Time-Fractional Allen–Cahn Equations: Analysis and Numerical Methods

In this work, we consider a time-fractional Allen–Cahn equation, where the conventional first order time derivative is replaced by a Caputo fractional derivative with order α ∈ ( 0 , 1 ) . First, the well-posedness and (limited) smoothing property are studied, by using the maximal L p regularity of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of scientific computing Ročník 85; číslo 2; s. 42
Hlavní autoři: Du, Qiang, Yang, Jiang, Zhou, Zhi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2020
Springer Nature B.V
Témata:
ISSN:0885-7474, 1573-7691
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this work, we consider a time-fractional Allen–Cahn equation, where the conventional first order time derivative is replaced by a Caputo fractional derivative with order α ∈ ( 0 , 1 ) . First, the well-posedness and (limited) smoothing property are studied, by using the maximal L p regularity of fractional evolution equations and the fractional Grönwall’s inequality. We also show the maximum principle like their conventional local-in-time counterpart, that is, the time-fractional equation preserves the property that the solution only takes value between the wells of the double-well potential when the initial data does the same. Second, after discretizing the fractional derivative by backward Euler convolution quadrature, we develop several unconditionally solvable and stable time stepping schemes, such as a convex splitting scheme, a weighted convex splitting scheme and a linear weighted stabilized scheme. Meanwhile, we study the discrete energy dissipation property (in a weighted average sense), which is important for gradient flow type models, for the two weighted schemes. In addition, we prove the fractional energy dissipation law for the gradient flow associated with a convex free energy. Finally, using a discrete version of fractional Grönwall’s inequality and maximal ℓ p regularity, we prove that the convergence rates of those time-stepping schemes are O ( τ α ) without any extra regularity assumption on the solution. We also present extensive numerical results to support our theoretical findings and to offer new insight on the time-fractional Allen–Cahn dynamics.
AbstractList In this work, we consider a time-fractional Allen–Cahn equation, where the conventional first order time derivative is replaced by a Caputo fractional derivative with order α∈(0,1). First, the well-posedness and (limited) smoothing property are studied, by using the maximal Lp regularity of fractional evolution equations and the fractional Grönwall’s inequality. We also show the maximum principle like their conventional local-in-time counterpart, that is, the time-fractional equation preserves the property that the solution only takes value between the wells of the double-well potential when the initial data does the same. Second, after discretizing the fractional derivative by backward Euler convolution quadrature, we develop several unconditionally solvable and stable time stepping schemes, such as a convex splitting scheme, a weighted convex splitting scheme and a linear weighted stabilized scheme. Meanwhile, we study the discrete energy dissipation property (in a weighted average sense), which is important for gradient flow type models, for the two weighted schemes. In addition, we prove the fractional energy dissipation law for the gradient flow associated with a convex free energy. Finally, using a discrete version of fractional Grönwall’s inequality and maximal ℓp regularity, we prove that the convergence rates of those time-stepping schemes are O(τα) without any extra regularity assumption on the solution. We also present extensive numerical results to support our theoretical findings and to offer new insight on the time-fractional Allen–Cahn dynamics.
In this work, we consider a time-fractional Allen–Cahn equation, where the conventional first order time derivative is replaced by a Caputo fractional derivative with order α ∈ ( 0 , 1 ) . First, the well-posedness and (limited) smoothing property are studied, by using the maximal L p regularity of fractional evolution equations and the fractional Grönwall’s inequality. We also show the maximum principle like their conventional local-in-time counterpart, that is, the time-fractional equation preserves the property that the solution only takes value between the wells of the double-well potential when the initial data does the same. Second, after discretizing the fractional derivative by backward Euler convolution quadrature, we develop several unconditionally solvable and stable time stepping schemes, such as a convex splitting scheme, a weighted convex splitting scheme and a linear weighted stabilized scheme. Meanwhile, we study the discrete energy dissipation property (in a weighted average sense), which is important for gradient flow type models, for the two weighted schemes. In addition, we prove the fractional energy dissipation law for the gradient flow associated with a convex free energy. Finally, using a discrete version of fractional Grönwall’s inequality and maximal ℓ p regularity, we prove that the convergence rates of those time-stepping schemes are O ( τ α ) without any extra regularity assumption on the solution. We also present extensive numerical results to support our theoretical findings and to offer new insight on the time-fractional Allen–Cahn dynamics.
ArticleNumber 42
Author Zhou, Zhi
Yang, Jiang
Du, Qiang
Author_xml – sequence: 1
  givenname: Qiang
  surname: Du
  fullname: Du, Qiang
  organization: Department of Applied Physics and Applied Mathematics, Columbia University
– sequence: 2
  givenname: Jiang
  orcidid: 0000-0002-6431-7483
  surname: Yang
  fullname: Yang, Jiang
  email: yangj7@sustech.edu.cn
  organization: Department of Mathematics, SUSTech International Center for Mathematics, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology
– sequence: 3
  givenname: Zhi
  surname: Zhou
  fullname: Zhou, Zhi
  organization: Department of Applied Mathematics, The Hong Kong Polytechnic University
BookMark eNp9kLFOwzAQhi0EEm3hBZgiMRvu7Di22aqqBaQCS5ktN3FoqjRp7WToxjvwhjwJaYOExNDppLvvO939Q3Je1ZUj5AbhDgHkfUDQKCgwoIBcIBVnZIBCcioTjedkAEoJKmMZX5JhCGsA0EqzAZktio2jM2_TpqgrW0bjsnTV9-fXxK6qaLpr7aEfHqJxN9yHIkS2yqLXduN8kXb4i2tWdRauyEVuy-Cuf-uIvM-mi8kTnb89Pk_Gc5py1A2NwSpUKWrIlnlmRaISiB23FjKRIXPKMS4zIYTmyi5FIpnUmbKc5zqVzAIfkdt-79bXu9aFxqzr1nenBcM0Ko4COe8o1VOpr0PwLjdp0RwfabwtSoNgDqmZPjXTpWaOqRnRqeyfuvXFxvr9aYn3Uujg6sP5v6tOWD_fGoDP
CitedBy_id crossref_primary_10_1007_s10915_022_01803_0
crossref_primary_10_1016_j_apnum_2024_04_008
crossref_primary_10_1137_20M1355690
crossref_primary_10_1016_j_camwa_2023_06_027
crossref_primary_10_1016_j_camwa_2022_01_002
crossref_primary_10_1080_00207160_2024_2315131
crossref_primary_10_1016_j_apnum_2024_06_017
crossref_primary_10_1016_j_cnsns_2025_108776
crossref_primary_10_3390_math9243198
crossref_primary_10_1016_j_apnum_2022_11_002
crossref_primary_10_1137_23M1554795
crossref_primary_10_1007_s10915_024_02515_3
crossref_primary_10_1016_j_camwa_2024_02_011
crossref_primary_10_1007_s10444_020_09805_y
crossref_primary_10_1016_j_cnsns_2024_108120
crossref_primary_10_1007_s10915_023_02263_w
crossref_primary_10_1137_20M1368641
crossref_primary_10_1137_22M1541307
crossref_primary_10_1093_imanum_drae034
crossref_primary_10_1016_j_apnum_2021_12_004
crossref_primary_10_1007_s10915_025_02876_3
crossref_primary_10_1016_j_aml_2021_107805
crossref_primary_10_1016_j_aml_2023_108698
crossref_primary_10_1016_j_jcp_2022_111467
crossref_primary_10_1016_j_enganabound_2024_106087
crossref_primary_10_1080_00207160_2024_2420681
crossref_primary_10_1137_20M1384105
crossref_primary_10_1016_j_jcp_2024_113565
crossref_primary_10_1007_s11075_023_01547_4
crossref_primary_10_3390_app14010189
crossref_primary_10_1137_21M1446496
crossref_primary_10_1007_s13540_022_00022_6
crossref_primary_10_1016_j_cnsns_2024_108455
crossref_primary_10_1002_mma_9214
crossref_primary_10_1016_j_cnsns_2025_108824
crossref_primary_10_1002_num_23124
crossref_primary_10_1016_j_physd_2023_133973
crossref_primary_10_1016_j_aml_2023_108569
crossref_primary_10_1137_23M159531X
crossref_primary_10_1186_s13662_022_03725_5
crossref_primary_10_1016_j_cam_2022_114702
crossref_primary_10_1007_s10915_024_02667_2
crossref_primary_10_1007_s11075_023_01744_1
crossref_primary_10_1007_s10915_022_01921_9
crossref_primary_10_1016_j_cnsns_2025_109200
crossref_primary_10_1016_j_cam_2024_115952
crossref_primary_10_1016_j_enganabound_2024_106058
crossref_primary_10_1007_s10915_022_02085_2
crossref_primary_10_1007_s10986_024_09648_w
crossref_primary_10_1016_j_cam_2025_117054
crossref_primary_10_1137_21M1427863
crossref_primary_10_1016_j_camwa_2024_11_034
crossref_primary_10_1115_1_4068263
crossref_primary_10_1115_1_4068581
crossref_primary_10_1016_j_physd_2024_134172
crossref_primary_10_1016_j_camwa_2024_03_030
crossref_primary_10_1016_j_jcp_2024_113225
crossref_primary_10_1016_j_cam_2023_115647
crossref_primary_10_1007_s10444_020_09782_2
crossref_primary_10_1093_imanum_drab025
crossref_primary_10_1016_j_apnum_2023_08_010
crossref_primary_10_1016_j_jcp_2022_111085
crossref_primary_10_1137_20M135577X
crossref_primary_10_1090_mcom_4116
crossref_primary_10_1080_00207160_2025_2524774
crossref_primary_10_1007_s10915_022_01810_1
crossref_primary_10_1007_s10915_025_02999_7
crossref_primary_10_1007_s10915_025_02942_w
crossref_primary_10_1016_j_jcp_2021_110405
crossref_primary_10_1007_s11071_020_05943_6
crossref_primary_10_3390_fractalfract6070349
