Time-Fractional Allen–Cahn Equations: Analysis and Numerical Methods
In this work, we consider a time-fractional Allen–Cahn equation, where the conventional first order time derivative is replaced by a Caputo fractional derivative with order α ∈ ( 0 , 1 ) . First, the well-posedness and (limited) smoothing property are studied, by using the maximal L p regularity of...
Uloženo v:
| Vydáno v: | Journal of scientific computing Ročník 85; číslo 2; s. 42 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.11.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 0885-7474, 1573-7691 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this work, we consider a time-fractional Allen–Cahn equation, where the conventional first order time derivative is replaced by a Caputo fractional derivative with order
α
∈
(
0
,
1
)
. First, the well-posedness and (limited) smoothing property are studied, by using the maximal
L
p
regularity of fractional evolution equations and the fractional Grönwall’s inequality. We also show the maximum principle like their conventional local-in-time counterpart, that is, the time-fractional equation preserves the property that the solution only takes value between the wells of the double-well potential when the initial data does the same. Second, after discretizing the fractional derivative by backward Euler convolution quadrature, we develop several unconditionally solvable and stable time stepping schemes, such as a convex splitting scheme, a weighted convex splitting scheme and a linear weighted stabilized scheme. Meanwhile, we study the discrete energy dissipation property (in a weighted average sense), which is important for gradient flow type models, for the two weighted schemes. In addition, we prove the fractional energy dissipation law for the gradient flow associated with a convex free energy. Finally, using a discrete version of fractional Grönwall’s inequality and maximal
ℓ
p
regularity, we prove that the convergence rates of those time-stepping schemes are
O
(
τ
α
)
without any extra regularity assumption on the solution. We also present extensive numerical results to support our theoretical findings and to offer new insight on the time-fractional Allen–Cahn dynamics. |
|---|---|
| AbstractList | In this work, we consider a time-fractional Allen–Cahn equation, where the conventional first order time derivative is replaced by a Caputo fractional derivative with order α∈(0,1). First, the well-posedness and (limited) smoothing property are studied, by using the maximal Lp regularity of fractional evolution equations and the fractional Grönwall’s inequality. We also show the maximum principle like their conventional local-in-time counterpart, that is, the time-fractional equation preserves the property that the solution only takes value between the wells of the double-well potential when the initial data does the same. Second, after discretizing the fractional derivative by backward Euler convolution quadrature, we develop several unconditionally solvable and stable time stepping schemes, such as a convex splitting scheme, a weighted convex splitting scheme and a linear weighted stabilized scheme. Meanwhile, we study the discrete energy dissipation property (in a weighted average sense), which is important for gradient flow type models, for the two weighted schemes. In addition, we prove the fractional energy dissipation law for the gradient flow associated with a convex free energy. Finally, using a discrete version of fractional Grönwall’s inequality and maximal ℓp regularity, we prove that the convergence rates of those time-stepping schemes are O(τα) without any extra regularity assumption on the solution. We also present extensive numerical results to support our theoretical findings and to offer new insight on the time-fractional Allen–Cahn dynamics. In this work, we consider a time-fractional Allen–Cahn equation, where the conventional first order time derivative is replaced by a Caputo fractional derivative with order α ∈ ( 0 , 1 ) . First, the well-posedness and (limited) smoothing property are studied, by using the maximal L p regularity of fractional evolution equations and the fractional Grönwall’s inequality. We also show the maximum principle like their conventional local-in-time counterpart, that is, the time-fractional equation preserves the property that the solution only takes value between the wells of the double-well potential when the initial data does the same. Second, after discretizing the fractional derivative by backward Euler convolution quadrature, we develop several unconditionally solvable and stable time stepping schemes, such as a convex splitting scheme, a weighted convex splitting scheme and a linear weighted stabilized scheme. Meanwhile, we study the discrete energy dissipation property (in a weighted average sense), which is important for gradient flow type models, for the two weighted schemes. In addition, we prove the fractional energy dissipation law for the gradient flow associated with a convex free energy. Finally, using a discrete version of fractional Grönwall’s inequality and maximal ℓ p regularity, we prove that the convergence rates of those time-stepping schemes are O ( τ α ) without any extra regularity assumption on the solution. We also present extensive numerical results to support our theoretical findings and to offer new insight on the time-fractional Allen–Cahn dynamics. |
| ArticleNumber | 42 |
| Author | Zhou, Zhi Yang, Jiang Du, Qiang |
| Author_xml | – sequence: 1 givenname: Qiang surname: Du fullname: Du, Qiang organization: Department of Applied Physics and Applied Mathematics, Columbia University – sequence: 2 givenname: Jiang orcidid: 0000-0002-6431-7483 surname: Yang fullname: Yang, Jiang email: yangj7@sustech.edu.cn organization: Department of Mathematics, SUSTech International Center for Mathematics, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology – sequence: 3 givenname: Zhi surname: Zhou fullname: Zhou, Zhi organization: Department of Applied Mathematics, The Hong Kong Polytechnic University |
| BookMark | eNp9kLFOwzAQhi0EEm3hBZgiMRvu7Di22aqqBaQCS5ktN3FoqjRp7WToxjvwhjwJaYOExNDppLvvO939Q3Je1ZUj5AbhDgHkfUDQKCgwoIBcIBVnZIBCcioTjedkAEoJKmMZX5JhCGsA0EqzAZktio2jM2_TpqgrW0bjsnTV9-fXxK6qaLpr7aEfHqJxN9yHIkS2yqLXduN8kXb4i2tWdRauyEVuy-Cuf-uIvM-mi8kTnb89Pk_Gc5py1A2NwSpUKWrIlnlmRaISiB23FjKRIXPKMS4zIYTmyi5FIpnUmbKc5zqVzAIfkdt-79bXu9aFxqzr1nenBcM0Ko4COe8o1VOpr0PwLjdp0RwfabwtSoNgDqmZPjXTpWaOqRnRqeyfuvXFxvr9aYn3Uujg6sP5v6tOWD_fGoDP |
| CitedBy_id | crossref_primary_10_1007_s10915_022_01803_0 crossref_primary_10_1016_j_apnum_2024_04_008 crossref_primary_10_1137_20M1355690 crossref_primary_10_1016_j_camwa_2023_06_027 crossref_primary_10_1016_j_camwa_2022_01_002 crossref_primary_10_1080_00207160_2024_2315131 crossref_primary_10_1016_j_apnum_2024_06_017 crossref_primary_10_1016_j_cnsns_2025_108776 crossref_primary_10_3390_math9243198 crossref_primary_10_1016_j_apnum_2022_11_002 crossref_primary_10_1137_23M1554795 crossref_primary_10_1007_s10915_024_02515_3 crossref_primary_10_1016_j_camwa_2024_02_011 crossref_primary_10_1007_s10444_020_09805_y crossref_primary_10_1016_j_cnsns_2024_108120 crossref_primary_10_1007_s10915_023_02263_w crossref_primary_10_1137_20M1368641 crossref_primary_10_1137_22M1541307 crossref_primary_10_1093_imanum_drae034 crossref_primary_10_1016_j_apnum_2021_12_004 crossref_primary_10_1007_s10915_025_02876_3 crossref_primary_10_1016_j_aml_2021_107805 crossref_primary_10_1016_j_aml_2023_108698 crossref_primary_10_1016_j_jcp_2022_111467 crossref_primary_10_1016_j_enganabound_2024_106087 crossref_primary_10_1080_00207160_2024_2420681 crossref_primary_10_1137_20M1384105 crossref_primary_10_1016_j_jcp_2024_113565 crossref_primary_10_1007_s11075_023_01547_4 crossref_primary_10_3390_app14010189 crossref_primary_10_1137_21M1446496 crossref_primary_10_1007_s13540_022_00022_6 crossref_primary_10_1016_j_cnsns_2024_108455 crossref_primary_10_1002_mma_9214 crossref_primary_10_1016_j_cnsns_2025_108824 crossref_primary_10_1002_num_23124 crossref_primary_10_1016_j_physd_2023_133973 crossref_primary_10_1016_j_aml_2023_108569 crossref_primary_10_1137_23M159531X crossref_primary_10_1186_s13662_022_03725_5 crossref_primary_10_1016_j_cam_2022_114702 crossref_primary_10_1007_s10915_024_02667_2 crossref_primary_10_1007_s11075_023_01744_1 crossref_primary_10_1007_s10915_022_01921_9 crossref_primary_10_1016_j_cnsns_2025_109200 crossref_primary_10_1016_j_cam_2024_115952 crossref_primary_10_1016_j_enganabound_2024_106058 crossref_primary_10_1007_s10915_022_02085_2 crossref_primary_10_1007_s10986_024_09648_w crossref_primary_10_1016_j_cam_2025_117054 crossref_primary_10_1137_21M1427863 crossref_primary_10_1016_j_camwa_2024_11_034 crossref_primary_10_1115_1_4068263 crossref_primary_10_1115_1_4068581 crossref_primary_10_1016_j_physd_2024_134172 crossref_primary_10_1016_j_camwa_2024_03_030 crossref_primary_10_1016_j_jcp_2024_113225 crossref_primary_10_1016_j_cam_2023_115647 crossref_primary_10_1007_s10444_020_09782_2 crossref_primary_10_1093_imanum_drab025 crossref_primary_10_1016_j_apnum_2023_08_010 crossref_primary_10_1016_j_jcp_2022_111085 crossref_primary_10_1137_20M135577X crossref_primary_10_1090_mcom_4116 crossref_primary_10_1080_00207160_2025_2524774 crossref_primary_10_1007_s10915_022_01810_1 crossref_primary_10_1007_s10915_025_02999_7 crossref_primary_10_1007_s10915_025_02942_w crossref_primary_10_1016_j_jcp_2021_110405 crossref_primary_10_1007_s11071_020_05943_6 crossref_primary_10_3390_fractalfract6070349 crossref_primary_10_1007_s10915_020_01365_z crossref_primary_10_1016_j_cma_2023_115943 crossref_primary_10_1016_j_aml_2023_108942 crossref_primary_10_1016_j_physd_2024_134264 |
| Cites_doi | 10.1016/j.jcp.2018.02.023 10.1137/15M1039857 10.1137/140979563 10.1007/BF01398686 10.1016/j.apnum.2005.03.003 10.1063/1.1744102 10.1515/cmam-2017-0039 10.1016/j.cpc.2019.07.008 10.1103/PhysRevLett.105.108104 10.1103/PhysRevE.68.016306 10.1137/16M1075302 10.1007/s00032-013-0199-x 10.1002/cpa.20331 10.1109/83.661186 10.1016/j.camwa.2018.07.036 10.1103/PhysRevE.64.021603 10.1016/j.jde.2016.05.016 10.1016/j.anihpc.2014.03.005 10.1103/PhysRevE.66.046129 10.1146/annurev.fluid.30.1.139 10.1007/s00211-017-0904-8 10.1016/j.jcp.2007.02.001 10.1002/pssb.2221330150 10.1137/18M118236X 10.1016/bs.hna.2019.05.001 10.1016/j.jcp.2014.08.001 10.1103/PhysRevLett.96.098102 10.1016/j.jcp.2014.04.024 10.1038/35000537 10.1016/j.jtbi.2008.03.027 10.1137/16M1089320 10.1090/mcom/3413 10.1016/j.jcp.2004.01.029 10.1137/18M1203560 10.4310/CMS.2016.v14.n6.a3 10.1103/PhysRevLett.58.2235 10.1016/0001-6160(79)90196-2 10.1137/140952107 10.1109/ICCV.2001.937500 10.1137/17M1150153 10.1016/j.cma.2016.03.018 10.1016/S0167-2789(03)00030-7 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s10915-020-01351-5 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: ProQuest advanced technologies & aerospace journals url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1573-7691 |
| ExternalDocumentID | 10_1007_s10915_020_01351_5 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z92 ZMTXR ZWQNP ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-40a818c190dbfda568604e3aa0d5d12e8e237d555938ab567279d8a33f9c72a03 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 92 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588319400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-7474 |
| IngestDate | Wed Nov 05 08:40:22 EST 2025 Sat Nov 29 01:56:27 EST 2025 Tue Nov 18 22:11:58 EST 2025 Fri Feb 21 02:36:49 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | 65R20 Energy dissipation 65M70 Error estimate Time-fractional Allen–Cahn Regularity Time stepping scheme |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-40a818c190dbfda568604e3aa0d5d12e8e237d555938ab567279d8a33f9c72a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6431-7483 |
| PQID | 2918315133 |
| PQPubID | 2043771 |
| ParticipantIDs | proquest_journals_2918315133 crossref_citationtrail_10_1007_s10915_020_01351_5 crossref_primary_10_1007_s10915_020_01351_5 springer_journals_10_1007_s10915_020_01351_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20201100 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 20201100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of scientific computing |
| PublicationTitleAbbrev | J Sci Comput |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Shao, Rappel, Levine (CR42) 2010; 105 Ainthworth, Mao (CR1) 2017; 55 Kirchner, Feng, Neal (CR30) 2000; 403 Xu, Prince (CR52) 1998; 7 CR38 Du, Ju, Li, Qiao (CR15) 2018; 363 CR31 Anderson, McFadden, Wheeler (CR4) 1998; 30 Lin, Xu (CR32) 2007; 225 Sun, Wu (CR46) 2006; 56 Qian, Wang, Sheng (CR40) 2003; 68 Song, Xu, Karniadakis (CR45) 2016; 305 Cahn, Hilliard (CR9) 1958; 28 Valdinoci (CR49) 2013; 81 Lubich (CR34) 1988; 52 Bates, Sarah, Jianlong (CR7) 2009; 6 Jin, Lazarov, Zhou (CR25) 2016; 38 Golding, Cox (CR21) 2006; 96 Kilbas, Srivastava, Trujillo (CR29) 2006 Allen, Cahn (CR2) 1979; 27 Mustapha, Abdallah, Furati (CR35) 2014; 52 Clarke, Vvedensky (CR10) 1987; 58 Jin, Li, Zhou (CR26) 2018; 138 Chechkin, Gorenflo, Sokolov (CR11) 2002; 66 Du, Liu, Wang (CR18) 2004; 198 Oldham, Spanier (CR37) 1974 Shen, Xu, Yang (CR43) 2019; 61 (CR24) 2013 Pismen (CR39) 2001; 64 CR17 Caffarelli, Roquejoffre, Savin (CR8) 2010; 63 Antil, Bartels (CR5) 2017; 17 CR14 Guan, Lowengrub, Wang, Wise (CR22) 2014; 277 CR13 Tang, Yu, Zhou (CR48) 2019; 41 Chen, Zhao, Cao, Wang, Zhang (CR12) 2019; 245 Du, Yang (CR20) 2016; 54 Van der Waals (CR50) 1894; 13 Gui, Zhao (CR23) 2015; 32 Wise, Lowengrub, Frieboes, Cristini (CR51) 2008; 253 Jin, Li, Zhou (CR27) 2018; 56 Nigmatullin (CR36) 1986; 133 Shen, Tang, Yang (CR44) 2016; 14 Bates (CR6) 2006; 48 Jin, Li, Zhou (CR28) 2019; 88 Akagi, Schimperna, Segatti (CR3) 2016; 261 Tang, Yang (CR47) 2016; 34 Sabzikar, Meerschaert, Chen (CR41) 2015; 293 Du, Ju, Li, Qiao (CR16) 2019; 57 Liu, Shen (CR33) 2003; 179 Du, Yang, Zhou (CR19) 2017; 22 KB Oldham (1351_CR37) 1974 Q Du (1351_CR18) 2004; 198 WP Bates (1351_CR7) 2009; 6 Z-Z Sun (1351_CR46) 2006; 56 JW Cahn (1351_CR9) 1958; 28 J Shen (1351_CR44) 2016; 14 K Mustapha (1351_CR35) 2014; 52 Enrico Valdinoci (1351_CR49) 2013; 81 Q Du (1351_CR19) 2017; 22 SM Wise (1351_CR51) 2008; 253 Y Lin (1351_CR32) 2007; 225 Q Du (1351_CR20) 2016; 54 PW Bates (1351_CR6) 2006; 48 DM Anderson (1351_CR4) 1998; 30 1351_CR17 L Caffarelli (1351_CR8) 2010; 63 C Xu (1351_CR52) 1998; 7 1351_CR14 T Tang (1351_CR48) 2019; 41 1351_CR13 B Jin (1351_CR28) 2019; 88 L Chen (1351_CR12) 2019; 245 LM Pismen (1351_CR39) 2001; 64 R Nigmatullin (1351_CR36) 1986; 133 B Jin (1351_CR27) 2018; 56 AV Chechkin (1351_CR11) 2002; 66 F Sabzikar (1351_CR41) 2015; 293 C Gui (1351_CR23) 2015; 32 M Ainthworth (1351_CR1) 2017; 55 JW Kirchner (1351_CR30) 2000; 403 B Jin (1351_CR26) 2018; 138 Q Du (1351_CR16) 2019; 57 F Song (1351_CR45) 2016; 305 Lev Davidovich Landau and Evgenii Mikhailovich Lifshitz (1351_CR24) 2013 C Lubich (1351_CR34) 1988; 52 C Liu (1351_CR33) 2003; 179 Goro Akagi (1351_CR3) 2016; 261 T Tang (1351_CR47) 2016; 34 SM Allen (1351_CR2) 1979; 27 B Jin (1351_CR25) 2016; 38 T Qian (1351_CR40) 2003; 68 1351_CR38 S Clarke (1351_CR10) 1987; 58 Harbir Antil (1351_CR5) 2017; 17 Q Du (1351_CR15) 2018; 363 Z Guan (1351_CR22) 2014; 277 JD Van der Waals (1351_CR50) 1894; 13 J Shen (1351_CR43) 2019; 61 I Golding (1351_CR21) 2006; 96 1351_CR31 D Shao (1351_CR42) 2010; 105 AA Kilbas (1351_CR29) 2006 |
| References_xml | – volume: 14 start-page: 1517 issue: 6 year: 2016 end-page: 1534 ident: CR44 article-title: On the maximum principle preserving schemes for the generalized Allen–Cahn equation publication-title: Commun. Math. Sci. – volume: 57 start-page: 875 year: 2019 end-page: 898 ident: CR16 article-title: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen–Cahn equation publication-title: SIAM J. Numer. Anal. – volume: 52 start-page: 2512 issue: 5 year: 2014 end-page: 2529 ident: CR35 article-title: A discontinuous Petrov–Galerkin method for time-fractional diffusion equations publication-title: SIAM J. Numer. Anal. – volume: 133 start-page: 425 issue: 1 year: 1986 end-page: 430 ident: CR36 article-title: The realization of the generalized transfer equation in a medium with fractal geometry publication-title: Phys. Status Solidi (b) – volume: 34 start-page: 471 issue: 5 year: 2016 end-page: 481 ident: CR47 article-title: Implicit-explicit scheme for the Allen–Cahn equation preserves the maximum principle publication-title: J. Comput. Math. – volume: 198 start-page: 450 issue: 2 year: 2004 end-page: 468 ident: CR18 article-title: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes publication-title: J. Comput. Phys. – volume: 261 start-page: 2935 issue: 6 year: 2016 end-page: 2985 ident: CR3 article-title: Fractional Cahn–Hilliard, Allen–Cahn and porous medium equations publication-title: J. Diff. Equ. – year: 1974 ident: CR37 publication-title: The Fractional Calculus – volume: 68 start-page: 016306 issue: 1 year: 2003 ident: CR40 article-title: Molecular scale contact line hydrodynamics of immiscible flows publication-title: Phys. Rev. E – volume: 27 start-page: 1085 issue: 6 year: 1979 end-page: 1095 ident: CR2 article-title: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening publication-title: Acta Metall. – volume: 63 start-page: 1111 issue: 9 year: 2010 end-page: 1144 ident: CR8 article-title: Nonlocal minimal surfaces publication-title: Commun. Pure Appl. Math. – volume: 245 start-page: 106842 year: 2019 ident: CR12 article-title: An accurate and efficient algorithm for the time-fractional molecular beam epitaxy model with slope selection publication-title: Comput. Phys. Commun. – volume: 61 start-page: 474 issue: 3 year: 2019 end-page: 506 ident: CR43 article-title: A new class of efficient and robust energy stable schemes for gradient flows publication-title: SIAM Rev. – volume: 52 start-page: 129 issue: 2 year: 1988 end-page: 145 ident: CR34 article-title: Convolution quadrature and discretized operational calculus I publication-title: Numer. Math. – volume: 363 start-page: 39 year: 2018 end-page: 54 ident: CR15 article-title: Stabilized linear semi-implicit schemes for the nonlocal Cahn–Hilliard equation publication-title: J. Comput. Phys. – volume: 13 start-page: 657 issue: 1 year: 1894 end-page: 725 ident: CR50 article-title: Thermodynamic theory of capillarity assuming steady density change publication-title: J. Phys. Chem. – volume: 66 start-page: 046129 year: 2002 ident: CR11 article-title: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations publication-title: Phys. Rev. E – volume: 138 start-page: 101 issue: 1 year: 2018 end-page: 131 ident: CR26 article-title: Discrete maximal regularity of time-stepping schemes for fractional evolution equations publication-title: Numer. Math. – volume: 7 start-page: 359 issue: 3 year: 1998 end-page: 369 ident: CR52 article-title: Snakes, shapes, and gradient vector flow publication-title: IEEE Trans. Image Process. – volume: 30 start-page: 139 issue: 1 year: 1998 end-page: 165 ident: CR4 article-title: Diffuse-interface methods in fluid mechanics publication-title: Annu. Rev. Fluid Mech. – volume: 96 start-page: 098102 issue: 9 year: 2006 ident: CR21 article-title: Physical nature of bacterial cytoplasm publication-title: Phys. Rev. Lett. – volume: 277 start-page: 48 year: 2014 end-page: 71 ident: CR22 article-title: Second order convex splitting schemes for periodic nonlocal Cahn–Hilliard and Allen–Cahn equations publication-title: J. Comput. Phys. – volume: 105 start-page: 108104 issue: 10 year: 2010 ident: CR42 article-title: Computational model for cell morphodynamics publication-title: Phys. Rev. Lett. – volume: 293 start-page: 14 year: 2015 end-page: 28 ident: CR41 article-title: Tempered fractional calculus publication-title: J. Comput. Phys. – volume: 179 start-page: 211 issue: 3–4 year: 2003 end-page: 228 ident: CR33 article-title: A phase field model for the mixture of two incompressible fluids and its approximation by a fourier-spectral method publication-title: Phys. D – volume: 56 start-page: 193 issue: 2 year: 2006 end-page: 209 ident: CR46 article-title: A fully discrete scheme for a diffusion wave system publication-title: Appl. Numer. Math. – volume: 55 start-page: 1689 issue: 4 year: 2017 end-page: 1718 ident: CR1 article-title: Analysis and approximation of a fractional Cahn–Hilliard equation publication-title: SIAM J. Numer. Anal. – volume: 81 start-page: 1 issue: 1 year: 2013 end-page: 23 ident: CR49 article-title: A fractional framework for perimeters and phase transitions publication-title: Milan J. Math. – volume: 64 start-page: 021603 issue: 2 year: 2001 ident: CR39 article-title: Nonlocal diffuse interface theory of thin films and the moving contact line publication-title: Phys. Rev. E – volume: 6 start-page: 33 issue: 1 year: 2009 end-page: 49 ident: CR7 article-title: Numerical analysis for a nonlocal Allen–Cahn equation publication-title: Int. J. Numer. Anal. Model – volume: 48 start-page: 13 year: 2006 end-page: 52 ident: CR6 article-title: On some nonlocal evolution equations arising in materials science publication-title: Nonlinear Dyn. Evol. Equ. – volume: 305 start-page: 376 year: 2016 end-page: 404 ident: CR45 article-title: A fractional phase-field model for two-phase flows with tunable sharpness: algorithms and simulations publication-title: Comput. Methods Appl. Mech. Eng. – ident: CR14 – year: 2006 ident: CR29 publication-title: Theory and Applications of Fractional Differential Equations – volume: 17 start-page: 661 issue: 4 year: 2017 end-page: 678 ident: CR5 article-title: Spectral approximation of fractional PDEs in image processing and phase field modeling publication-title: Comput. Methods Appl. Math. – volume: 403 start-page: 524 issue: 6769 year: 2000 ident: CR30 article-title: Fractal stream chemistry and its implications for contaminant transport in catchments publication-title: Nature – volume: 88 start-page: 2157 issue: 319 year: 2019 end-page: 2186 ident: CR28 article-title: Subdiffusion with a time-dependent coefficient: analysis and numerical solution publication-title: Math. Comput. – volume: 225 start-page: 1533 issue: 2 year: 2007 end-page: 1552 ident: CR32 article-title: Finite difference/spectral approximations for the time-fractional diffusion equation publication-title: J. Comput. Phys. – volume: 28 start-page: 258 issue: 2 year: 1958 end-page: 267 ident: CR9 article-title: Free energy of a nonuniform system. I. Interfacial free energy publication-title: J. Chem. Phys. – volume: 38 start-page: A146 issue: 1 year: 2016 end-page: A170 ident: CR25 article-title: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data publication-title: SIAM J. Sci. Comput. – volume: 32 start-page: 785 issue: 4 year: 2015 end-page: 812 ident: CR23 article-title: Traveling wave solutions of Allen–Cahn equation with a fractional laplacian publication-title: Annales de l’Institut Henri Poincare C Non Linear Anal. – volume: 253 start-page: 524 issue: 3 year: 2008 end-page: 543 ident: CR51 article-title: Three-dimensional multispecies nonlinear tumor growth I: model and numerical method publication-title: J. Theor. Biol. – volume: 54 start-page: 1899 issue: 3 year: 2016 end-page: 1919 ident: CR20 article-title: Asymptotically compatible Fourier spectral approximations of nonlocal Allen–Cahn equations publication-title: SIAM J. Numer. Anal. – year: 2013 ident: CR24 publication-title: Course of Theoretical Physics – volume: 56 start-page: 1 issue: 1 year: 2018 end-page: 23 ident: CR27 article-title: Numerical analysis of nonlinear subdiffusion equations publication-title: SIAM J. Numer. Anal. – ident: CR38 – ident: CR17 – ident: CR31 – ident: CR13 – volume: 58 start-page: 2235 issue: 21 year: 1987 ident: CR10 article-title: Origin of reflection high-energy electron–diffraction intensity oscillations during molecular-beam epitaxy: A computational modeling approach publication-title: Phys. Rev. Lett. – volume: 22 start-page: 339 issue: 2 year: 2017 end-page: 368 ident: CR19 article-title: Analysis of a nonlocal-in-time parabolic equation publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 41 start-page: A3757 issue: 6 year: 2019 end-page: A3778 ident: CR48 article-title: On energy dissipation theory and numerical stability for time-fractional phase field equations publication-title: SIAM J. Sci. Comput. – volume: 363 start-page: 39 year: 2018 ident: 1351_CR15 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.02.023 – volume: 54 start-page: 1899 issue: 3 year: 2016 ident: 1351_CR20 publication-title: SIAM J. Numer. Anal. doi: 10.1137/15M1039857 – volume: 38 start-page: A146 issue: 1 year: 2016 ident: 1351_CR25 publication-title: SIAM J. Sci. Comput. doi: 10.1137/140979563 – volume: 6 start-page: 33 issue: 1 year: 2009 ident: 1351_CR7 publication-title: Int. J. Numer. Anal. Model – volume: 52 start-page: 129 issue: 2 year: 1988 ident: 1351_CR34 publication-title: Numer. Math. doi: 10.1007/BF01398686 – volume: 56 start-page: 193 issue: 2 year: 2006 ident: 1351_CR46 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2005.03.003 – volume: 28 start-page: 258 issue: 2 year: 1958 ident: 1351_CR9 publication-title: J. Chem. Phys. doi: 10.1063/1.1744102 – volume: 17 start-page: 661 issue: 4 year: 2017 ident: 1351_CR5 publication-title: Comput. Methods Appl. Math. doi: 10.1515/cmam-2017-0039 – volume: 245 start-page: 106842 year: 2019 ident: 1351_CR12 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2019.07.008 – ident: 1351_CR17 – volume: 105 start-page: 108104 issue: 10 year: 2010 ident: 1351_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.108104 – volume: 68 start-page: 016306 issue: 1 year: 2003 ident: 1351_CR40 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.68.016306 – volume: 55 start-page: 1689 issue: 4 year: 2017 ident: 1351_CR1 publication-title: SIAM J. Numer. Anal. doi: 10.1137/16M1075302 – volume-title: The Fractional Calculus year: 1974 ident: 1351_CR37 – volume: 81 start-page: 1 issue: 1 year: 2013 ident: 1351_CR49 publication-title: Milan J. Math. doi: 10.1007/s00032-013-0199-x – volume: 63 start-page: 1111 issue: 9 year: 2010 ident: 1351_CR8 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20331 – volume-title: Course of Theoretical Physics year: 2013 ident: 1351_CR24 – volume: 34 start-page: 471 issue: 5 year: 2016 ident: 1351_CR47 publication-title: J. Comput. Math. – volume: 7 start-page: 359 issue: 3 year: 1998 ident: 1351_CR52 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.661186 – ident: 1351_CR31 doi: 10.1016/j.camwa.2018.07.036 – volume: 64 start-page: 021603 issue: 2 year: 2001 ident: 1351_CR39 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.021603 – volume: 261 start-page: 2935 issue: 6 year: 2016 ident: 1351_CR3 publication-title: J. Diff. Equ. doi: 10.1016/j.jde.2016.05.016 – volume: 32 start-page: 785 issue: 4 year: 2015 ident: 1351_CR23 publication-title: Annales de l’Institut Henri Poincare C Non Linear Anal. doi: 10.1016/j.anihpc.2014.03.005 – volume: 66 start-page: 046129 year: 2002 ident: 1351_CR11 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.66.046129 – volume-title: Theory and Applications of Fractional Differential Equations year: 2006 ident: 1351_CR29 – volume: 30 start-page: 139 issue: 1 year: 1998 ident: 1351_CR4 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.30.1.139 – volume: 138 start-page: 101 issue: 1 year: 2018 ident: 1351_CR26 publication-title: Numer. Math. doi: 10.1007/s00211-017-0904-8 – volume: 225 start-page: 1533 issue: 2 year: 2007 ident: 1351_CR32 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.02.001 – volume: 133 start-page: 425 issue: 1 year: 1986 ident: 1351_CR36 publication-title: Phys. Status Solidi (b) doi: 10.1002/pssb.2221330150 – volume: 13 start-page: 657 issue: 1 year: 1894 ident: 1351_CR50 publication-title: J. Phys. Chem. – volume: 57 start-page: 875 year: 2019 ident: 1351_CR16 publication-title: SIAM J. Numer. Anal. doi: 10.1137/18M118236X – ident: 1351_CR14 doi: 10.1016/bs.hna.2019.05.001 – volume: 22 start-page: 339 issue: 2 year: 2017 ident: 1351_CR19 publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 277 start-page: 48 year: 2014 ident: 1351_CR22 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.08.001 – volume: 96 start-page: 098102 issue: 9 year: 2006 ident: 1351_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.098102 – volume: 293 start-page: 14 year: 2015 ident: 1351_CR41 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.04.024 – volume: 403 start-page: 524 issue: 6769 year: 2000 ident: 1351_CR30 publication-title: Nature doi: 10.1038/35000537 – volume: 253 start-page: 524 issue: 3 year: 2008 ident: 1351_CR51 publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2008.03.027 – volume: 56 start-page: 1 issue: 1 year: 2018 ident: 1351_CR27 publication-title: SIAM J. Numer. Anal. doi: 10.1137/16M1089320 – volume: 88 start-page: 2157 issue: 319 year: 2019 ident: 1351_CR28 publication-title: Math. Comput. doi: 10.1090/mcom/3413 – volume: 198 start-page: 450 issue: 2 year: 2004 ident: 1351_CR18 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.01.029 – volume: 41 start-page: A3757 issue: 6 year: 2019 ident: 1351_CR48 publication-title: SIAM J. Sci. Comput. doi: 10.1137/18M1203560 – volume: 14 start-page: 1517 issue: 6 year: 2016 ident: 1351_CR44 publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2016.v14.n6.a3 – volume: 58 start-page: 2235 issue: 21 year: 1987 ident: 1351_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.2235 – volume: 48 start-page: 13 year: 2006 ident: 1351_CR6 publication-title: Nonlinear Dyn. Evol. Equ. – ident: 1351_CR13 – volume: 27 start-page: 1085 issue: 6 year: 1979 ident: 1351_CR2 publication-title: Acta Metall. doi: 10.1016/0001-6160(79)90196-2 – volume: 52 start-page: 2512 issue: 5 year: 2014 ident: 1351_CR35 publication-title: SIAM J. Numer. Anal. doi: 10.1137/140952107 – ident: 1351_CR38 doi: 10.1109/ICCV.2001.937500 – volume: 61 start-page: 474 issue: 3 year: 2019 ident: 1351_CR43 publication-title: SIAM Rev. doi: 10.1137/17M1150153 – volume: 305 start-page: 376 year: 2016 ident: 1351_CR45 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.03.018 – volume: 179 start-page: 211 issue: 3–4 year: 2003 ident: 1351_CR33 publication-title: Phys. D doi: 10.1016/S0167-2789(03)00030-7 |
| SSID | ssj0009892 |
| Score | 2.5649323 |
| Snippet | In this work, we consider a time-fractional Allen–Cahn equation, where the conventional first order time derivative is replaced by a Caputo fractional... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 42 |
| SubjectTerms | Algorithms Computational Mathematics and Numerical Analysis Energy dissipation Estimates Free energy Gradient flow Inequality Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Maximum principle Molecular beam epitaxy Numerical analysis Numerical methods Quadratures Regularity Splitting Theoretical |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BYYABaAFRKCgDAwgixXGcOGyoasRChfhSt8ixXYFUBWhaZv4D_5Bfgu04DSBAgjnOyTr7fGed33sA-xwFhBM_cIkXSjeghBuZFzfkUpUTgqFQCCM2EfX7dDCILyworKheu1ctSXNSfwC7xUijifVDKkyQS-ZhQaU7qgUbLq9ua6pdaqSQVfgQVxXLgYXKfG_jczqqa8wvbVGTbZLV_81zDVZsdemcltuhCXMyb8Hy-YyatWhB00Zz4RxYyunDdUg0EsRNxiXKQVvQCitvL69ddpc7vaeSD7w4cSoOE4flwulPy3bPyDk3OtTFBtwkvevumWsVFlyuQm-iLo9MJWyuigKRDQUjIQ29QGLGPEEE8iWVPo4EUbcOTFlGdNc2FpRhPIx55DMPb0Ijf8jlFjiUcpZpyRtm5KxDiiIshijOvNjLMu61AVWOTrmlH9cqGKO0Jk7WjkuV41LjuJS04Wj2z2NJvvHr6E61fqkNxCL1Y3VmIS1i04bjar3qzz9b2_7b8B1Y8vWSG5RiBxqT8VTuwiJ_ntwX4z2zQd8B_e7cIA priority: 102 providerName: Springer Nature |
| Title | Time-Fractional Allen–Cahn Equations: Analysis and Numerical Methods |
| URI | https://link.springer.com/article/10.1007/s10915-020-01351-5 https://www.proquest.com/docview/2918315133 |
| Volume | 85 |
| WOSCitedRecordID | wos000588319400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7691 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: K7- dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1573-7691 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: P5Z dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7691 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7o5sGLv8XpHD14UDTYtE2behEdG4I4hr8QLyVNMhSkbuvm2f_B_9C_xCRNLQru4qWXNKH0ey95ycv7PoA9jgPCiRcg4oYSBZRwI_OCQi5VOCEYDoUwYhNRr0cfHuK-PXDL7bXKck40E7V45fqM_NiLlfFhrUZyOhwhrRqls6tWQmMe6polQUs39MljRbpLjSiyciSCVNgc2KIZWzoXY12brK9l-QQj8nNhqqLNXwlSs-50l__7xSuwZCNO56wwkVWYk9karFqfzp19Szx9sA5dXQ-CuuOi1kH30Torn-8fbfaUOZ1RwQqenzglk4nDMuH0pkXS58W5MmrU-QbcdTu37QtkdRYQVw44UVtIppZtrkIDkQ4EIyEN3UD6jLmCCOxJKj0_EkTtPXzKUqJzt7GgzPcHMY885vqbUMteM7kFDqWcpVr4hhlR65DiyBcDHKdu7KYpdxuAy5-ccEtCrrUwXpKKPlkDkyhgEgNMQhpw-N1nWFBwzHy7WaKRWHfMkwqKBhyVeFbNf4-2PXu0HVj0tAmZ2sQm1CbjqdyFBf42ec7HLaifd3r96xbMX0aoZUxTPa9v7r8AoKrlQA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dSuQwFD64urDe-C-OjpoLhV3WYNM0bSqIiDooo8NeKHjXTZMMCkPV6Yzine_ge_hQPolJ2loU9M4Lr9sG2vOdn_TkfB_AmiQBk8wPMPNCjQPOpJN5waHUppxQgoRKObGJqNPh5-fxvxF4qmZh7LHKKia6QK2upP1HvunHBnzEqpHsXN9gqxplu6uVhEYBi7a-vzNbtnz7aN_Yd933Wwene4e4VBXA0sBtYDZMwiQpaRKhSrtKsJCHXqCpEJ5iiviaa59GiplKm3KRMtupjBUXlHZjGfnCo2bdHzAWUB5Zv2pHuCb55U6E2Tguw6ZMD8ohnXJULyZ2FtoeA6OMYPY2EdbV7buGrMtzrcnv9oWmYKKsqNFu4QLTMKKzGZguY1aOfpfE2n9moWXnXXCrX8xy2Gesjszzw-OeuMjQwU3Bep5voYqpBYlMoc6waGr10IlT287n4OxL3mceRrOrTC8A4lyK1Ar7CCfaHXISUdUlcerFXppKrwGkMmoiS5J1q_XRS2p6aAuExAAhcUBIWAP-vj5zXVCMfHp3s7J-UoabPKlN34CNCj_15Y9XW_x8tVX4dXh6cpwcH3XaSzDuW_i6OcwmjA76Q70MP-Xt4DLvrzhHQPD_q3H1AsTLPPg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20iuhBbVWsVs3Bg6Kh2SSbbrxJbVC0oeAH3sJmN0GhxNq0nv0P_kN_ibubpKmignjOZgizO5kZZt97APsM2Zhh09ax4US6TTBTMi-6wyJRTnCKHM6V2ETL98n9vdubQvGr2-7FSDLDNEiWpmTUHPC4OQV8c5FEFstLVRZGOp6FOVtepJf9-vVdSbtLlCyyCCWsi8LZzmEz39v4nJrKevPLiFRlHm_l_9-8Cst51amdZsekCjNRUoOl7oSyNa1BNY_yVDvIqagP18CTCBHdG2boB2lBKq-8v7616UOidZ4znvD0RCu4TTSacM0fZ2OgvtZV-tTpOtx6nZv2uZ4rL-hMhORINJVUJHImigUexpxihziGHVmUGhxzZEYkMq0Wx6IbsQgNsZzmupxQy4pd1jKpYW1AJXlKok3QCGE0lFI4VMlcOwS1LB4jNzRcIwyZUQdUOD1gOS25VMfoByWhsnRcIBwXKMcFuA5Hk3cGGSnHr6sbxV4GeYCmgemKfxmS4jZ1OC72rnz8s7Wtvy3fg4XemRdcXfiX27Boyt1XQMYGVEbDcbQD8-xl9JgOd9W5_QD1cOfo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-Fractional+Allen%E2%80%93Cahn+Equations%3A+Analysis+and+Numerical+Methods&rft.jtitle=Journal+of+scientific+computing&rft.au=Du%2C+Qiang&rft.au=Yang%2C+Jiang&rft.au=Zhou%2C+Zhi&rft.date=2020-11-01&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=85&rft.issue=2&rft_id=info:doi/10.1007%2Fs10915-020-01351-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10915_020_01351_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |