A new approach to hypergeometric transformation formulas

We give a new method to prove in a uniform and easy way various transformation formulas for Gauss hypergeometric functions. The key is Jacobi’s canonical form of the hypergeometric differential equation. Analogy for q -hypergeometric functions is also studied.

Saved in:
Bibliographic Details
Published in:The Ramanujan journal Vol. 55; no. 2; pp. 793 - 816
Main Author: Otsubo, Noriyuki
Format: Journal Article
Language:English
Published: New York Springer US 01.06.2021
Springer Nature B.V
Subjects:
ISSN:1382-4090, 1572-9303
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We give a new method to prove in a uniform and easy way various transformation formulas for Gauss hypergeometric functions. The key is Jacobi’s canonical form of the hypergeometric differential equation. Analogy for q -hypergeometric functions is also studied.
AbstractList We give a new method to prove in a uniform and easy way various transformation formulas for Gauss hypergeometric functions. The key is Jacobi’s canonical form of the hypergeometric differential equation. Analogy for q-hypergeometric functions is also studied.
We give a new method to prove in a uniform and easy way various transformation formulas for Gauss hypergeometric functions. The key is Jacobi’s canonical form of the hypergeometric differential equation. Analogy for q -hypergeometric functions is also studied.
Author Otsubo, Noriyuki
Author_xml – sequence: 1
  givenname: Noriyuki
  orcidid: 0000-0002-7880-0505
  surname: Otsubo
  fullname: Otsubo, Noriyuki
  email: otsubo@math.s.chiba-u.ac.jp
  organization: Department of Mathematics and Informatics, Chiba University
BookMark eNp9kEFLAzEQhYNUsK3-AU8LnqOTZHeTHEtRKxS89B6y6Wy7pd2syRbpvzftCoKHnmYO75t5703IqPUtEvLI4JkByJfIGBOaAgcKwFVJ5Q0Zs0JyqgWIUdqF4jQHDXdkEuMOAHIQckzULGvxO7NdF7x126z32fbUYdigP2AfGpf1wbax9uFg-8a32Xk77m28J7e13Ud8-J1Tsnp7Xc0XdPn5_jGfLakTTPc05yi1ZtrmBWe6LJzWqCu1dgUDpjQyjljp9VqUNVZFJYVShcOqRAW5k05MydNwNvn7OmLszc4fQ5s-Gl5wlcucS5VUfFC54GMMWJsuNAcbToaBORdkhoJMKshcCjIyQeof5Jr-EjJFbvbXUTGgMf1pNxj-XF2hfgA1jHvx
CitedBy_id crossref_primary_10_1007_s11139_023_00777_3
Cites_doi 10.1017/S0027763000009739
10.1619/fesi.52.203
10.1112/plms/pdp007
10.1007/BF03012437
10.1515/crll.1859.56.149
10.1090/S0002-9947-1994-1243610-6
10.24033/asens.207
10.1007/978-1-4939-0258-3_27
10.1007/978-1-4612-4530-8
10.1016/j.jnt.2006.08.002
10.1017/S0305004198002643
10.1017/CBO9780511526251
10.1090/S0002-9947-07-04128-1
10.2307/2370183
10.1619/fesi.52.139
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s11139-020-00286-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1572-9303
EndPage 816
ExternalDocumentID 10_1007_s11139_020_00286_7
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 18K03234
  funderid: http://dx.doi.org/10.13039/501100001691
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
29P
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
6TJ
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9R
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c319t-42e79919a4521965c99e9b8dc510189e12eeb9dd36feb5b73885ceb6e804c7c3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552189500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-4090
IngestDate Thu Sep 25 00:55:40 EDT 2025
Sat Nov 29 03:20:58 EST 2025
Tue Nov 18 21:42:01 EST 2025
Fri Feb 21 02:48:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Hypergeometric functions
Basic hypergeometric functions
Transformation formulas
33C05
33D15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-42e79919a4521965c99e9b8dc510189e12eeb9dd36feb5b73885ceb6e804c7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7880-0505
PQID 2528474278
PQPubID 2043831
PageCount 24
ParticipantIDs proquest_journals_2528474278
crossref_primary_10_1007_s11139_020_00286_7
crossref_citationtrail_10_1007_s11139_020_00286_7
springer_journals_10_1007_s11139_020_00286_7
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan
PublicationTitle The Ramanujan journal
PublicationTitleAbbrev Ramanujan J
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BorweinJMBorweinPBGarvanFGSome cubic modular identities of RamanujanTrans. Am. Math. Soc.199434313547124361010.1090/S0002-9947-1994-1243610-6
MatsumotoKOharaKSome transformation formulas for Lauricella’s hypergeometric functions FD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_D$$\end{document}Funkcialaj Ekvacioj200952203212254710210.1619/fesi.52.203
RamanujanSNotebooks (2 Volumes)1957BombayTata Institute of Fundamental Research0138.24201
BerndtBCRamanujan’s Notebooks, Part II1989New YorkNew YorkSpringer10.1007/978-1-4612-4530-8
GaussCFGaussCFDeterminatio seriei nostrae per aequationem differentialem secundi ordinisWerke1876GöttingenKöniglichen Gesellschaft der Wissenschaften207230
GoursatÉSur l’équation différentielle linéaire, qui admet pour intégrale la série hypergéométriqueAnn. Sci. Éc. Norm. Sup.188110314210.24033/asens.207
MaierRSOn rationally parametrized modular equationsJ. Ramanujan Math. Soc.200924117325141491214.11049
BorweinJMBorweinPBA cubic counterpart of Jacobi’s identity and the AGMTrans. Am. Math. Soc.1991323269170110104080725.33014
VidūnasRAlgebraic transformations of Gauss hypergeometric functionsFunkcialaj Ekvacioj200952139180254710010.1619/fesi.52.139
ErdélyiAHigher Transcendental Functions1953New YorkMcGrow-Hill0052.29502
AppellPKampé de FérietJFonctions Hypergéométriques et Hypersphériques1926ParisGauthier Villars52.0361.13
JacksonFHq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Difference equationsAm. J. Math.191032430531410.2307/2370183
BerndtBCBhargavaSGarvanFGRamanujan’s theories of elliptic functions to alternative basesTrans. Am. Math. Soc.1995347114163424413119030843.33012
GasperGRahmanMBasic Hypergeometric Series20042CambridgeCambridge University Press10.1017/CBO9780511526251
KatoTMatsumotoKThe common limit of a quadruple sequence and the hypergeometric function FD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_D$$\end{document} of three variablesNagoya Math. J.2009195113124255295610.1017/S0027763000009739
LauricellaGSulle Funzioni ipergeometrche a piu variabiliR. Circ. Mat. Palermo1893711115810.1007/BF03012437
ChanHHOn Ramanujan’s cubic transformation formula for 2F1(13,23;1;z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_2F_1(\frac{1}{3},\frac{2}{3};1;z)$$\end{document}Math. Proc. Camb. Philos. Soc.1998124219320410.1017/S0305004198002643
MaierRSAlgebraic hypergeometric transformations of modular originTrans. Am. Math. Soc.2007359838593885230251610.1090/S0002-9947-07-04128-1
PooleEGCIntroduction to the Theory of Differential Equations1936OxfordOxford University Press62.1277.01
IwasakiKKimuraHShimomuraSYoshidaMFrom Gauss to Painlevé: A Modern Theory of Special Functions; Dedicated to Professor Tosihusa Kimura1992New YorkSpringer0743.34014
Kummer, E.E.: Über die hypergeometrische Reihe 1+α·β1·γx+α(α+1)β(β+1)1·2·γ(γ+1)x2+α(α+1)(α+2)β(β+1)(β+2)1·2·3·γ(γ+1)(γ+2)x3+⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\frac{\alpha \cdot \beta }{1\cdot \gamma }x+\frac{\alpha (\alpha +1)\beta (\beta +1)}{1\cdot 2\cdot \gamma (\gamma +1)}x^2+\frac{\alpha (\alpha +1)(\alpha +2)\beta (\beta +1)(\beta +2)}{1\cdot 2\cdot 3\cdot \gamma (\gamma +1)(\gamma +2)}x^3+\cdots $$\end{document}, J. Reine Angew. Math. 15(39–83), pp. 127–172. Collected Papers II, Springer, Berlin 1975, 75–166 (1836)
CooperSInversion formulas for elliptic functionsProc. Lond. Math. Soc.200999461483253367210.1112/plms/pdp007
KoikeKShigaHIsogeny formulas for the Picard modular form and a three terms arithmetic geometric meanJ. Number Theory2007124123141232099410.1016/j.jnt.2006.08.002
HeineEUntersuchungen über die Reihe 1+(1-qα)(1-qβ)(1-q)(1-qγ)·x+(1-qα)(1-qα+1)(1-qβ)(1-qβ+1)(1-q)(1-q2)(1-qγ)(1-qγ+1)·x2+⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\frac{(1-q^\alpha )(1-q^\beta )}{(1-q)(1-q^\gamma )}\cdot x+ \frac{(1-q^\alpha )(1-q^{\alpha +1})(1-q^\beta )(1-q^{\beta +1})}{(1-q)(1-q^2)(1-q^\gamma )(1-q^{\gamma +1})}\cdot x^2+\cdots $$\end{document}J. Reine Angew. Math.1847342853281578577
Jacobi, C.G.J.: Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe. J. Reine Angew. Math. 56, 149–165 (1859). In: C.G.J. Jacobi’s Gesammelte Werke, vol. 6, pp. 184–202. Cambridge University Press, Cambridge (2013)
KarlssonPWMilovanovićGVRassiasMThGoursat’s hypergeometric transformations, revisitedAnalytic Number Theory, Approximation Theory, and Special Functions2014New YorkSpringer72173610.1007/978-1-4939-0258-3_27
R Vidūnas (286_CR26) 2009; 52
S Cooper (286_CR7) 2009; 99
K Iwasaki (286_CR13) 1992
K Matsumoto (286_CR23) 2009; 52
É Goursat (286_CR11) 1881; 10
286_CR19
E Heine (286_CR12) 1847; 34
G Lauricella (286_CR20) 1893; 7
286_CR15
JM Borwein (286_CR5) 1994; 343
K Koike (286_CR18) 2007; 124
S Ramanujan (286_CR25) 1957
JM Borwein (286_CR4) 1991; 323
(286_CR8) 1953
P Appell (286_CR1) 1926
RS Maier (286_CR22) 2009; 24
BC Berndt (286_CR2) 1989
PW Karlsson (286_CR16) 2014
EGC Poole (286_CR24) 1936
BC Berndt (286_CR3) 1995; 347
RS Maier (286_CR21) 2007; 359
CF Gauss (286_CR10) 1876
HH Chan (286_CR6) 1998; 124
G Gasper (286_CR9) 2004
FH Jackson (286_CR14) 1910; 32
T Kato (286_CR17) 2009; 195
References_xml – reference: BerndtBCRamanujan’s Notebooks, Part II1989New YorkNew YorkSpringer10.1007/978-1-4612-4530-8
– reference: CooperSInversion formulas for elliptic functionsProc. Lond. Math. Soc.200999461483253367210.1112/plms/pdp007
– reference: MaierRSOn rationally parametrized modular equationsJ. Ramanujan Math. Soc.200924117325141491214.11049
– reference: KarlssonPWMilovanovićGVRassiasMThGoursat’s hypergeometric transformations, revisitedAnalytic Number Theory, Approximation Theory, and Special Functions2014New YorkSpringer72173610.1007/978-1-4939-0258-3_27
– reference: MaierRSAlgebraic hypergeometric transformations of modular originTrans. Am. Math. Soc.2007359838593885230251610.1090/S0002-9947-07-04128-1
– reference: Kummer, E.E.: Über die hypergeometrische Reihe 1+α·β1·γx+α(α+1)β(β+1)1·2·γ(γ+1)x2+α(α+1)(α+2)β(β+1)(β+2)1·2·3·γ(γ+1)(γ+2)x3+⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\frac{\alpha \cdot \beta }{1\cdot \gamma }x+\frac{\alpha (\alpha +1)\beta (\beta +1)}{1\cdot 2\cdot \gamma (\gamma +1)}x^2+\frac{\alpha (\alpha +1)(\alpha +2)\beta (\beta +1)(\beta +2)}{1\cdot 2\cdot 3\cdot \gamma (\gamma +1)(\gamma +2)}x^3+\cdots $$\end{document}, J. Reine Angew. Math. 15(39–83), pp. 127–172. Collected Papers II, Springer, Berlin 1975, 75–166 (1836)
– reference: Jacobi, C.G.J.: Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe. J. Reine Angew. Math. 56, 149–165 (1859). In: C.G.J. Jacobi’s Gesammelte Werke, vol. 6, pp. 184–202. Cambridge University Press, Cambridge (2013)
– reference: AppellPKampé de FérietJFonctions Hypergéométriques et Hypersphériques1926ParisGauthier Villars52.0361.13
– reference: HeineEUntersuchungen über die Reihe 1+(1-qα)(1-qβ)(1-q)(1-qγ)·x+(1-qα)(1-qα+1)(1-qβ)(1-qβ+1)(1-q)(1-q2)(1-qγ)(1-qγ+1)·x2+⋯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\frac{(1-q^\alpha )(1-q^\beta )}{(1-q)(1-q^\gamma )}\cdot x+ \frac{(1-q^\alpha )(1-q^{\alpha +1})(1-q^\beta )(1-q^{\beta +1})}{(1-q)(1-q^2)(1-q^\gamma )(1-q^{\gamma +1})}\cdot x^2+\cdots $$\end{document}J. Reine Angew. Math.1847342853281578577
– reference: KatoTMatsumotoKThe common limit of a quadruple sequence and the hypergeometric function FD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_D$$\end{document} of three variablesNagoya Math. J.2009195113124255295610.1017/S0027763000009739
– reference: LauricellaGSulle Funzioni ipergeometrche a piu variabiliR. Circ. Mat. Palermo1893711115810.1007/BF03012437
– reference: ErdélyiAHigher Transcendental Functions1953New YorkMcGrow-Hill0052.29502
– reference: GasperGRahmanMBasic Hypergeometric Series20042CambridgeCambridge University Press10.1017/CBO9780511526251
– reference: JacksonFHq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Difference equationsAm. J. Math.191032430531410.2307/2370183
– reference: PooleEGCIntroduction to the Theory of Differential Equations1936OxfordOxford University Press62.1277.01
– reference: RamanujanSNotebooks (2 Volumes)1957BombayTata Institute of Fundamental Research0138.24201
– reference: VidūnasRAlgebraic transformations of Gauss hypergeometric functionsFunkcialaj Ekvacioj200952139180254710010.1619/fesi.52.139
– reference: IwasakiKKimuraHShimomuraSYoshidaMFrom Gauss to Painlevé: A Modern Theory of Special Functions; Dedicated to Professor Tosihusa Kimura1992New YorkSpringer0743.34014
– reference: KoikeKShigaHIsogeny formulas for the Picard modular form and a three terms arithmetic geometric meanJ. Number Theory2007124123141232099410.1016/j.jnt.2006.08.002
– reference: BorweinJMBorweinPBA cubic counterpart of Jacobi’s identity and the AGMTrans. Am. Math. Soc.1991323269170110104080725.33014
– reference: GoursatÉSur l’équation différentielle linéaire, qui admet pour intégrale la série hypergéométriqueAnn. Sci. Éc. Norm. Sup.188110314210.24033/asens.207
– reference: BerndtBCBhargavaSGarvanFGRamanujan’s theories of elliptic functions to alternative basesTrans. Am. Math. Soc.1995347114163424413119030843.33012
– reference: ChanHHOn Ramanujan’s cubic transformation formula for 2F1(13,23;1;z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$_2F_1(\frac{1}{3},\frac{2}{3};1;z)$$\end{document}Math. Proc. Camb. Philos. Soc.1998124219320410.1017/S0305004198002643
– reference: BorweinJMBorweinPBGarvanFGSome cubic modular identities of RamanujanTrans. Am. Math. Soc.199434313547124361010.1090/S0002-9947-1994-1243610-6
– reference: MatsumotoKOharaKSome transformation formulas for Lauricella’s hypergeometric functions FD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_D$$\end{document}Funkcialaj Ekvacioj200952203212254710210.1619/fesi.52.203
– reference: GaussCFGaussCFDeterminatio seriei nostrae per aequationem differentialem secundi ordinisWerke1876GöttingenKöniglichen Gesellschaft der Wissenschaften207230
– volume: 195
  start-page: 113
  year: 2009
  ident: 286_CR17
  publication-title: Nagoya Math. J.
  doi: 10.1017/S0027763000009739
– volume: 52
  start-page: 203
  year: 2009
  ident: 286_CR23
  publication-title: Funkcialaj Ekvacioj
  doi: 10.1619/fesi.52.203
– volume-title: Fonctions Hypergéométriques et Hypersphériques
  year: 1926
  ident: 286_CR1
– volume: 24
  start-page: 1
  issue: 1
  year: 2009
  ident: 286_CR22
  publication-title: J. Ramanujan Math. Soc.
– volume-title: Notebooks (2 Volumes)
  year: 1957
  ident: 286_CR25
– volume: 99
  start-page: 461
  year: 2009
  ident: 286_CR7
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/pdp007
– volume: 7
  start-page: 111
  year: 1893
  ident: 286_CR20
  publication-title: R. Circ. Mat. Palermo
  doi: 10.1007/BF03012437
– volume-title: Higher Transcendental Functions
  year: 1953
  ident: 286_CR8
– volume: 347
  start-page: 4163
  issue: 11
  year: 1995
  ident: 286_CR3
  publication-title: Trans. Am. Math. Soc.
– start-page: 207
  volume-title: Werke
  year: 1876
  ident: 286_CR10
– ident: 286_CR15
  doi: 10.1515/crll.1859.56.149
– volume: 343
  start-page: 35
  issue: 1
  year: 1994
  ident: 286_CR5
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1994-1243610-6
– ident: 286_CR19
– volume: 10
  start-page: 3
  year: 1881
  ident: 286_CR11
  publication-title: Ann. Sci. Éc. Norm. Sup.
  doi: 10.24033/asens.207
– volume-title: From Gauss to Painlevé: A Modern Theory of Special Functions; Dedicated to Professor Tosihusa Kimura
  year: 1992
  ident: 286_CR13
– start-page: 721
  volume-title: Analytic Number Theory, Approximation Theory, and Special Functions
  year: 2014
  ident: 286_CR16
  doi: 10.1007/978-1-4939-0258-3_27
– volume-title: Ramanujan’s Notebooks, Part II
  year: 1989
  ident: 286_CR2
  doi: 10.1007/978-1-4612-4530-8
– volume: 124
  start-page: 123
  year: 2007
  ident: 286_CR18
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2006.08.002
– volume-title: Introduction to the Theory of Differential Equations
  year: 1936
  ident: 286_CR24
– volume: 124
  start-page: 193
  issue: 2
  year: 1998
  ident: 286_CR6
  publication-title: Math. Proc. Camb. Philos. Soc.
  doi: 10.1017/S0305004198002643
– volume-title: Basic Hypergeometric Series
  year: 2004
  ident: 286_CR9
  doi: 10.1017/CBO9780511526251
– volume: 359
  start-page: 3859
  issue: 8
  year: 2007
  ident: 286_CR21
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-07-04128-1
– volume: 34
  start-page: 285
  year: 1847
  ident: 286_CR12
  publication-title: J. Reine Angew. Math.
– volume: 32
  start-page: 305
  issue: 4
  year: 1910
  ident: 286_CR14
  publication-title: Am. J. Math.
  doi: 10.2307/2370183
– volume: 323
  start-page: 691
  issue: 2
  year: 1991
  ident: 286_CR4
  publication-title: Trans. Am. Math. Soc.
– volume: 52
  start-page: 139
  year: 2009
  ident: 286_CR26
  publication-title: Funkcialaj Ekvacioj
  doi: 10.1619/fesi.52.139
SSID ssj0004037
Score 2.2306716
Snippet We give a new method to prove in a uniform and easy way various transformation formulas for Gauss hypergeometric functions. The key is Jacobi’s canonical form...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 793
SubjectTerms Canonical forms
Combinatorics
Differential equations
Field Theory and Polynomials
Fourier Analysis
Functions of a Complex Variable
Hypergeometric functions
Mathematics
Mathematics and Statistics
Number Theory
Transformations (mathematics)
Title A new approach to hypergeometric transformation formulas
URI https://link.springer.com/article/10.1007/s11139-020-00286-7
https://www.proquest.com/docview/2528474278
Volume 55
WOSCitedRecordID wos000552189500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9303
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004037
  issn: 1382-4090
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o9KAHf4vTKTl400DTNk1yHOLwoEN0jN1Kk6YqaCtr599vkrWrigp6KzQJ5SWv3_eSvO8BnLJMpRkRKU4koTi0G00ykx5WHrUKT0QJt5kzvmbDIZ9MxG2dFFY2t92bI0n3p26T3YhhK9iGOzZQiDBbhhUDd9y64939uM2G9JxSphXXM9GR8OpUme_H-AxHLcf8cizq0Gaw-b_v3IKNml2i_nw5bMOSzndg_WYhzVruAu8jw6RRoyWOqgI9mlh0-qCLF1tdS6HqA5ctcmSfZoZj78FocDm6uMJ1-QSsjF9VOPQ1M-xPJKGBaBFRY3YtJE-VU-kSmvhaS5GmQZRpSSULOKdKy0hzL1RMBfvQyYtcHwBKIhsl0iSKBAkNqCaGE4RUUK4DQdMg7QJpjBirWlrcVrh4jltRZGuU2BgldkaJWRfOFn1e58Iav7buNXMT105Wxj612GprhXThvJmL9vXPox3-rfkRrPn2Jovbe-lBp5rO9DGsqrfqqZyeuMX3DqHP0QE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL3oFNQHv8Xp1Dz4poF-pW0ehzgmbkN0jL2FJk2noK2snb_fJGtXFRX0rdAklJuk59zk3nMBzoNExIlNYxxxm2BPHzTxhFtYWEQrPNmCmsOcUS8YDMLxmN6VSWF5Fe1eXUmaP3Wd7GYrtoK1u6MdBR8Hy7DiKcTSgXz3D6M6G9IySplaXE95R9QqU2W-H-MzHNUc88u1qEGbztb_vnMbNkt2idrz5bADSzLdhY3-Qpo134OwjRSTRpWWOCoy9Kh80elEZi-6upZAxQcum6VIP80Ux96HYed6eNXFZfkELNS-KrDnyECxPxp5CqKpT5TZJeVhLIxKF5W2IyWncez6ieSEB24YEiG5L0PLE4FwD6CRZqk8BBT52kskke9T21OgGilO4BFKQulSErtxE-zKiEyU0uK6wsUzq0WRtVGYMgozRmFBEy4WfV7nwhq_tm5Vc8PKTZYzh2hs1bVCmnBZzUX9-ufRjv7W_AzWusN-j_VuBrfHsO7oqBZzDtOCRjGdyRNYFW_FUz49NQvxHXdo0-U
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50iuiDv8Xp1Dz4pmH9lbZ5HOpQnGPgGHsLTZqqoO3YOv9-k6xdp6ggvhWahnKXcN93yX0HcB4kIk5sGuOI2wR7OtHEE25hYRGt8GQLapI5g07Q7YbDIe0tVPGb2-7lkeSspkGrNKV5cxQnzarwzVbIBWvqo0mDj4NlWPF00yDN1x8HVWWkZVQztdCeYkrUKspmvp_jc2iq8OaXI1ITedpb___nbdgsUCdqzZbJDizJdBc2HuaSrZM9CFtIIWxUaoyjPEPPiqOOn2T2prtuCZQvYNwsRfppqrD3PvTbN_2rW1y0VcBC7bcce44MFCqkkadCN_WJcoekPIyFUe-i0nak5DSOXT-RnPDADUMiJPdlaHkiEO4B1NIslYeAIl-zRxL5PrU9FWwjhRU8QkkoXUpiN66DXRqUiUJyXHe-eGWVWLI2ClNGYcYoLKjDxfyb0Uxw49fRjdJPrNh8E-YQHXN1D5E6XJZ-qV7_PNvR34afwVrvus06d937Y1h39GUXk55pQC0fT-UJrIr3_GUyPjVr8gPXO9zJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+approach+to+hypergeometric+transformation+formulas&rft.jtitle=The+Ramanujan+journal&rft.au=Otsubo%2C+Noriyuki&rft.date=2021-06-01&rft.issn=1382-4090&rft.eissn=1572-9303&rft.volume=55&rft.issue=2&rft.spage=793&rft.epage=816&rft_id=info:doi/10.1007%2Fs11139-020-00286-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11139_020_00286_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-4090&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-4090&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-4090&client=summon