crossref_primary_10_1007_s10915_020_01365_z
crossref_primary_10_1016_j_cma_2023_115943
crossref_primary_10_1016_j_aml_2023_108942
crossref_primary_10_1016_j_physd_2024_134264
Cites_doi 10.1016/j.jcp.2018.02.023
10.1137/15M1039857
10.1137/140979563
10.1007/BF01398686
10.1016/j.apnum.2005.03.003
10.1063/1.1744102
10.1515/cmam-2017-0039
10.1016/j.cpc.2019.07.008
10.1103/PhysRevLett.105.108104
10.1103/PhysRevE.68.016306
10.1137/16M1075302
10.1007/s00032-013-0199-x
10.1002/cpa.20331
10.1109/83.661186
10.1016/j.camwa.2018.07.036
10.1103/PhysRevE.64.021603
10.1016/j.jde.2016.05.016
10.1016/j.anihpc.2014.03.005
10.1103/PhysRevE.66.046129
10.1146/annurev.fluid.30.1.139
10.1007/s00211-017-0904-8
10.1016/j.jcp.2007.02.001
10.1002/pssb.2221330150
10.1137/18M118236X
10.1016/bs.hna.2019.05.001
10.1016/j.jcp.2014.08.001
10.1103/PhysRevLett.96.098102
10.1016/j.jcp.2014.04.024
10.1038/35000537
10.1016/j.jtbi.2008.03.027
10.1137/16M1089320
10.1090/mcom/3413
10.1016/j.jcp.2004.01.029
10.1137/18M1203560
10.4310/CMS.2016.v14.n6.a3
10.1103/PhysRevLett.58.2235
10.1016/0001-6160(79)90196-2
10.1137/140952107
10.1109/ICCV.2001.937500
10.1137/17M1150153
10.1016/j.cma.2016.03.018
10.1016/S0167-2789(03)00030-7
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10915-020-01351-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: ProQuest advanced technologies & aerospace journals
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
ExternalDocumentID 10_1007_s10915_020_01351_5
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-40a818c190dbfda568604e3aa0d5d12e8e237d555938ab567279d8a33f9c72a03
IEDL.DBID P5Z
ISICitedReferencesCount 92
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588319400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7474
IngestDate Wed Nov 05 08:40:22 EST 2025
Sat Nov 29 01:56:27 EST 2025
Tue Nov 18 22:11:58 EST 2025
Fri Feb 21 02:36:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 65R20
Energy dissipation
65M70
Error estimate
Time-fractional Allen–Cahn
Regularity
Time stepping scheme
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-40a818c190dbfda568604e3aa0d5d12e8e237d555938ab567279d8a33f9c72a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6431-7483
PQID 2918315133
PQPubID 2043771
ParticipantIDs proquest_journals_2918315133
crossref_citationtrail_10_1007_s10915_020_01351_5
crossref_primary_10_1007_s10915_020_01351_5
springer_journals_10_1007_s10915_020_01351_5
PublicationCentury 2000
PublicationDate 20201100
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Shao, Rappel, Levine (CR42) 2010; 105
Ainthworth, Mao (CR1) 2017; 55
Kirchner, Feng, Neal (CR30) 2000; 403
Xu, Prince (CR52) 1998; 7
CR38
Du, Ju, Li, Qiao (CR15) 2018; 363
CR31
Anderson, McFadden, Wheeler (CR4) 1998; 30
Lin, Xu (CR32) 2007; 225
Sun, Wu (CR46) 2006; 56
Qian, Wang, Sheng (CR40) 2003; 68
Song, Xu, Karniadakis (CR45) 2016; 305
Cahn, Hilliard (CR9) 1958; 28
Valdinoci (CR49) 2013; 81
Lubich (CR34) 1988; 52
Bates, Sarah, Jianlong (CR7) 2009; 6
Jin, Lazarov, Zhou (CR25) 2016; 38
Golding, Cox (CR21) 2006; 96
Kilbas, Srivastava, Trujillo (CR29) 2006
Allen, Cahn (CR2) 1979; 27
Mustapha, Abdallah, Furati (CR35) 2014; 52
Clarke, Vvedensky (CR10) 1987; 58
Jin, Li, Zhou (CR26) 2018; 138
Chechkin, Gorenflo, Sokolov (CR11) 2002; 66
Du, Liu, Wang (CR18) 2004; 198
Oldham, Spanier (CR37) 1974
Shen, Xu, Yang (CR43) 2019; 61
(CR24) 2013
Pismen (CR39) 2001; 64
CR17
Caffarelli, Roquejoffre, Savin (CR8) 2010; 63
Antil, Bartels (CR5) 2017; 17
CR14
Guan, Lowengrub, Wang, Wise (CR22) 2014; 277
CR13
Tang, Yu, Zhou (CR48) 2019; 41
Chen, Zhao, Cao, Wang, Zhang (CR12) 2019; 245
Du, Yang (CR20) 2016; 54
Van der Waals (CR50) 1894; 13
Gui, Zhao (CR23) 2015; 32
Wise, Lowengrub, Frieboes, Cristini (CR51) 2008; 253
Jin, Li, Zhou (CR27) 2018; 56
Nigmatullin (CR36) 1986; 133
Shen, Tang, Yang (CR44) 2016; 14
Bates (CR6) 2006; 48
Jin, Li, Zhou (CR28) 2019; 88
Akagi, Schimperna, Segatti (CR3) 2016; 261
Tang, Yang (CR47) 2016; 34
Sabzikar, Meerschaert, Chen (CR41) 2015; 293
Du, Ju, Li, Qiao (CR16) 2019; 57
Liu, Shen (CR33) 2003; 179
Du, Yang, Zhou (CR19) 2017; 22
KB Oldham (1351_CR37) 1974
Q Du (1351_CR18) 2004; 198
WP Bates (1351_CR7) 2009; 6
Z-Z Sun (1351_CR46) 2006; 56
JW Cahn (1351_CR9) 1958; 28
J Shen (1351_CR44) 2016; 14
K Mustapha (1351_CR35) 2014; 52
Enrico Valdinoci (1351_CR49) 2013; 81
Q Du (1351_CR19) 2017; 22
SM Wise (1351_CR51) 2008; 253
Y Lin (1351_CR32) 2007; 225
Q Du (1351_CR20) 2016; 54
PW Bates (1351_CR6) 2006; 48
DM Anderson (1351_CR4) 1998; 30
1351_CR17
L Caffarelli (1351_CR8) 2010; 63
C Xu (1351_CR52) 1998; 7
1351_CR14
T Tang (1351_CR48) 2019; 41
1351_CR13
B Jin (1351_CR28) 2019; 88
L Chen (1351_CR12) 2019; 245
LM Pismen (1351_CR39) 2001; 64
R Nigmatullin (1351_CR36) 1986; 133
B Jin (1351_CR27) 2018; 56
AV Chechkin (1351_CR11) 2002; 66
F Sabzikar (1351_CR41) 2015; 293
C Gui (1351_CR23) 2015; 32
M Ainthworth (1351_CR1) 2017; 55
JW Kirchner (1351_CR30) 2000; 403
B Jin (1351_CR26) 2018; 138
Q Du (1351_CR16) 2019; 57
F Song (1351_CR45) 2016; 305
Lev Davidovich Landau and Evgenii Mikhailovich Lifshitz (1351_CR24) 2013
C Lubich (1351_CR34) 1988; 52
C Liu (1351_CR33) 2003; 179
Goro Akagi (1351_CR3) 2016; 261
T Tang (1351_CR47) 2016; 34
SM Allen (1351_CR2) 1979; 27
B Jin (1351_CR25) 2016; 38
T Qian (1351_CR40) 2003; 68
1351_CR38
S Clarke (1351_CR10) 1987; 58
Harbir Antil (1351_CR5) 2017; 17
Q Du (1351_CR15) 2018; 363
Z Guan (1351_CR22) 2014; 277
JD Van der Waals (1351_CR50) 1894; 13
J Shen (1351_CR43) 2019; 61
I Golding (1351_CR21) 2006; 96
1351_CR31
D Shao (1351_CR42) 2010; 105
AA Kilbas (1351_CR29) 2006
References_xml – volume: 14
  start-page: 1517
  issue: 6
  year: 2016
  end-page: 1534
  ident: CR44
  article-title: On the maximum principle preserving schemes for the generalized Allen–Cahn equation
  publication-title: Commun. Math. Sci.
– volume: 57
  start-page: 875
  year: 2019
  end-page: 898
  ident: CR16
  article-title: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen–Cahn equation
  publication-title: SIAM J. Numer. Anal.
– volume: 52
  start-page: 2512
  issue: 5
  year: 2014
  end-page: 2529
  ident: CR35
  article-title: A discontinuous Petrov–Galerkin method for time-fractional diffusion equations
  publication-title: SIAM J. Numer. Anal.
– volume: 133
  start-page: 425
  issue: 1
  year: 1986
  end-page: 430
  ident: CR36
  article-title: The realization of the generalized transfer equation in a medium with fractal geometry
  publication-title: Phys. Status Solidi (b)
– volume: 34
  start-page: 471
  issue: 5
  year: 2016
  end-page: 481
  ident: CR47
  article-title: Implicit-explicit scheme for the Allen–Cahn equation preserves the maximum principle
  publication-title: J. Comput. Math.
– volume: 198
  start-page: 450
  issue: 2
  year: 2004
  end-page: 468
  ident: CR18
  article-title: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes
  publication-title: J. Comput. Phys.
– volume: 261
  start-page: 2935
  issue: 6
  year: 2016
  end-page: 2985
  ident: CR3
  article-title: Fractional Cahn–Hilliard, Allen–Cahn and porous medium equations
  publication-title: J. Diff. Equ.
– year: 1974
  ident: CR37
  publication-title: The Fractional Calculus
– volume: 68
  start-page: 016306
  issue: 1
  year: 2003
  ident: CR40
  article-title: Molecular scale contact line hydrodynamics of immiscible flows
  publication-title: Phys. Rev. E
– volume: 27
  start-page: 1085
  issue: 6
  year: 1979
  end-page: 1095
  ident: CR2
  article-title: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening
  publication-title: Acta Metall.
– volume: 63
  start-page: 1111
  issue: 9
  year: 2010
  end-page: 1144
  ident: CR8
  article-title: Nonlocal minimal surfaces
  publication-title: Commun. Pure Appl. Math.
– volume: 245
  start-page: 106842
  year: 2019
  ident: CR12
  article-title: An accurate and efficient algorithm for the time-fractional molecular beam epitaxy model with slope selection
  publication-title: Comput. Phys. Commun.
– volume: 61
  start-page: 474
  issue: 3
  year: 2019
  end-page: 506
  ident: CR43
  article-title: A new class of efficient and robust energy stable schemes for gradient flows
  publication-title: SIAM Rev.
– volume: 52
  start-page: 129
  issue: 2
  year: 1988
  end-page: 145
  ident: CR34
  article-title: Convolution quadrature and discretized operational calculus I
  publication-title: Numer. Math.
– volume: 363
  start-page: 39
  year: 2018
  end-page: 54
  ident: CR15
  article-title: Stabilized linear semi-implicit schemes for the nonlocal Cahn–Hilliard equation
  publication-title: J. Comput. Phys.
– volume: 13
  start-page: 657
  issue: 1
  year: 1894
  end-page: 725
  ident: CR50
  article-title: Thermodynamic theory of capillarity assuming steady density change
  publication-title: J. Phys. Chem.
– volume: 66
  start-page: 046129
  year: 2002
  ident: CR11
  article-title: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations
  publication-title: Phys. Rev. E
– volume: 138
  start-page: 101
  issue: 1
  year: 2018
  end-page: 131
  ident: CR26
  article-title: Discrete maximal regularity of time-stepping schemes for fractional evolution equations
  publication-title: Numer. Math.
– volume: 7
  start-page: 359
  issue: 3
  year: 1998
  end-page: 369
  ident: CR52
  article-title: Snakes, shapes, and gradient vector flow
  publication-title: IEEE Trans. Image Process.
– volume: 30
  start-page: 139
  issue: 1
  year: 1998
  end-page: 165
  ident: CR4
  article-title: Diffuse-interface methods in fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
– volume: 96
  start-page: 098102
  issue: 9
  year: 2006
  ident: CR21
  article-title: Physical nature of bacterial cytoplasm
  publication-title: Phys. Rev. Lett.
– volume: 277
  start-page: 48
  year: 2014
  end-page: 71
  ident: CR22
  article-title: Second order convex splitting schemes for periodic nonlocal Cahn–Hilliard and Allen–Cahn equations
  publication-title: J. Comput. Phys.
– volume: 105
  start-page: 108104
  issue: 10
  year: 2010
  ident: CR42
  article-title: Computational model for cell morphodynamics
  publication-title: Phys. Rev. Lett.
– volume: 293
  start-page: 14
  year: 2015
  end-page: 28
  ident: CR41
  article-title: Tempered fractional calculus
  publication-title: J. Comput. Phys.
– volume: 179
  start-page: 211
  issue: 3–4
  year: 2003
  end-page: 228
  ident: CR33
  article-title: A phase field model for the mixture of two incompressible fluids and its approximation by a fourier-spectral method
  publication-title: Phys. D
– volume: 56
  start-page: 193
  issue: 2
  year: 2006
  end-page: 209
  ident: CR46
  article-title: A fully discrete scheme for a diffusion wave system
  publication-title: Appl. Numer. Math.
– volume: 55
  start-page: 1689
  issue: 4
  year: 2017
  end-page: 1718
  ident: CR1
  article-title: Analysis and approximation of a fractional Cahn–Hilliard equation
  publication-title: SIAM J. Numer. Anal.
– volume: 81
  start-page: 1
  issue: 1
  year: 2013
  end-page: 23
  ident: CR49
  article-title: A fractional framework for perimeters and phase transitions
  publication-title: Milan J. Math.
– volume: 64
  start-page: 021603
  issue: 2
  year: 2001
  ident: CR39
  article-title: Nonlocal diffuse interface theory of thin films and the moving contact line
  publication-title: Phys. Rev. E
– volume: 6
  start-page: 33
  issue: 1
  year: 2009
  end-page: 49
  ident: CR7
  article-title: Numerical analysis for a nonlocal Allen–Cahn equation
  publication-title: Int. J. Numer. Anal. Model
– volume: 48
  start-page: 13
  year: 2006
  end-page: 52
  ident: CR6
  article-title: On some nonlocal evolution equations arising in materials science
  publication-title: Nonlinear Dyn. Evol. Equ.
– volume: 305
  start-page: 376
  year: 2016
  end-page: 404
  ident: CR45
  article-title: A fractional phase-field model for two-phase flows with tunable sharpness: algorithms and simulations
  publication-title: Comput. Methods Appl. Mech. Eng.
– ident: CR14
– year: 2006
  ident: CR29
  publication-title: Theory and Applications of Fractional Differential Equations
– volume: 17
  start-page: 661
  issue: 4
  year: 2017
  end-page: 678
  ident: CR5
  article-title: Spectral approximation of fractional PDEs in image processing and phase field modeling
  publication-title: Comput. Methods Appl. Math.
– volume: 403
  start-page: 524
  issue: 6769
  year: 2000
  ident: CR30
  article-title: Fractal stream chemistry and its implications for contaminant transport in catchments
  publication-title: Nature
– volume: 88
  start-page: 2157
  issue: 319
  year: 2019
  end-page: 2186
  ident: CR28
  article-title: Subdiffusion with a time-dependent coefficient: analysis and numerical solution
  publication-title: Math. Comput.
– volume: 225
  start-page: 1533
  issue: 2
  year: 2007
  end-page: 1552
  ident: CR32
  article-title: Finite difference/spectral approximations for the time-fractional diffusion equation
  publication-title: J. Comput. Phys.
– volume: 28
  start-page: 258
  issue: 2
  year: 1958
  end-page: 267
  ident: CR9
  article-title: Free energy of a nonuniform system. I. Interfacial free energy
  publication-title: J. Chem. Phys.
– volume: 38
  start-page: A146
  issue: 1
  year: 2016
  end-page: A170
  ident: CR25
  article-title: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data
  publication-title: SIAM J. Sci. Comput.
– volume: 32
  start-page: 785
  issue: 4
  year: 2015
  end-page: 812
  ident: CR23
  article-title: Traveling wave solutions of Allen–Cahn equation with a fractional laplacian
  publication-title: Annales de l’Institut Henri Poincare C Non Linear Anal.
– volume: 253
  start-page: 524
  issue: 3
  year: 2008
  end-page: 543
  ident: CR51
  article-title: Three-dimensional multispecies nonlinear tumor growth I: model and numerical method
  publication-title: J. Theor. Biol.
– volume: 54
  start-page: 1899
  issue: 3
  year: 2016
  end-page: 1919
  ident: CR20
  article-title: Asymptotically compatible Fourier spectral approximations of nonlocal Allen–Cahn equations
  publication-title: SIAM J. Numer. Anal.
– year: 2013
  ident: CR24
  publication-title: Course of Theoretical Physics
– volume: 56
  start-page: 1
  issue: 1
  year: 2018
  end-page: 23
  ident: CR27
  article-title: Numerical analysis of nonlinear subdiffusion equations
  publication-title: SIAM J. Numer. Anal.
– ident: CR38
– ident: CR17
– ident: CR31
– ident: CR13
– volume: 58
  start-page: 2235
  issue: 21
  year: 1987
  ident: CR10
  article-title: Origin of reflection high-energy electron–diffraction intensity oscillations during molecular-beam epitaxy: A computational modeling approach
  publication-title: Phys. Rev. Lett.
– volume: 22
  start-page: 339
  issue: 2
  year: 2017
  end-page: 368
  ident: CR19
  article-title: Analysis of a nonlocal-in-time parabolic equation
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 41
  start-page: A3757
  issue: 6
  year: 2019
  end-page: A3778
  ident: CR48
  article-title: On energy dissipation theory and numerical stability for time-fractional phase field equations
  publication-title: SIAM J. Sci. Comput.
– volume: 363
  start-page: 39
  year: 2018
  ident: 1351_CR15
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.02.023
– volume: 54
  start-page: 1899
  issue: 3
  year: 2016
  ident: 1351_CR20
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/15M1039857
– volume: 38
  start-page: A146
  issue: 1
  year: 2016
  ident: 1351_CR25
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/140979563
– volume: 6
  start-page: 33
  issue: 1
  year: 2009
  ident: 1351_CR7
  publication-title: Int. J. Numer. Anal. Model
– volume: 52
  start-page: 129
  issue: 2
  year: 1988
  ident: 1351_CR34
  publication-title: Numer. Math.
  doi: 10.1007/BF01398686
– volume: 56
  start-page: 193
  issue: 2
  year: 2006
  ident: 1351_CR46
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2005.03.003
– volume: 28
  start-page: 258
  issue: 2
  year: 1958
  ident: 1351_CR9
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1744102
– volume: 17
  start-page: 661
  issue: 4
  year: 2017
  ident: 1351_CR5
  publication-title: Comput. Methods Appl. Math.
  doi: 10.1515/cmam-2017-0039
– volume: 245
  start-page: 106842
  year: 2019
  ident: 1351_CR12
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2019.07.008
– ident: 1351_CR17
– volume: 105
  start-page: 108104
  issue: 10
  year: 2010
  ident: 1351_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.108104
– volume: 68
  start-page: 016306
  issue: 1
  year: 2003
  ident: 1351_CR40
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.68.016306
– volume: 55
  start-page: 1689
  issue: 4
  year: 2017
  ident: 1351_CR1
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1075302
– volume-title: The Fractional Calculus
  year: 1974
  ident: 1351_CR37
– volume: 81
  start-page: 1
  issue: 1
  year: 2013
  ident: 1351_CR49
  publication-title: Milan J. Math.
  doi: 10.1007/s00032-013-0199-x
– volume: 63
  start-page: 1111
  issue: 9
  year: 2010
  ident: 1351_CR8
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20331
– volume-title: Course of Theoretical Physics
  year: 2013
  ident: 1351_CR24
– volume: 34
  start-page: 471
  issue: 5
  year: 2016
  ident: 1351_CR47
  publication-title: J. Comput. Math.
– volume: 7
  start-page: 359
  issue: 3
  year: 1998
  ident: 1351_CR52
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.661186
– ident: 1351_CR31
  doi: 10.1016/j.camwa.2018.07.036
– volume: 64
  start-page: 021603
  issue: 2
  year: 2001
  ident: 1351_CR39
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.021603
– volume: 261
  start-page: 2935
  issue: 6
  year: 2016
  ident: 1351_CR3
  publication-title: J. Diff. Equ.
  doi: 10.1016/j.jde.2016.05.016
– volume: 32
  start-page: 785
  issue: 4
  year: 2015
  ident: 1351_CR23
  publication-title: Annales de l’Institut Henri Poincare C Non Linear Anal.
  doi: 10.1016/j.anihpc.2014.03.005
– volume: 66
  start-page: 046129
  year: 2002
  ident: 1351_CR11
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.66.046129
– volume-title: Theory and Applications of Fractional Differential Equations
  year: 2006
  ident: 1351_CR29
– volume: 30
  start-page: 139
  issue: 1
  year: 1998
  ident: 1351_CR4
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.30.1.139
– volume: 138
  start-page: 101
  issue: 1
  year: 2018
  ident: 1351_CR26
  publication-title: Numer. Math.
  doi: 10.1007/s00211-017-0904-8
– volume: 225
  start-page: 1533
  issue: 2
  year: 2007
  ident: 1351_CR32
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.02.001
– volume: 133
  start-page: 425
  issue: 1
  year: 1986
  ident: 1351_CR36
  publication-title: Phys. Status Solidi (b)
  doi: 10.1002/pssb.2221330150
– volume: 13
  start-page: 657
  issue: 1
  year: 1894
  ident: 1351_CR50
  publication-title: J. Phys. Chem.
– volume: 57
  start-page: 875
  year: 2019
  ident: 1351_CR16
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/18M118236X
– ident: 1351_CR14
  doi: 10.1016/bs.hna.2019.05.001
– volume: 22
  start-page: 339
  issue: 2
  year: 2017
  ident: 1351_CR19
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 277
  start-page: 48
  year: 2014
  ident: 1351_CR22
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.08.001
– volume: 96
  start-page: 098102
  issue: 9
  year: 2006
  ident: 1351_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.098102
– volume: 293
  start-page: 14
  year: 2015
  ident: 1351_CR41
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.04.024
– volume: 403
  start-page: 524
  issue: 6769
  year: 2000
  ident: 1351_CR30
  publication-title: Nature
  doi: 10.1038/35000537
– volume: 253
  start-page: 524
  issue: 3
  year: 2008
  ident: 1351_CR51
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2008.03.027
– volume: 56
  start-page: 1
  issue: 1
  year: 2018
  ident: 1351_CR27
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1089320
– volume: 88
  start-page: 2157
  issue: 319
  year: 2019
  ident: 1351_CR28
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3413
– volume: 198
  start-page: 450
  issue: 2
  year: 2004
  ident: 1351_CR18
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.01.029
– volume: 41
  start-page: A3757
  issue: 6
  year: 2019
  ident: 1351_CR48
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M1203560
– volume: 14
  start-page: 1517
  issue: 6
  year: 2016
  ident: 1351_CR44
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2016.v14.n6.a3
– volume: 58
  start-page: 2235
  issue: 21
  year: 1987
  ident: 1351_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.58.2235
– volume: 48
  start-page: 13
  year: 2006
  ident: 1351_CR6
  publication-title: Nonlinear Dyn. Evol. Equ.
– ident: 1351_CR13
– volume: 27
  start-page: 1085
  issue: 6
  year: 1979
  ident: 1351_CR2
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(79)90196-2
– volume: 52
  start-page: 2512
  issue: 5
  year: 2014
  ident: 1351_CR35
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/140952107
– ident: 1351_CR38
  doi: 10.1109/ICCV.2001.937500
– volume: 61
  start-page: 474
  issue: 3
  year: 2019
  ident: 1351_CR43
  publication-title: SIAM Rev.
  doi: 10.1137/17M1150153
– volume: 305
  start-page: 376
  year: 2016
  ident: 1351_CR45
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.03.018
– volume: 179
  start-page: 211
  issue: 3–4
  year: 2003
  ident: 1351_CR33
  publication-title: Phys. D
  doi: 10.1016/S0167-2789(03)00030-7
SSID ssj0009892
Score 2.5649323
Snippet In this work, we consider a time-fractional Allen–Cahn equation, where the conventional first order time derivative is replaced by a Caputo fractional...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 42
SubjectTerms Algorithms
Computational Mathematics and Numerical Analysis
Energy dissipation
Estimates
Free energy
Gradient flow
Inequality
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Maximum principle
Molecular beam epitaxy
Numerical analysis
Numerical methods
Quadratures
Regularity
Splitting
Theoretical
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BYYABaAFRKCgDAwgixXGcOGyoasRChfhSt8ixXYFUBWhaZv4D_5Bfgu04DSBAgjnOyTr7fGed33sA-xwFhBM_cIkXSjeghBuZFzfkUpUTgqFQCCM2EfX7dDCILyworKheu1ctSXNSfwC7xUijifVDKkyQS-ZhQaU7qgUbLq9ua6pdaqSQVfgQVxXLgYXKfG_jczqqa8wvbVGTbZLV_81zDVZsdemcltuhCXMyb8Hy-YyatWhB00Zz4RxYyunDdUg0EsRNxiXKQVvQCitvL69ddpc7vaeSD7w4cSoOE4flwulPy3bPyDk3OtTFBtwkvevumWsVFlyuQm-iLo9MJWyuigKRDQUjIQ29QGLGPEEE8iWVPo4EUbcOTFlGdNc2FpRhPIx55DMPb0Ijf8jlFjiUcpZpyRtm5KxDiiIshijOvNjLMu61AVWOTrmlH9cqGKO0Jk7WjkuV41LjuJS04Wj2z2NJvvHr6E61fqkNxCL1Y3VmIS1i04bjar3qzz9b2_7b8B1Y8vWSG5RiBxqT8VTuwiJ_ntwX4z2zQd8B_e7cIA
  priority: 102
  providerName: Springer Nature
Title Time-Fractional Allen–Cahn Equations: Analysis and Numerical Methods
URI https://link.springer.com/article/10.1007/s10915-020-01351-5
https://www.proquest.com/docview/2918315133
Volume 85
WOSCitedRecordID wos000588319400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7o5sGLv8XpHD14UDTYtE2behEdG4I4hr8QLyVNMhSkbuvm2f_B_9C_xCRNLQru4qWXNKH0ey95ycv7PoA9jgPCiRcg4oYSBZRwI_OCQi5VOCEYDoUwYhNRr0cfHuK-PXDL7bXKck40E7V45fqM_NiLlfFhrUZyOhwhrRqls6tWQmMe6polQUs39MljRbpLjSiyciSCVNgc2KIZWzoXY12brK9l-QQj8nNhqqLNXwlSs-50l__7xSuwZCNO56wwkVWYk9karFqfzp19Szx9sA5dXQ-CuuOi1kH30Torn-8fbfaUOZ1RwQqenzglk4nDMuH0pkXS58W5MmrU-QbcdTu37QtkdRYQVw44UVtIppZtrkIDkQ4EIyEN3UD6jLmCCOxJKj0_EkTtPXzKUqJzt7GgzPcHMY885vqbUMteM7kFDqWcpVr4hhlR65DiyBcDHKdu7KYpdxuAy5-ccEtCrrUwXpKKPlkDkyhgEgNMQhpw-N1nWFBwzHy7WaKRWHfMkwqKBhyVeFbNf4-2PXu0HVj0tAmZ2sQm1CbjqdyFBf42ec7HLaifd3r96xbMX0aoZUxTPa9v7r8AoKrlQA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dSuQwFD64urDe-C-OjpoLhV3WYNM0bSqIiDooo8NeKHjXTZMMCkPV6Yzine_ge_hQPolJ2loU9M4Lr9sG2vOdn_TkfB_AmiQBk8wPMPNCjQPOpJN5waHUppxQgoRKObGJqNPh5-fxvxF4qmZh7LHKKia6QK2upP1HvunHBnzEqpHsXN9gqxplu6uVhEYBi7a-vzNbtnz7aN_Yd933Wwene4e4VBXA0sBtYDZMwiQpaRKhSrtKsJCHXqCpEJ5iiviaa59GiplKm3KRMtupjBUXlHZjGfnCo2bdHzAWUB5Zv2pHuCb55U6E2Tguw6ZMD8ohnXJULyZ2FtoeA6OMYPY2EdbV7buGrMtzrcnv9oWmYKKsqNFu4QLTMKKzGZguY1aOfpfE2n9moWXnXXCrX8xy2Gesjszzw-OeuMjQwU3Bep5voYqpBYlMoc6waGr10IlT287n4OxL3mceRrOrTC8A4lyK1Ar7CCfaHXISUdUlcerFXppKrwGkMmoiS5J1q_XRS2p6aAuExAAhcUBIWAP-vj5zXVCMfHp3s7J-UoabPKlN34CNCj_15Y9XW_x8tVX4dXh6cpwcH3XaSzDuW_i6OcwmjA76Q70MP-Xt4DLvrzhHQPD_q3H1AsTLPPg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20iuhBbVWsVs3Bg6Kh2SSbbrxJbVC0oeAH3sJmN0GhxNq0nv0P_kN_ibubpKmignjOZgizO5kZZt97APsM2Zhh09ax4US6TTBTMi-6wyJRTnCKHM6V2ETL98n9vdubQvGr2-7FSDLDNEiWpmTUHPC4OQV8c5FEFstLVRZGOp6FOVtepJf9-vVdSbtLlCyyCCWsi8LZzmEz39v4nJrKevPLiFRlHm_l_9-8Cst51amdZsekCjNRUoOl7oSyNa1BNY_yVDvIqagP18CTCBHdG2boB2lBKq-8v7616UOidZ4znvD0RCu4TTSacM0fZ2OgvtZV-tTpOtx6nZv2uZ4rL-hMhORINJVUJHImigUexpxihziGHVmUGhxzZEYkMq0Wx6IbsQgNsZzmupxQy4pd1jKpYW1AJXlKok3QCGE0lFI4VMlcOwS1LB4jNzRcIwyZUQdUOD1gOS25VMfoByWhsnRcIBwXKMcFuA5Hk3cGGSnHr6sbxV4GeYCmgemKfxmS4jZ1OC72rnz8s7Wtvy3fg4XemRdcXfiX27Boyt1XQMYGVEbDcbQD8-xl9JgOd9W5_QD1cOfo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-Fractional+Allen%E2%80%93Cahn+Equations%3A+Analysis+and+Numerical+Methods&rft.jtitle=Journal+of+scientific+computing&rft.au=Du%2C+Qiang&rft.au=Yang%2C+Jiang&rft.au=Zhou%2C+Zhi&rft.date=2020-11-01&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=85&rft.issue=2&rft_id=info:doi/10.1007%2Fs10915-020-01351-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10915_020_01351_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon