; číslo 2; s. 793 - 816 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.06.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 1382-4090, 1572-9303 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We give a new method to prove in a uniform and easy way various transformation formulas for Gauss hypergeometric functions. The key is Jacobi’s canonical form of the hypergeometric differential equation. Analogy for
q
-hypergeometric functions is also studied. |
|---|---|
| AbstractList | We give a new method to prove in a uniform and easy way various transformation formulas for Gauss hypergeometric functions. The key is Jacobi’s canonical form of the hypergeometric differential equation. Analogy for q-hypergeometric functions is also studied. We give a new method to prove in a uniform and easy way various transformation formulas for Gauss hypergeometric functions. The key is Jacobi’s canonical form of the hypergeometric differential equation. Analogy for q -hypergeometric functions is also studied. |
| Author | Otsubo, Noriyuki |
| Author_xml | – sequence: 1 givenname: Noriyuki orcidid: 0000-0002-7880-0505 surname: Otsubo fullname: Otsubo, Noriyuki email: otsubo@math.s.chiba-u.ac.jp organization: Department of Mathematics and Informatics, Chiba University |
| BookMark | eNp9kEFLAzEQhYNUsK3-AU8LnqOTZHeTHEtRKxS89B6y6Wy7pd2syRbpvzftCoKHnmYO75t5703IqPUtEvLI4JkByJfIGBOaAgcKwFVJ5Q0Zs0JyqgWIUdqF4jQHDXdkEuMOAHIQckzULGvxO7NdF7x126z32fbUYdigP2AfGpf1wbax9uFg-8a32Xk77m28J7e13Ud8-J1Tsnp7Xc0XdPn5_jGfLakTTPc05yi1ZtrmBWe6LJzWqCu1dgUDpjQyjljp9VqUNVZFJYVShcOqRAW5k05MydNwNvn7OmLszc4fQ5s-Gl5wlcucS5VUfFC54GMMWJsuNAcbToaBORdkhoJMKshcCjIyQeof5Jr-EjJFbvbXUTGgMf1pNxj-XF2hfgA1jHvx |
| CitedBy_id | crossref_primary_10_1007_s11139_023_00777_3 |
| Cites_doi | 10.1017/S0027763000009739 10.1619/fesi.52.203 10.1112/plms/pdp007 10.1007/BF03012437 10.1515/crll.1859.56.149 10.1090/S0002-9947-1994-1243610-6 10.24033/asens.207 10.1007/978-1-4939-0258-3_27 10.1007/978-1-4612-4530-8 10.1016/j.jnt.2006.08.002 10.1017/S0305004198002643 10.1017/CBO9780511526251 10.1090/S0002-9947-07-04128-1 10.2307/2370183 10.1619/fesi.52.139 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s11139-020-00286-7 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1572-9303 |
| EndPage | 816 |
| ExternalDocumentID | 10_1007_s11139_020_00286_7 |
| GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 18K03234 funderid: http://dx.doi.org/10.13039/501100001691 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 29P 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 6TJ 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9R PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7U ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ M2P M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c319t-42e79919a4521965c99e9b8dc510189e12eeb9dd36feb5b73885ceb6e804c7c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552189500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1382-4090 |
| IngestDate | Thu Sep 25 00:55:40 EDT 2025 Sat Nov 29 03:20:58 EST 2025 Tue Nov 18 21:42:01 EST 2025 Fri Feb 21 02:48:28 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Hypergeometric functions Basic hypergeometric functions Transformation formulas 33C05 33D15 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-42e79919a4521965c99e9b8dc510189e12eeb9dd36feb5b73885ceb6e804c7c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7880-0505 |
| PQID | 2528474278 |
| PQPubID | 2043831 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_2528474278 crossref_primary_10_1007_s11139_020_00286_7 crossref_citationtrail_10_1007_s11139_020_00286_7 springer_journals_10_1007_s11139_020_00286_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan |
| PublicationTitle | The Ramanujan journal |
| PublicationTitleAbbrev | Ramanujan J |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | BorweinJMBorweinPBGarvanFGSome cubic modular identities of RamanujanTrans. Am. Math. Soc.199434313547124361010.1090/S0002-9947-1994-1243610-6 MatsumotoKOharaKSome transformation formulas for Lauricella’s hypergeometric functions FD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_D$$\end{document}Funkcialaj Ekvacioj200952203212254710210.1619/fesi.52.203 RamanujanSNotebooks (2 Volumes)1957BombayTata Institute of Fundamental Research0138.24201 BerndtBCRamanujan’s Notebooks, Part II1989New YorkNew YorkSpringer10.1007/978-1-4612-4530-8 GaussCFGaussCFDeterminatio seriei nostrae per aequationem differentialem secundi ordinisWerke1876GöttingenKöniglichen Gesellschaft der Wissenschaften207230 GoursatÉSur l’équation différentielle linéaire, qui admet pour intégrale la série hypergéométriqueAnn. Sci. Éc. Norm. Sup.188110314210.24033/asens.207 MaierRSOn rationally parametrized modular equationsJ. Ramanujan Math. Soc.200924117325141491214.11049 BorweinJMBorweinPBA cubic counterpart of Jacobi’s identity and the AGMTrans. Am. Math. Soc.1991323269170110104080725.33014 VidūnasRAlgebraic transformations of Gauss hypergeometric functionsFunkcialaj Ekvacioj200952139180254710010.1619/fesi.52.139 ErdélyiAHigher Transcendental Functions1953New YorkMcGrow-Hill0052.29502 AppellPKampé de FérietJFonctions Hypergéométriques et Hypersphériques1926ParisGauthier Villars52.0361.13 JacksonFHq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Difference equationsAm. J. Math.191032430531410.2307/2370183 BerndtBCBhargavaSGarvanFGRamanujan’s theories of elliptic functions to alternative basesTrans. Am. Math. Soc.1995347114163424413119030843.33012 GasperGRahmanMBasic Hypergeometric Series20042CambridgeCambridge University Press10.1017/CBO9780511526251 KatoTMatsumotoKThe common limit of a quadruple sequence and the hypergeometric function FD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_D$$\end{document} of three variablesNagoya Math. J.2009195113124255295610.1017/S0027763000009739 LauricellaGSulle Funzioni ipergeometrche a piu variabiliR. Circ. Mat. Palermo1893711115810.1007/BF03012437 ChanHHOn Ramanujan’s cubic transformation formula for 2F1(13,23;1;z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_2F_1(\frac{1}{3},\frac{2}{3};1;z)$$\end{document}Math. Proc. Camb. Philos. Soc.1998124219320410.1017/S0305004198002643 MaierRSAlgebraic hypergeometric transformations of modular originTrans. Am. Math. Soc.2007359838593885230251610.1090/S0002-9947-07-04128-1 PooleEGCIntroduction to the Theory of Differential Equations1936OxfordOxford University Press62.1277.01 IwasakiKKimuraHShimomuraSYoshidaMFrom Gauss to Painlevé: A Modern Theory of Special Functions; Dedicated to Professor Tosihusa Kimura1992New YorkSpringer0743.34014 Kummer, E.E.: Über die hypergeometrische Reihe 1+α·β1·γx+α(α+1)β(β+1)1·2·γ(γ+1)x2+α(α+1)(α+2)β(β+1)(β+2)1·2·3·γ(γ+1)(γ+2)x3+⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\frac{\alpha \cdot \beta }{1\cdot \gamma }x+\frac{\alpha (\alpha +1)\beta (\beta +1)}{1\cdot 2\cdot \gamma (\gamma +1)}x^2+\frac{\alpha (\alpha +1)(\alpha +2)\beta (\beta +1)(\beta +2)}{1\cdot 2\cdot 3\cdot \gamma (\gamma +1)(\gamma +2)}x^3+\cdots $$\end{document}, J. Reine Angew. Math. 15(39–83), pp. 127–172. Collected Papers II, Springer, Berlin 1975, 75–166 (1836) CooperSInversion formulas for elliptic functionsProc. Lond. Math. Soc.200999461483253367210.1112/plms/pdp007 KoikeKShigaHIsogeny formulas for the Picard modular form and a three terms arithmetic geometric meanJ. Number Theory2007124123141232099410.1016/j.jnt.2006.08.002 HeineEUntersuchungen über die Reihe 1+(1-qα)(1-qβ)(1-q)(1-qγ)·x+(1-qα)(1-qα+1)(1-qβ)(1-qβ+1)(1-q)(1-q2)(1-qγ)(1-qγ+1)·x2+⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\frac{(1-q^\alpha )(1-q^\beta )}{(1-q)(1-q^\gamma )}\cdot x+ \frac{(1-q^\alpha )(1-q^{\alpha +1})(1-q^\beta )(1-q^{\beta +1})}{(1-q)(1-q^2)(1-q^\gamma )(1-q^{\gamma +1})}\cdot x^2+\cdots $$\end{document}J. Reine Angew. Math.1847342853281578577 Jacobi, C.G.J.: Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe. J. Reine Angew. Math. 56, 149–165 (1859). In: C.G.J. Jacobi’s Gesammelte Werke, vol. 6, pp. 184–202. Cambridge University Press, Cambridge (2013) KarlssonPWMilovanovićGVRassiasMThGoursat’s hypergeometric transformations, revisitedAnalytic Number Theory, Approximation Theory, and Special Functions2014New YorkSpringer72173610.1007/978-1-4939-0258-3_27 R Vidūnas (286_CR26) 2009; 52 S Cooper (286_CR7) 2009; 99 K Iwasaki (286_CR13) 1992 K Matsumoto (286_CR23) 2009; 52 É Goursat (286_CR11) 1881; 10 286_CR19 E Heine (286_CR12) 1847; 34 G Lauricella (286_CR20) 1893; 7 286_CR15 JM Borwein (286_CR5) 1994; 343 K Koike (286_CR18) 2007; 124 S Ramanujan (286_CR25) 1957 JM Borwein (286_CR4) 1991; 323 (286_CR8) 1953 P Appell (286_CR1) 1926 RS Maier (286_CR22) 2009; 24 BC Berndt (286_CR2) 1989 PW Karlsson (286_CR16) 2014 EGC Poole (286_CR24) 1936 BC Berndt (286_CR3) 1995; 347 RS Maier (286_CR21) 2007; 359 CF Gauss (286_CR10) 1876 HH Chan (286_CR6) 1998; 124 G Gasper (286_CR9) 2004 FH Jackson (286_CR14) 1910; 32 T Kato (286_CR17) 2009; 195 |
| References_xml | – reference: BerndtBCRamanujan’s Notebooks, Part II1989New YorkNew YorkSpringer10.1007/978-1-4612-4530-8 – reference: CooperSInversion formulas for elliptic functionsProc. Lond. Math. Soc.200999461483253367210.1112/plms/pdp007 – reference: MaierRSOn rationally parametrized modular equationsJ. Ramanujan Math. Soc.200924117325141491214.11049 – reference: KarlssonPWMilovanovićGVRassiasMThGoursat’s hypergeometric transformations, revisitedAnalytic Number Theory, Approximation Theory, and Special Functions2014New YorkSpringer72173610.1007/978-1-4939-0258-3_27 – reference: MaierRSAlgebraic hypergeometric transformations of modular originTrans. Am. Math. Soc.2007359838593885230251610.1090/S0002-9947-07-04128-1 – reference: Kummer, E.E.: Über die hypergeometrische Reihe 1+α·β1·γx+α(α+1)β(β+1)1·2·γ(γ+1)x2+α(α+1)(α+2)β(β+1)(β+2)1·2·3·γ(γ+1)(γ+2)x3+⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\frac{\alpha \cdot \beta }{1\cdot \gamma }x+\frac{\alpha (\alpha +1)\beta (\beta +1)}{1\cdot 2\cdot \gamma (\gamma +1)}x^2+\frac{\alpha (\alpha +1)(\alpha +2)\beta (\beta +1)(\beta +2)}{1\cdot 2\cdot 3\cdot \gamma (\gamma +1)(\gamma +2)}x^3+\cdots $$\end{document}, J. Reine Angew. Math. 15(39–83), pp. 127–172. Collected Papers II, Springer, Berlin 1975, 75–166 (1836) – reference: Jacobi, C.G.J.: Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe. J. Reine Angew. Math. 56, 149–165 (1859). In: C.G.J. Jacobi’s Gesammelte Werke, vol. 6, pp. 184–202. Cambridge University Press, Cambridge (2013) – reference: AppellPKampé de FérietJFonctions Hypergéométriques et Hypersphériques1926ParisGauthier Villars52.0361.13 – reference: HeineEUntersuchungen über die Reihe 1+(1-qα)(1-qβ)(1-q)(1-qγ)·x+(1-qα)(1-qα+1)(1-qβ)(1-qβ+1)(1-q)(1-q2)(1-qγ)(1-qγ+1)·x2+⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\frac{(1-q^\alpha )(1-q^\beta )}{(1-q)(1-q^\gamma )}\cdot x+ \frac{(1-q^\alpha )(1-q^{\alpha +1})(1-q^\beta )(1-q^{\beta +1})}{(1-q)(1-q^2)(1-q^\gamma )(1-q^{\gamma +1})}\cdot x^2+\cdots $$\end{document}J. Reine Angew. Math.1847342853281578577 – reference: KatoTMatsumotoKThe common limit of a quadruple sequence and the hypergeometric function FD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_D$$\end{document} of three variablesNagoya Math. J.2009195113124255295610.1017/S0027763000009739 – reference: LauricellaGSulle Funzioni ipergeometrche a piu variabiliR. Circ. Mat. Palermo1893711115810.1007/BF03012437 – reference: ErdélyiAHigher Transcendental Functions1953New YorkMcGrow-Hill0052.29502 – reference: GasperGRahmanMBasic Hypergeometric Series20042CambridgeCambridge University Press10.1017/CBO9780511526251 – reference: JacksonFHq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Difference equationsAm. J. Math.191032430531410.2307/2370183 – reference: PooleEGCIntroduction to the Theory of Differential Equations1936OxfordOxford University Press62.1277.01 – reference: RamanujanSNotebooks (2 Volumes)1957BombayTata Institute of Fundamental Research0138.24201 – reference: VidūnasRAlgebraic transformations of Gauss hypergeometric functionsFunkcialaj Ekvacioj200952139180254710010.1619/fesi.52.139 – reference: IwasakiKKimuraHShimomuraSYoshidaMFrom Gauss to Painlevé: A Modern Theory of Special Functions; Dedicated to Professor Tosihusa Kimura1992New YorkSpringer0743.34014 – reference: KoikeKShigaHIsogeny formulas for the Picard modular form and a three terms arithmetic geometric meanJ. Number Theory2007124123141232099410.1016/j.jnt.2006.08.002 – reference: BorweinJMBorweinPBA cubic counterpart of Jacobi’s identity and the AGMTrans. Am. Math. Soc.1991323269170110104080725.33014 – reference: GoursatÉSur l’équation différentielle linéaire, qui admet pour intégrale la série hypergéométriqueAnn. Sci. Éc. Norm. Sup.188110314210.24033/asens.207 – reference: BerndtBCBhargavaSGarvanFGRamanujan’s theories of elliptic functions to alternative basesTrans. Am. Math. Soc.1995347114163424413119030843.33012 – reference: ChanHHOn Ramanujan’s cubic transformation formula for 2F1(13,23;1;z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_2F_1(\frac{1}{3},\frac{2}{3};1;z)$$\end{document}Math. Proc. Camb. Philos. Soc.1998124219320410.1017/S0305004198002643 – reference: BorweinJMBorweinPBGarvanFGSome cubic modular identities of RamanujanTrans. Am. Math. Soc.199434313547124361010.1090/S0002-9947-1994-1243610-6 – reference: MatsumotoKOharaKSome transformation formulas for Lauricella’s hypergeometric functions FD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_D$$\end{document}Funkcialaj Ekvacioj200952203212254710210.1619/fesi.52.203 – reference: GaussCFGaussCFDeterminatio seriei nostrae per aequationem differentialem secundi ordinisWerke1876GöttingenKöniglichen Gesellschaft der Wissenschaften207230 – volume: 195 start-page: 113 year: 2009 ident: 286_CR17 publication-title: Nagoya Math. J. doi: 10.1017/S0027763000009739 – volume: 52 start-page: 203 year: 2009 ident: 286_CR23 publication-title: Funkcialaj Ekvacioj doi: 10.1619/fesi.52.203 – volume-title: Fonctions Hypergéométriques et Hypersphériques year: 1926 ident: 286_CR1 – volume: 24 start-page: 1 issue: 1 year: 2009 ident: 286_CR22 publication-title: J. Ramanujan Math. Soc. – volume-title: Notebooks (2 Volumes) year: 1957 ident: 286_CR25 – volume: 99 start-page: 461 year: 2009 ident: 286_CR7 publication-title: Proc. Lond. Math. Soc. doi: 10.1112/plms/pdp007 – volume: 7 start-page: 111 year: 1893 ident: 286_CR20 publication-title: R. Circ. Mat. Palermo doi: 10.1007/BF03012437 – volume-title: Higher Transcendental Functions year: 1953 ident: 286_CR8 – volume: 347 start-page: 4163 issue: 11 year: 1995 ident: 286_CR3 publication-title: Trans. Am. Math. Soc. – start-page: 207 volume-title: Werke year: 1876 ident: 286_CR10 – ident: 286_CR15 doi: 10.1515/crll.1859.56.149 – volume: 343 start-page: 35 issue: 1 year: 1994 ident: 286_CR5 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1994-1243610-6 – ident: 286_CR19 – volume: 10 start-page: 3 year: 1881 ident: 286_CR11 publication-title: Ann. Sci. Éc. Norm. Sup. doi: 10.24033/asens.207 – volume-title: From Gauss to Painlevé: A Modern Theory of Special Functions; Dedicated to Professor Tosihusa Kimura year: 1992 ident: 286_CR13 – start-page: 721 volume-title: Analytic Number Theory, Approximation Theory, and Special Functions year: 2014 ident: 286_CR16 doi: 10.1007/978-1-4939-0258-3_27 – volume-title: Ramanujan’s Notebooks, Part II year: 1989 ident: 286_CR2 doi: 10.1007/978-1-4612-4530-8 – volume: 124 start-page: 123 year: 2007 ident: 286_CR18 publication-title: J. Number Theory doi: 10.1016/j.jnt.2006.08.002 – volume-title: Introduction to the Theory of Differential Equations year: 1936 ident: 286_CR24 – volume: 124 start-page: 193 issue: 2 year: 1998 ident: 286_CR6 publication-title: Math. Proc. Camb. Philos. Soc. doi: 10.1017/S0305004198002643 – volume-title: Basic Hypergeometric Series year: 2004 ident: 286_CR9 doi: 10.1017/CBO9780511526251 – volume: 359 start-page: 3859 issue: 8 year: 2007 ident: 286_CR21 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-07-04128-1 – volume: 34 start-page: 285 year: 1847 ident: 286_CR12 publication-title: J. Reine Angew. Math. – volume: 32 start-page: 305 issue: 4 year: 1910 ident: 286_CR14 publication-title: Am. J. Math. doi: 10.2307/2370183 – volume: 323 start-page: 691 issue: 2 year: 1991 ident: 286_CR4 publication-title: Trans. Am. Math. Soc. – volume: 52 start-page: 139 year: 2009 ident: 286_CR26 publication-title: Funkcialaj Ekvacioj doi: 10.1619/fesi.52.139 |
| SSID | ssj0004037 |
| Score | 2.2302473 |
| Snippet | We give a new method to prove in a uniform and easy way various transformation formulas for Gauss hypergeometric functions. The key is Jacobi’s canonical form... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 793 |
| SubjectTerms | Canonical forms Combinatorics Differential equations Field Theory and Polynomials Fourier Analysis Functions of a Complex Variable Hypergeometric functions Mathematics Mathematics and Statistics Number Theory Transformations (mathematics) |
| Title | A new approach to hypergeometric transformation formulas |
| URI | https://link.springer.com/article/10.1007/s11139-020-00286-7 https://www.proquest.com/docview/2528474278 |
| Volume | 55 |
| WOSCitedRecordID | wos000552189500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9303 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004037 issn: 1382-4090 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB109aAHv8XVVXLwpoF-Nzku4uLFRXSRvZVmOquCtrLt-vtNsu1WRQW9FZqGMi_TedNk3gCcuhn6qSSP-5jqBCXNFJfBhHjqBOgqP5r4yrHNJuLhUIzH8qYuCiub0-7NlqT9UrfFbq5mK9ykOyZRiHi8DCs63Anjjrd39201pGOVMo24ns6OpFOXynw_x-dw1HLML9uiNtoMNv_3nluwUbNL1p8vh21YonwH1q8X0qzlLog-00yaNVrirCrYo85Fpw9UvJjuWsiqD1y2yJm5mmmOvQejweXo4orX7RM4ar-qeOBRrNmfTAMdomUUopQklcjQqnRJcj0iJbNMA0IqVLEvRIikIhIapxj9fejkRU4HwOJIYqhByzwKA3SyNFBBKl3lIWEYSdEFtzFigrW0uOlw8Zy0osjGKIk2SmKNksRdOFs88zoX1vh1dK_BJqmdrEy80MRW0yukC-cNFu3tn2c7_NvwI1jzzEkW---lB51qOqNjWMW36qmcntjF9w4619Jd |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD3-J0ah5800A_0o88DnFM3IbokL2VJr2poK2snX-_SdauKiroW6FpKPdLer9r7n4HcGon0o05OtSVsQpQ4kRQzsZIY4tJW7j-2BWWaTYRDAbhaMRvyqKwvMp2r44kzZe6LnazFVuhOtzRgYJPg0VYYspj6US-27v7uhrSMkqZWlxPRUfcKktlvp_jszuqOeaXY1HjbTob_3vPTVgv2SVpz5bDFixgug1r_bk0a74DYZsoJk0qLXFSZORRxaKTB8xedHctSYoPXDZLib6aKo69C8PO5fCiS8v2CVSqfVVQ5mCg2B-PmXLR3Pck58hFmEij0sXRdhAFTxIFCApPBG4YehKFj6HCKZDuHjTSLMV9IIHPpadASxz0mLSSmAkWc1s4EqXn87AJdmXESJbS4rrDxXNUiyJro0TKKJExShQ04Wz-zOtMWOPX0a0Km6jcZHnkeNq36l4hTTivsKhv_zzbwd-Gn8BKd9jvRb2rwfUhrDo6q8X8h2lBo5hM8QiW5VvxlE-OzUJ8ByDA1UE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-J0ah5807Be0ksehzoUdQwcsrfQXKaCtmPr_P0mWbtOUUF8K7QN5ZyE831NzvcBnLpS-AlVHvZFoglKIjmmZKBw4hDhcj8c-NyxZhNRpxP3-7Q718VvT7uXW5LTngaj0pTmzaEcNKvGN1cjF2yojyENIY4WYYkY0yDD1x8eq85Ix6pmGqE9zZSoU7TNfD_G59JU4c0vW6S28rQ3_v_Nm7BeoE7Umk6TLVhQ6Tas3c8kW8c7ELeQRtio1BhHeYaeNUcdPanszbhuCZTPYdwsReZqorH3LvTaV72La1zYKmCh11uOiacijQppQnTppmEgKFWUx1JY9S6qXE8pTqXUiVI84JEfx4FQPFSxzl8k_D2opVmq9gFFIRWBTqb0VECEIxPCSUJd7gklgpDGdXDLgDJRSI4b54tXVoklm6AwHRRmg8KiOpzN3hlOBTd-fbpR5okVi2_MvMDUXOMhUofzMi_V7Z9HO_jb4yew0r1ss7ubzu0hrHrmsIv9PdOAWj6aqCNYFu_5y3h0bOfkB47H3iU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+approach+to+hypergeometric+transformation+formulas&rft.jtitle=The+Ramanujan+journal&rft.au=Otsubo%2C+Noriyuki&rft.date=2021-06-01&rft.issn=1382-4090&rft.eissn=1572-9303&rft.volume=55&rft.issue=2&rft.spage=793&rft.epage=816&rft_id=info:doi/10.1007%2Fs11139-020-00286-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11139_020_00286_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-4090&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-4090&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-4090&client=summon |