Development of composite sub-step explicit dissipative algorithms with truly self-starting property

This paper focuses mainly on the development of composite sub-step explicit algorithms for solving nonlinear dynamic problems. The proposed explicit algorithms are required to achieve the truly self-starting property, so avoiding computing the initial acceleration vector, and the controllable numeri...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics Vol. 103; no. 2; pp. 1911 - 1936
Main Authors: Li, Jinze, Yu, Kaiping
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.01.2021
Springer Nature B.V
Subjects:
ISSN:0924-090X, 1573-269X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper focuses mainly on the development of composite sub-step explicit algorithms for solving nonlinear dynamic problems. The proposed explicit algorithms are required to achieve the truly self-starting property, so avoiding computing the initial acceleration vector, and the controllable numerical dissipation at the bifurcation point, so eliminating spurious high-frequency components. With these two requirements, the single and two sub-step explicit algorithms with truly self-starting property and dissipation control are developed and analyzed. The present single sub-step algorithm shares the same spectral accuracy as the known Tchamwa–Wielgosz scheme, but the former possesses some advantages for solving wave propagation problems. The present two sub-step algorithm provides a larger stability limit, twice than those of single step schemes, due to explicit solutions of linear systems twice within each time increment. Numerical examples are also simulated to show numerical performance and superiority of two novel explicit methods over other explicit schemes.
AbstractList This paper focuses mainly on the development of composite sub-step explicit algorithms for solving nonlinear dynamic problems. The proposed explicit algorithms are required to achieve the truly self-starting property, so avoiding computing the initial acceleration vector, and the controllable numerical dissipation at the bifurcation point, so eliminating spurious high-frequency components. With these two requirements, the single and two sub-step explicit algorithms with truly self-starting property and dissipation control are developed and analyzed. The present single sub-step algorithm shares the same spectral accuracy as the known Tchamwa–Wielgosz scheme, but the former possesses some advantages for solving wave propagation problems. The present two sub-step algorithm provides a larger stability limit, twice than those of single step schemes, due to explicit solutions of linear systems twice within each time increment. Numerical examples are also simulated to show numerical performance and superiority of two novel explicit methods over other explicit schemes.
Author Li, Jinze
Yu, Kaiping
Author_xml – sequence: 1
  givenname: Jinze
  orcidid: 0000-0003-2563-1223
  surname: Li
  fullname: Li, Jinze
  organization: Department of Astronautic Science and Mechanics, Harbin Institute of Technology
– sequence: 2
  givenname: Kaiping
  orcidid: 0000-0002-7722-0138
  surname: Yu
  fullname: Yu, Kaiping
  email: kaipingyu1968@gmail.com
  organization: Department of Astronautic Science and Mechanics, Harbin Institute of Technology
BookMark eNp9kM1LAzEQxYNUsK3-A54CnlcnyX7lKPUTCl4Uegvb7GxN2W7WJK3uf29qBcFDD8O7vN_MvDcho852SMglg2sGUNx4xqBgCfA4OQeeDCdkzLJCJDyXixEZg-RpAhIWZ2Ti_RoABIdyTPQd7rC1_Qa7QG1Dtd301puA1G-XiQ_YU_zqW6NNoLXx3vRVMDukVbuyzoT3jaefUWhw23agHtsmQpULplvR3tkeXRjOyWlTtR4vfnVK3h7uX2dPyfzl8Xl2O0-0YDIkKZeaS0Qt8rqps2WGGZa5LosaZCpq2TRpgRnXKHDv4JKV1TKDKstZni1BiCm5OuyNhz-26INa263r4knFU5nzkkvOoqs8uLSz3jtsVMwWQ9kuuMq0ioHaV6oOlapYqfqpVA0R5f_Q3plN5YbjkDhAPpq7Fbq_r45Q30Fcjqo
CitedBy_id crossref_primary_10_1007_s11071_022_07740_9
Cites_doi 10.1016/j.compstruc.2019.05.018
10.1007/s00466-012-0708-8
10.1016/j.cma.2020.112882
10.1007/s11071-019-05223-y
10.1016/j.apm.2018.12.027
10.1002/nme.1620290705
10.1007/s00466-016-1352-5
10.1016/j.advengsoft.2004.10.011
10.1002/nme.4722
10.1007/s13296-017-9014-9
10.1016/j.compstruc.2018.11.001
10.1002/nme.6574
10.1061/JMCEA3.0000098
10.1002/eqe.4290050306
10.1016/j.engstruct.2019.05.095
10.1002/eqe.818
10.1115/1.3424305
10.1016/j.compstruc.2005.08.001
10.1002/nme.1620151011
10.1002/eqe.4290060111
10.1016/j.cma.2014.08.007
10.1016/j.compstruc.2013.06.007
10.1016/j.apm.2019.11.033
10.1007/s00419-019-01637-7
10.1007/s11071-020-06101-8
10.1002/eqe.4290010305
10.1016/j.mechrescom.2011.01.006
10.1016/j.apm.2019.08.022
10.1016/j.apm.2020.01.043
10.1016/j.apm.2020.08.068
10.2514/6.1992-2330
10.1016/j.ijmecsci.2020.105429
10.1007/s11071-019-04936-4
10.1016/j.cja.2020.05.005
10.1016/S0045-7825(96)01036-5
10.1115/1.2900803
10.1007/s11071-014-1765-7
10.1002/nme.1620372303
10.1115/1.3424304
10.1002/eqe.4290180505
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11071-021-06202-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 1936
ExternalDocumentID 10_1007_s11071_021_06202_y
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11372084
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-429c29eec36dfd5b5e5e86c87d0943d9ff47e52ce3e36df2918ab50a56165b033
IEDL.DBID RSV
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000615183700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-090X
IngestDate Tue Nov 04 23:04:49 EST 2025
Tue Nov 18 21:50:53 EST 2025
Sat Nov 29 03:06:27 EST 2025
Fri Feb 21 02:49:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Structural dynamics
Truly self-starting
Composite sub-step
Explicit integration
Controllable dissipation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-429c29eec36dfd5b5e5e86c87d0943d9ff47e52ce3e36df2918ab50a56165b033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2563-1223
0000-0002-7722-0138
PQID 2496282921
PQPubID 2043746
PageCount 26
ParticipantIDs proquest_journals_2496282921
crossref_citationtrail_10_1007_s11071_021_06202_y
crossref_primary_10_1007_s11071_021_06202_y
springer_journals_10_1007_s11071_021_06202_y
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References LiJYuKA novel family of composite sub-step algorithms with desired numerical dissipations for structural dynamicsArch. Appl. Mech.201990737772
BatheKJFinite Element Procedures19962Englewood CliffsPrentice Hall1326.65002
HulbertGMChungJExplicit time integration algorithms for structural dynamics with optimal numerical dissipationComput. Methods Appl. Mech. Eng.1996137217518814207150881.73134
LiJYuKLiXAn identical second-order single step explicit integration algorithm with dissipation control for structural dynamicsInt. J. Numer. Methods Eng.202010.1002/nme.6574
MaheoLGrolleauVRioGNumerical damping of spurious oscillations: a comparison between the Bulk-Viscosity method and the Tchamwa–Wielgosz dissipative explicit schemeComput. Mech.201351110912830105581398.74366
LiJLiXYuKEnhanced studies on the composite sub-step algorithm for structural dynamics: the Bathe-like algorithmAppl. Math. Model.2020803364404269107193114
ChangSYDissipative, noniterative integration algorithms with unconditional stability for mildly nonlinear structural dynamic problemsNonlinear Dyn.201579216251649
NohGBatheKJThe Bathe time integration method with controllable spectral radius: the ρ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _\infty $$\end{document}-Bathe methodComput. Struct.2019212299310
LiJYuKA truly self-starting implicit family of integration algorithms with dissipation control for nonlinear dynamicsNonlinear Dyn.202010225032530
SoaresDJrAn explicit family of time marching procedures with adaptive dissipation controlInt. J. Numer. Methods Eng.2014100316518232651401352.65185
MirandaIFerenczRMHughesTJRAn improved implicit–explicit time integration method for structural dynamicsEarthq. Eng. Struct. Dyn.1989185643653
NewmarkNMA method of computation for structural dynamicsJ. Eng. Mech. Div.19598536794
BorstRDCrisfieldMRemmersJVerhooselCNonlinear Finite Element Analysis of Solids and Structures. Wiley Series in Computational Mechanics20122HobokenWiley1300.74002
LiJYuKHeHA second-order accurate three sub-step composite algorithm for structural dynamicsAppl. Math. Model.20207713911412402869307193034
KimWA new family of two-stage explicit time integration methods with dissipation control capability for structural dynamicsEng. Struct.2019195358372
Rezaiee-PajandMKarimi-RadMAn accurate predictor–corrector time integration method for structural dynamicsInt. J. Steel Struct.201717310331047
WenWDengSWangNDuanSFangDAn improved sub-step time-marching procedure for linear and nonlinear dynamics with high-order accuracy and high-efficient energy conservationAppl. Math. Model.202190781004155263
WenWDuanSYanJMaYWeiKFangDA quartic B-spline based explicit time integration scheme for structural dynamics with controllable numerical dissipationComput. Mech.201759340341836135331398.74448
ShaoHCaiCA three parameters algorithm for numerical integration of structural dynamic equationsChin. J. Appl. Mech.1988547681
NohGBatheKJAn explicit time integration scheme for the analysis of wave propagationsComput. Struct.2013129178193
HughesTJRLiuWKImplicit–explicit finite elements in transient analysis: implementation and numerical examplesJ. Appl. Mech.19784523753780392.73077
ChangSYA dual family of dissipative structure-dependent integration methods for structural nonlinear dynamicsNonlinear Dyn.2019981703734
ChungJHulbertGMA time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} methodJ. Appl. Mech.199360237137512239710775.73337
MaheoLRioGGrolleauVOn the use of some numerical damping methods of spurious oscillations in the case of elastic wave propagationMech. Res. Commun.201138281881272.74234
HeHYuKTangHLiJZhouQZhangXVibration experiment and nonlinear modelling research on the folding fin with freeplayChin. J. Theor. Appl. Mech.201951923572371
HilberHMHughesTJRTaylorRLImproved numerical dissipation for time integration algorithms in structural dynamicsEarthq. Eng. Struct. Dyn.197753283292
LiJYuKAn alternative to the Bathe algorithmAppl. Math. Model.201969255272389506007186525
KimWReddyJNNovel explicit time integration schemes for efficient transient analyses of structural problemsInt. J. Mech. Sci.2020172105429
KimWAn improved implicit method with dissipation control capability: the simple generalized composite time integration algorithmAppl. Math. Model.2020819109304065729
CookRDMalkusDSPleshaMEWittRJConcepts and Applications of Finite Element Analysis20014HobokenWiley
YuKA new family of generalized-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} time integration algorithms without overshoot for structural dynamicsEarthq. Eng. Struct. Dyn.2008371213891409
SoaresDJrA simple and effective new family of time marching procedures for dynamicsComput. Methods Appl. Mech. Eng.20142831138116632838041425.65077
WoodWBossakMZienkiewiczOAn alpha modification of Newmark’s methodInt. J. Numer. Methods Eng.19801510156215665953730441.73106
ChungJLeeJMA new family of explicit time integration methods for linear and non-linear structural dynamicsInt. J. Numer. Methods Eng.199437233961397613111450814.73074
TammaKKNamburuRRA robust self-starting explicit computational methodology for structural dynamic applications: architecture and RepresentationsInt. J. Numer. Methods Eng.199029714411454
BatheKJBaigMMIOn a composite implicit time integration procedure for nonlinear dynamicsComput. Struct.20058331–32251325242174999
ZhangHMXingYFTwo novel explicit time integration methods based on displacement–velocity relations for structural dynamicsComput. Struct.2019221127141
WilsonELFarhoomandIBatheKJNonlinear dynamic analysis of complex structuresEarthq. Eng. Struct. Dyn.197213241252
HughesTJRLiuWKImplicit–explicit finite elements in transient analysis: stability theoryJ. Appl. Mech.19784523713740392.73076
ChopraAKDynamics of Structures: Theory and Applications to Earthquake Engineering. Prentice-Hall International Series in Civil Engineering and Engineering Mechanics20114Upper Saddle RiverPrentice Hall
NamburuRRTammaKKA generalized γs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _s$$\end{document}-family of self-starting algorithms for computational structural dynamicsAIAA J.199210.2514/6.1992-2330
RioGSoiveAGrolleauVComparative study of numerical explicit time integration algorithmsAdv. Eng. Softw.20053642522651074.65116
LiJYuKLiXA novel family of controllably dissipative composite integration algorithms for structural dynamic analysisNonlinear Dyn.201996424752507
SoaresDJrAn enhanced explicit time-marching technique for wave propagation analysis considering adaptive time integratorsComput. Methods Appl. Mech. Eng.202036311288240648101436.74030
HeHTangHYuKLiJYangNZhangXNonlinear aeroelastic analysis of the folding fin with freeplay under thermal environmentChin. J. Aeronaut.202033923572371
HughesTJRThe Finite Element Method: Linear Static and Dynamic Finite Element Analysis2000MineolaDover Publications, Dover Civil and Mechanical Engineering1191.74002
HilberHMHughesTJRCollocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamicsEarthq. Eng. Struct. Dyn.19786199117
KJ Bathe (6202_CR2) 1996
I Miranda (6202_CR25) 1989; 18
SY Chang (6202_CR45) 2019; 98
TJR Hughes (6202_CR1) 2000
W Kim (6202_CR18) 2020; 81
J Li (6202_CR37) 2019; 96
W Wen (6202_CR17) 2021; 90
G Noh (6202_CR26) 2013; 129
D Soares Jr (6202_CR42) 2014; 283
W Wood (6202_CR7) 1980; 15
RD Borst (6202_CR23) 2012
J Li (6202_CR39) 2019; 90
NM Newmark (6202_CR4) 1959; 85
RD Cook (6202_CR22) 2001
D Soares Jr (6202_CR32) 2014; 100
G Rio (6202_CR34) 2005; 36
J Li (6202_CR13) 2020; 80
J Li (6202_CR19) 2020; 102
G Noh (6202_CR14) 2019; 212
J Li (6202_CR21) 2020
AK Chopra (6202_CR3) 2011
HM Hilber (6202_CR20) 1978; 6
H He (6202_CR46) 2020; 33
J Li (6202_CR15) 2019; 69
J Chung (6202_CR6) 1993; 60
GM Hulbert (6202_CR10) 1996; 137
TJR Hughes (6202_CR41) 1978; 45
SY Chang (6202_CR44) 2015; 79
KK Tamma (6202_CR12) 1990; 29
TJR Hughes (6202_CR24) 1978; 45
W Kim (6202_CR28) 2019; 195
HM Zhang (6202_CR33) 2019; 221
J Chung (6202_CR11) 1994; 37
H Shao (6202_CR5) 1988; 5
RR Namburu (6202_CR30) 1992
K Yu (6202_CR38) 2008; 37
D Soares Jr (6202_CR31) 2020; 363
KJ Bathe (6202_CR40) 2005; 83
W Kim (6202_CR27) 2020; 172
L Maheo (6202_CR36) 2013; 51
J Li (6202_CR16) 2020; 77
H He (6202_CR47) 2019; 51
EL Wilson (6202_CR9) 1972; 1
M Rezaiee-Pajand (6202_CR29) 2017; 17
L Maheo (6202_CR35) 2011; 38
HM Hilber (6202_CR8) 1977; 5
W Wen (6202_CR43) 2017; 59
References_xml – reference: WilsonELFarhoomandIBatheKJNonlinear dynamic analysis of complex structuresEarthq. Eng. Struct. Dyn.197213241252
– reference: LiJYuKA novel family of composite sub-step algorithms with desired numerical dissipations for structural dynamicsArch. Appl. Mech.201990737772
– reference: HeHTangHYuKLiJYangNZhangXNonlinear aeroelastic analysis of the folding fin with freeplay under thermal environmentChin. J. Aeronaut.202033923572371
– reference: WenWDengSWangNDuanSFangDAn improved sub-step time-marching procedure for linear and nonlinear dynamics with high-order accuracy and high-efficient energy conservationAppl. Math. Model.202190781004155263
– reference: KimWAn improved implicit method with dissipation control capability: the simple generalized composite time integration algorithmAppl. Math. Model.2020819109304065729
– reference: Rezaiee-PajandMKarimi-RadMAn accurate predictor–corrector time integration method for structural dynamicsInt. J. Steel Struct.201717310331047
– reference: MaheoLRioGGrolleauVOn the use of some numerical damping methods of spurious oscillations in the case of elastic wave propagationMech. Res. Commun.201138281881272.74234
– reference: ChangSYA dual family of dissipative structure-dependent integration methods for structural nonlinear dynamicsNonlinear Dyn.2019981703734
– reference: LiJYuKAn alternative to the Bathe algorithmAppl. Math. Model.201969255272389506007186525
– reference: KimWReddyJNNovel explicit time integration schemes for efficient transient analyses of structural problemsInt. J. Mech. Sci.2020172105429
– reference: TammaKKNamburuRRA robust self-starting explicit computational methodology for structural dynamic applications: architecture and RepresentationsInt. J. Numer. Methods Eng.199029714411454
– reference: HilberHMHughesTJRCollocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamicsEarthq. Eng. Struct. Dyn.19786199117
– reference: KimWA new family of two-stage explicit time integration methods with dissipation control capability for structural dynamicsEng. Struct.2019195358372
– reference: ChangSYDissipative, noniterative integration algorithms with unconditional stability for mildly nonlinear structural dynamic problemsNonlinear Dyn.201579216251649
– reference: HughesTJRLiuWKImplicit–explicit finite elements in transient analysis: implementation and numerical examplesJ. Appl. Mech.19784523753780392.73077
– reference: SoaresDJrAn enhanced explicit time-marching technique for wave propagation analysis considering adaptive time integratorsComput. Methods Appl. Mech. Eng.202036311288240648101436.74030
– reference: NohGBatheKJThe Bathe time integration method with controllable spectral radius: the ρ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _\infty $$\end{document}-Bathe methodComput. Struct.2019212299310
– reference: NamburuRRTammaKKA generalized γs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _s$$\end{document}-family of self-starting algorithms for computational structural dynamicsAIAA J.199210.2514/6.1992-2330
– reference: HeHYuKTangHLiJZhouQZhangXVibration experiment and nonlinear modelling research on the folding fin with freeplayChin. J. Theor. Appl. Mech.201951923572371
– reference: NohGBatheKJAn explicit time integration scheme for the analysis of wave propagationsComput. Struct.2013129178193
– reference: SoaresDJrA simple and effective new family of time marching procedures for dynamicsComput. Methods Appl. Mech. Eng.20142831138116632838041425.65077
– reference: LiJYuKHeHA second-order accurate three sub-step composite algorithm for structural dynamicsAppl. Math. Model.20207713911412402869307193034
– reference: LiJYuKLiXA novel family of controllably dissipative composite integration algorithms for structural dynamic analysisNonlinear Dyn.201996424752507
– reference: BorstRDCrisfieldMRemmersJVerhooselCNonlinear Finite Element Analysis of Solids and Structures. Wiley Series in Computational Mechanics20122HobokenWiley1300.74002
– reference: HughesTJRThe Finite Element Method: Linear Static and Dynamic Finite Element Analysis2000MineolaDover Publications, Dover Civil and Mechanical Engineering1191.74002
– reference: BatheKJFinite Element Procedures19962Englewood CliffsPrentice Hall1326.65002
– reference: WenWDuanSYanJMaYWeiKFangDA quartic B-spline based explicit time integration scheme for structural dynamics with controllable numerical dissipationComput. Mech.201759340341836135331398.74448
– reference: HilberHMHughesTJRTaylorRLImproved numerical dissipation for time integration algorithms in structural dynamicsEarthq. Eng. Struct. Dyn.197753283292
– reference: WoodWBossakMZienkiewiczOAn alpha modification of Newmark’s methodInt. J. Numer. Methods Eng.19801510156215665953730441.73106
– reference: LiJYuKA truly self-starting implicit family of integration algorithms with dissipation control for nonlinear dynamicsNonlinear Dyn.202010225032530
– reference: ChopraAKDynamics of Structures: Theory and Applications to Earthquake Engineering. Prentice-Hall International Series in Civil Engineering and Engineering Mechanics20114Upper Saddle RiverPrentice Hall
– reference: LiJYuKLiXAn identical second-order single step explicit integration algorithm with dissipation control for structural dynamicsInt. J. Numer. Methods Eng.202010.1002/nme.6574
– reference: CookRDMalkusDSPleshaMEWittRJConcepts and Applications of Finite Element Analysis20014HobokenWiley
– reference: YuKA new family of generalized-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} time integration algorithms without overshoot for structural dynamicsEarthq. Eng. Struct. Dyn.2008371213891409
– reference: ShaoHCaiCA three parameters algorithm for numerical integration of structural dynamic equationsChin. J. Appl. Mech.1988547681
– reference: ZhangHMXingYFTwo novel explicit time integration methods based on displacement–velocity relations for structural dynamicsComput. Struct.2019221127141
– reference: NewmarkNMA method of computation for structural dynamicsJ. Eng. Mech. Div.19598536794
– reference: HulbertGMChungJExplicit time integration algorithms for structural dynamics with optimal numerical dissipationComput. Methods Appl. Mech. Eng.1996137217518814207150881.73134
– reference: MirandaIFerenczRMHughesTJRAn improved implicit–explicit time integration method for structural dynamicsEarthq. Eng. Struct. Dyn.1989185643653
– reference: ChungJHulbertGMA time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} methodJ. Appl. Mech.199360237137512239710775.73337
– reference: LiJLiXYuKEnhanced studies on the composite sub-step algorithm for structural dynamics: the Bathe-like algorithmAppl. Math. Model.2020803364404269107193114
– reference: MaheoLGrolleauVRioGNumerical damping of spurious oscillations: a comparison between the Bulk-Viscosity method and the Tchamwa–Wielgosz dissipative explicit schemeComput. Mech.201351110912830105581398.74366
– reference: ChungJLeeJMA new family of explicit time integration methods for linear and non-linear structural dynamicsInt. J. Numer. Methods Eng.199437233961397613111450814.73074
– reference: HughesTJRLiuWKImplicit–explicit finite elements in transient analysis: stability theoryJ. Appl. Mech.19784523713740392.73076
– reference: RioGSoiveAGrolleauVComparative study of numerical explicit time integration algorithmsAdv. Eng. Softw.20053642522651074.65116
– reference: SoaresDJrAn explicit family of time marching procedures with adaptive dissipation controlInt. J. Numer. Methods Eng.2014100316518232651401352.65185
– reference: BatheKJBaigMMIOn a composite implicit time integration procedure for nonlinear dynamicsComput. Struct.20058331–32251325242174999
– volume: 221
  start-page: 127
  year: 2019
  ident: 6202_CR33
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2019.05.018
– volume: 51
  start-page: 109
  issue: 1
  year: 2013
  ident: 6202_CR36
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-012-0708-8
– volume: 363
  start-page: 112882
  year: 2020
  ident: 6202_CR31
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.112882
– volume: 98
  start-page: 703
  issue: 1
  year: 2019
  ident: 6202_CR45
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05223-y
– volume-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
  year: 2000
  ident: 6202_CR1
– volume: 69
  start-page: 255
  year: 2019
  ident: 6202_CR15
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.12.027
– volume: 29
  start-page: 1441
  issue: 7
  year: 1990
  ident: 6202_CR12
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620290705
– volume: 59
  start-page: 403
  issue: 3
  year: 2017
  ident: 6202_CR43
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-016-1352-5
– volume: 36
  start-page: 252
  issue: 4
  year: 2005
  ident: 6202_CR34
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2004.10.011
– volume-title: Dynamics of Structures: Theory and Applications to Earthquake Engineering. Prentice-Hall International Series in Civil Engineering and Engineering Mechanics
  year: 2011
  ident: 6202_CR3
– volume: 100
  start-page: 165
  issue: 3
  year: 2014
  ident: 6202_CR32
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4722
– volume: 17
  start-page: 1033
  issue: 3
  year: 2017
  ident: 6202_CR29
  publication-title: Int. J. Steel Struct.
  doi: 10.1007/s13296-017-9014-9
– volume: 212
  start-page: 299
  year: 2019
  ident: 6202_CR14
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2018.11.001
– year: 2020
  ident: 6202_CR21
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.6574
– volume: 85
  start-page: 67
  issue: 3
  year: 1959
  ident: 6202_CR4
  publication-title: J. Eng. Mech. Div.
  doi: 10.1061/JMCEA3.0000098
– volume-title: Nonlinear Finite Element Analysis of Solids and Structures. Wiley Series in Computational Mechanics
  year: 2012
  ident: 6202_CR23
– volume: 5
  start-page: 283
  issue: 3
  year: 1977
  ident: 6202_CR8
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.4290050306
– volume: 195
  start-page: 358
  year: 2019
  ident: 6202_CR28
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2019.05.095
– volume: 37
  start-page: 1389
  issue: 12
  year: 2008
  ident: 6202_CR38
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.818
– volume: 45
  start-page: 375
  issue: 2
  year: 1978
  ident: 6202_CR41
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3424305
– volume: 83
  start-page: 2513
  issue: 31–32
  year: 2005
  ident: 6202_CR40
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2005.08.001
– volume: 15
  start-page: 1562
  issue: 10
  year: 1980
  ident: 6202_CR7
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620151011
– volume: 6
  start-page: 99
  issue: 1
  year: 1978
  ident: 6202_CR20
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.4290060111
– volume: 283
  start-page: 1138
  year: 2014
  ident: 6202_CR42
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.08.007
– volume: 129
  start-page: 178
  year: 2013
  ident: 6202_CR26
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2013.06.007
– volume: 80
  start-page: 33
  year: 2020
  ident: 6202_CR13
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.11.033
– volume: 90
  start-page: 737
  year: 2019
  ident: 6202_CR39
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-019-01637-7
– volume: 102
  start-page: 2503
  year: 2020
  ident: 6202_CR19
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-06101-8
– volume-title: Finite Element Procedures
  year: 1996
  ident: 6202_CR2
– volume: 1
  start-page: 241
  issue: 3
  year: 1972
  ident: 6202_CR9
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.4290010305
– volume: 38
  start-page: 81
  issue: 2
  year: 2011
  ident: 6202_CR35
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2011.01.006
– volume: 5
  start-page: 76
  issue: 4
  year: 1988
  ident: 6202_CR5
  publication-title: Chin. J. Appl. Mech.
– volume: 51
  start-page: 2357
  issue: 9
  year: 2019
  ident: 6202_CR47
  publication-title: Chin. J. Theor. Appl. Mech.
– volume: 77
  start-page: 1391
  year: 2020
  ident: 6202_CR16
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.08.022
– volume: 81
  start-page: 910
  year: 2020
  ident: 6202_CR18
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2020.01.043
– volume: 90
  start-page: 78
  year: 2021
  ident: 6202_CR17
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2020.08.068
– year: 1992
  ident: 6202_CR30
  publication-title: AIAA J.
  doi: 10.2514/6.1992-2330
– volume: 172
  start-page: 105429
  year: 2020
  ident: 6202_CR27
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.105429
– volume: 96
  start-page: 2475
  issue: 4
  year: 2019
  ident: 6202_CR37
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-04936-4
– volume-title: Concepts and Applications of Finite Element Analysis
  year: 2001
  ident: 6202_CR22
– volume: 33
  start-page: 2357
  issue: 9
  year: 2020
  ident: 6202_CR46
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2020.05.005
– volume: 137
  start-page: 175
  issue: 2
  year: 1996
  ident: 6202_CR10
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(96)01036-5
– volume: 60
  start-page: 371
  issue: 2
  year: 1993
  ident: 6202_CR6
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2900803
– volume: 79
  start-page: 1625
  issue: 2
  year: 2015
  ident: 6202_CR44
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1765-7
– volume: 37
  start-page: 3961
  issue: 23
  year: 1994
  ident: 6202_CR11
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620372303
– volume: 45
  start-page: 371
  issue: 2
  year: 1978
  ident: 6202_CR24
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3424304
– volume: 18
  start-page: 643
  issue: 5
  year: 1989
  ident: 6202_CR25
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.4290180505
SSID ssj0003208
Score 2.3836155
Snippet This paper focuses mainly on the development of composite sub-step explicit algorithms for solving nonlinear dynamic problems. The proposed explicit algorithms...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1911
SubjectTerms Algorithms
Automotive Engineering
Classical Mechanics
Control
Dynamical Systems
Engineering
Linear systems
Mechanical Engineering
Nonlinear dynamics
Numerical dissipation
Original Paper
Stability
Vibration
Wave propagation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oeNCDD9SIr-zBm24s224fJ6NG44kQowm3hm6naoKAtBD5986UBdRELia9tbvZ9Judndd-A3DGlGBZ5Gnp-OSbeOikMjJJICNSjD66qI03bTYRNJthux21bMAtt2WVM51YKuq0bzhGfklugs9ZP9W4GnxI7hrF2VXbQmMVqsxU5lWgenPXbD3OdbGryp50DnkZHJFo22sz08tz5PmQK60a5TqVnPw8mhb25q8UaXny3G_9d83bsGltTnE9FZIdWMFeDbas_Sns7s5rsPGNnHAXzLd6ItHPBBefc4UXinyUSBKOgcBPzn6_FYKz-mVt9hhFp_tCayhe33PBQV5RDEfdicixm9GgkrTgRQw4BTAsJnvwfH_3dPsgbUsGaWivFpJOL6MiROP6aZbqRKPG0DdhkHKFYhplmRegVoZQ5i9U1Ag7iXY6ZKX5OnFcdx8qvX4PD0BkrmNSlRqNHc8LsjBRNDZB7fikoElQ6tCYoREby1fObTO68YJpmRGMCcG4RDCe1OF8PmYwZetY-vXxDLbY7tw8XmBWh4sZ8IvXf892uHy2I1hXpazxcwwV-vl4AmtmXLzlw1Mrt19NEfUM
  priority: 102
  providerName: ProQuest
Title Development of composite sub-step explicit dissipative algorithms with truly self-starting property
URI https://link.springer.com/article/10.1007/s11071-021-06202-y
https://www.proquest.com/docview/2496282921
Volume 103
WOSCitedRecordID wos000615183700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature Link Journals
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4oeNCDKGpEkezBmzYp224fRzUQT4SAGm4N3U6RBIHQQuTfO7u0gEZNNOltH2l23jvfzgBcq5JgsW8Lw3QoNrHRjAxfhq7hk2J00EIh7VWzCbfV8no9v509CktytHuektSaevPYjSIVCn15Xe_LjeUuFMnceUocO92Xtf61uO5DZ1JkoW4hetlTme_3-GyONj7ml7SotjbN0v_-8wgOM--S3a3Y4Rh2cFyGUuZpskyOkzIcbJUhPAG5hRxik5gpmLnCciFL5qFBbDBl-K7y3MOUqfy9RmEvkPVHg8lsmL6-JUxd57J0Nh8tWYKjmBbp8gQDNlWX_bN0eQrPzcbTw6ORNV8wJEllapCdktxHlJYTxZEIBQr0HOm5kcIiRn4c2y4KLomeagb3614_FGaf_DFHhKZlnUFhPBnjObDYMmXEIymwb9tu7IWc1oYoTIdUMbFEBeo5DQKZVSZXDTJGwaamsjrTgM400GcaLCtws14zXdXl-HV2NSdtkMloElDg6ag8Mq9X4DYn5Wb4590u_jb9Eva55gb1VaFAxMAr2JOLdJjMalC8b7TanZoCnXZrmpM_AKQP7N0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hqAQcoLzEAi0-lBNYZL1xHoeqqtoiELCqBEh7CxtnsiAtu8smPPKn-hs74yQsVCo3Dki5xbYS-_PneXkG4AunBEtDV0vHI93ERSeRoYl9GRIxethCbdyy2ITfbgedTvh7Cv7Ud2E4rLLmREvUydCwjXyf1ASPvX6q-W10K7lqFHtX6xIaJSyOsXgglS37evST1ndHqYNf5z8OZVVVQBqCWy6JgI0KEU3LS9JExxo1Bp4J_ISD7JIwTV0ftTL0odxChc2gG2unS4KGp2OHDaBE-TMus78NFTx7Yv6WshXwHNJp2P7RqS7plFf1SM8ixV017awoWbw8CCfS7T8OWXvOHSy-txn6CAuVRC2-l1tgCaZwsAyLlXQtKu7KlmH-WerFFTDPoqXEMBUcWs_xayiyu1gS9EcCH9m3f50Ljlmwkef3KLr9Hv1zfnWTCTZhi3x81y9Ehv2UOtmUDD0xYgfHOC9W4eJNfnwNpgfDAa6DSFuOSVRiNHZd10-DWFHfGLXj0fFD26ABzXr1I1NlY-eiIP1okkeaERMRYiKLmKhowO5Tn1GZi-TV1ls1TKKKl7JogpEG7NVAm7z-_2gbr4-2DbOH56cn0clR-3gT5pTFOT9bME0LgZ_gg7nPr7PxZ7tjBFy-NQD_AtlDUUM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xgSZ4oNCBVtaBH3hj0VInzscjGlRDoKrSBupb1DjnrlJoqyatlv-eOyddC2KTpkl5i-1Evg_f-e5-B_CRIcFM7CvHDcg38dHNnFinoROTYgzQQ6X9utlEOBhEo1E83Knit9num5BkXdPAKE2z8myRmbNt4Rt5LeQGy579hnSqPXjqc9Mg9tcvf93qYk_annQueRl8IzFqymb-v8bfR9PW3vwnRGpPnn7r8f_8Cl42Vqf4XLPJa3iCsza0GgtUNPJdtOHFDjzhIeidjCIxN4LTzznHC0WxSh1ij4XAG45_T0vBcX2bnb1GMc4n8-W0vP5dCL7mFeVylVeiwNzQJAtbMBELDgIsy-oN_Ox_vTq_cJqmDI4maS0dOr-0jBG1F2QmU6lChVGgozDjHMUsNsYPUUlNdOYRMu5F41S5Y7LTApW6nvcW9mfzGR6BMJ6rM5lphWPfD02USpqbonIDUtHEKh3obeiR6AaxnBtn5MkWa5n3NKE9TeyeJlUHPt3OWdR4HfeO7m7InDSyWyTkkAYcX5a9DpxuyLp9ffdq7x42_AMcDL_0kx_fBt-P4bm0jMFPF_aJLngCz_S6nBbL95al_wBKVfYT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+composite+sub-step+explicit+dissipative+algorithms+with+truly+self-starting+property&rft.jtitle=Nonlinear+dynamics&rft.au=Li%2C+Jinze&rft.au=Yu%2C+Kaiping&rft.date=2021-01-01&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007%2Fs11071-021-06202-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11071_021_06202_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon