Energy-Optimal Routes for Battery Electric Vehicles

We study the problem of computing paths that minimize energy consumption of a battery electric vehicle. For that, we must cope with specific properties, such as regenerative braking and constraints imposed by the battery capacity. These restrictions can be captured by profiles , which are a function...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 82; číslo 5; s. 1490 - 1546
Hlavní autoři: Baum, Moritz, Dibbelt, Julian, Pajor, Thomas, Sauer, Jonas, Wagner, Dorothea, Zündorf, Tobias
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.05.2020
Springer Nature B.V
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We study the problem of computing paths that minimize energy consumption of a battery electric vehicle. For that, we must cope with specific properties, such as regenerative braking and constraints imposed by the battery capacity. These restrictions can be captured by profiles , which are a functional representation of optimal energy consumption between two locations, subject to initial state of charge. Efficient computation of profiles is a relevant problem on its own, but also a fundamental ingredient to many route planning approaches for battery electric vehicles. In this work, we prove that profiles have linear complexity. We examine different variants of Dijkstra’s algorithm to compute energy-optimal paths or profiles. Further, we derive a polynomial-time algorithm for the problem of finding an energy-optimal path between two locations that allows stops at charging stations. We also discuss a heuristic variant that is easy to implement, and carefully integrate it with the well-known Contraction Hierarchies algorithm and A* search. Finally, we propose a practical approach that enables computation of energy-optimal routes within milliseconds after fast (metric-dependent) preprocessing of the whole network. This enables flexible updates due to, e. g., weather forecasts or refinements of the consumption model. Practicality of our approaches is demonstrated in a comprehensive experimental study on realistic, large-scale road networks.
AbstractList We study the problem of computing paths that minimize energy consumption of a battery electric vehicle. For that, we must cope with specific properties, such as regenerative braking and constraints imposed by the battery capacity. These restrictions can be captured by profiles, which are a functional representation of optimal energy consumption between two locations, subject to initial state of charge. Efficient computation of profiles is a relevant problem on its own, but also a fundamental ingredient to many route planning approaches for battery electric vehicles. In this work, we prove that profiles have linear complexity. We examine different variants of Dijkstra’s algorithm to compute energy-optimal paths or profiles. Further, we derive a polynomial-time algorithm for the problem of finding an energy-optimal path between two locations that allows stops at charging stations. We also discuss a heuristic variant that is easy to implement, and carefully integrate it with the well-known Contraction Hierarchies algorithm and A* search. Finally, we propose a practical approach that enables computation of energy-optimal routes within milliseconds after fast (metric-dependent) preprocessing of the whole network. This enables flexible updates due to, e. g., weather forecasts or refinements of the consumption model. Practicality of our approaches is demonstrated in a comprehensive experimental study on realistic, large-scale road networks.
We study the problem of computing paths that minimize energy consumption of a battery electric vehicle. For that, we must cope with specific properties, such as regenerative braking and constraints imposed by the battery capacity. These restrictions can be captured by profiles , which are a functional representation of optimal energy consumption between two locations, subject to initial state of charge. Efficient computation of profiles is a relevant problem on its own, but also a fundamental ingredient to many route planning approaches for battery electric vehicles. In this work, we prove that profiles have linear complexity. We examine different variants of Dijkstra’s algorithm to compute energy-optimal paths or profiles. Further, we derive a polynomial-time algorithm for the problem of finding an energy-optimal path between two locations that allows stops at charging stations. We also discuss a heuristic variant that is easy to implement, and carefully integrate it with the well-known Contraction Hierarchies algorithm and A* search. Finally, we propose a practical approach that enables computation of energy-optimal routes within milliseconds after fast (metric-dependent) preprocessing of the whole network. This enables flexible updates due to, e. g., weather forecasts or refinements of the consumption model. Practicality of our approaches is demonstrated in a comprehensive experimental study on realistic, large-scale road networks.
Author Baum, Moritz
Pajor, Thomas
Sauer, Jonas
Wagner, Dorothea
Dibbelt, Julian
Zündorf, Tobias
Author_xml – sequence: 1
  givenname: Moritz
  orcidid: 0000-0003-0898-7244
  surname: Baum
  fullname: Baum, Moritz
  email: moritz.baum@kit.edu
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 2
  givenname: Julian
  surname: Dibbelt
  fullname: Dibbelt, Julian
– sequence: 3
  givenname: Thomas
  surname: Pajor
  fullname: Pajor, Thomas
– sequence: 4
  givenname: Jonas
  surname: Sauer
  fullname: Sauer, Jonas
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 5
  givenname: Dorothea
  surname: Wagner
  fullname: Wagner, Dorothea
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 6
  givenname: Tobias
  surname: Zündorf
  fullname: Zündorf, Tobias
  organization: Karlsruhe Institute of Technology (KIT)
BookMark eNp9kE1LAzEQQINUsK3-AU8LnqOTr01y1FI_oFAQ9RrSbFK3rLs1yR76711dQfDQ01zemxneDE3arvUIXRK4JgDyJgFwwTAQjQFKIbA-QVPCGcUgOJmgKRCpMC-JPEOzlHYAhEpdThFbtj5uD3i9z_WHbYrnrs8-FaGLxZ3N2cdDsWy8y7F2xZt_r13j0zk6DbZJ_uJ3ztHr_fJl8YhX64enxe0KO0Z0xiwIYqVQthLKl1IK5rgNXIeqtE5bLiSR4LQjPGgWwmYTlK8kLSsVNopSYHN0Ne7dx-6z9ymbXdfHdjhpKJMllaA0Hyg1Ui52KUUfjKuzzXXX5mjrxhAw34nMmMgMicxPIqMHlf5T93GoEA_HJTZKaYDbrY9_Xx2xvgBynXoW
CitedBy_id crossref_primary_10_1145_3571282
crossref_primary_10_1080_19427867_2024_2315359
crossref_primary_10_3390_en15249471
crossref_primary_10_1016_j_trd_2022_103447
crossref_primary_10_3389_fenrg_2022_996726
crossref_primary_10_3390_math13010145
crossref_primary_10_1016_j_trc_2023_104411
crossref_primary_10_3390_a16090402
crossref_primary_10_1016_j_trb_2025_103207
crossref_primary_10_1007_s10707_022_00485_y
crossref_primary_10_1109_ACCESS_2025_3589363
crossref_primary_10_1109_TITS_2020_3044177
crossref_primary_10_3390_en16104173
Cites_doi 10.1609/aaai.v25i1.7991
10.1016/j.cor.2011.07.017
10.1145/1412228.1412239
10.1109/TSSC.1968.300136
10.1609/aaai.v25i1.7803
10.1145/321992.321993
10.1145/2886843
10.1007/978-3-540-72845-0_5
10.1145/321765.321768
10.1016/0377-2217(84)90077-8
10.1080/19397038.2011.592956
10.1007/978-3-319-11167-4_3
10.1145/2442942.2442947
10.1016/j.trd.2016.01.001
10.1007/978-3-642-16111-7_35
10.1090/dimacs/074/04
10.1016/j.trb.2017.03.007
10.1016/0898-1221(85)90105-1
10.1016/j.trc.2013.07.001
10.1016/j.trb.2016.02.002
10.1145/351827.384254
10.1287/opre.17.3.395
10.1145/2093973.2094062
10.1145/2525314.2525361
10.2307/2373068
10.1016/j.apenergy.2016.01.097
10.1007/s00453-012-9714-7
10.1109/TKDE.2002.1033772
10.1109/ITST.2012.6425172
10.1007/978-3-642-05465-5_8
10.1007/3-540-45643-0_4
10.3141/2497-05
10.1007/978-3-642-33090-2_16
10.1007/BF01386390
10.1145/2533828.2533838
10.1109/TITS.2013.2261064
10.1287/trsc.1110.0401
10.1090/qam/102435
10.1145/1671970.1671976
10.1145/2820783.2820826
10.1109/IVS.2011.5940556
10.1007/11561071_51
10.1109/IPDPS.2011.108
10.1002/net.3230210304
10.1609/aaai.v26i1.8326
10.1007/BF02187894
10.1007/978-3-319-38851-9_3
10.3182/20140824-6-ZA-1003.01532
10.1137/1.9781611972924.2
10.1007/978-3-319-49487-6_2
10.1007/s00453-009-9341-0
10.1145/2666310.2666382
10.1287/trsc.2014.0579
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
2019© Springer Science+Business Media, LLC, part of Springer Nature 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: 2019© Springer Science+Business Media, LLC, part of Springer Nature 2019
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00453-019-00655-9
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 1546
ExternalDocumentID 10_1007_s00453_019_00655_9
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: WA 654/23-1
  funderid: http://dx.doi.org/10.13039/501100001659
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c319t-3f51a758ad58e67753c4af49fd6ac9a457170c9c14f93ffbbf8ed726d8fb82203
IEDL.DBID RSV
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000500271700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Thu Oct 02 16:29:23 EDT 2025
Sat Nov 29 02:20:29 EST 2025
Tue Nov 18 20:42:59 EST 2025
Fri Feb 21 02:43:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Electric vehicles
Speedup techniques
Algorithm engineering
Profile search
Shortest paths
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-3f51a758ad58e67753c4af49fd6ac9a457170c9c14f93ffbbf8ed726d8fb82203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0898-7244
PQID 2376270894
PQPubID 2043795
PageCount 57
ParticipantIDs proquest_journals_2376270894
crossref_citationtrail_10_1007_s00453_019_00655_9
crossref_primary_10_1007_s00453_019_00655_9
springer_journals_10_1007_s00453_019_00655_9
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BauerRDellingDSandersPSchieferdeckerDSchultesDWagnerDCombining hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithmACM J. Exp. Algorithmics2010152.3:12.3:3127758611284.05265
Schönfelder, R., Leucker, M., Walther, S.: Efficient profile routing for electric vehicles. In: Proceedings of the 1st International Conference on Internet of Vehicles (IOV’14), Lecture Notes in Computer Science, vol. 8662, pp. 21–30. Springer (2014)
HolzerMSchulzFWagnerDEngineering multilevel overlay graphs for shortest-path queriesACM J. Exp. Algorithmics2009132.5:12.5:2624437081284.05289
Storandt, S.: Algorithms for Vehicle Navigation. Ph.D. thesis, Universität Stuttgart (2013)
Ford, L.R.: Network Flow Theory. Technical Report P-923, Rand Corporation, Santa Monica, California (1956)
Storandt, S.: Quick and energy-efficient routes: computing constrained shortest paths for electric vehicles. In: Proceedings of the 5th ACM SIGSPATIAL International Workshop on Computational Transportation Science (IWCTS’12), pp. 20–25. ACM (2012)
JohnsonDBA note on Dijkstra’s shortest path algorithmJ. ACM19732033853883345730265.6802610.1145/321765.321768
LiaoCSLuSHShenZJMThe electric vehicle touring problemTransp. Res. Part B: Methodol.20168616318010.1016/j.trb.2016.02.002
Baum, M., Dibbelt, J., Wagner, D., Zündorf, T.: Modeling and engineering constrained shortest path algorithms for battery electric vehicles. In: Proceedings of the 25th Annual European Symposium on Algorithms (ESA’17), Leibniz International Proceedings in Informatics (LIPIcs), vol. 87, pp. 11:1–11:16. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2017)
Liu, C., Wu, J., Long, C.: Joint charging and routing optimization for electric vehicle navigation systems. In: Proceedings of the 19th International Federation of Automatic Control World Congress (IFAC’14), IFAC Proceedings Volumes, vol. 47, pp. 9611–9616. Elsevier (2014)
Baum, M., Dibbelt, J., Gemsa, A., Wagner, D., Zündorf, T.: Shortest feasible paths with charging stops for battery electric vehicles. In: Proceedings of the 23rd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’15), pp. 44:1–44:10. ACM (2015)
KlugeSSántaCDanglSWildSMBrokateMReifKBuschFOn the computation of the energy-optimal route dependent on the traffic load in IngolstadtTransp. Res. Part C: Emerg. Technol.2013369711510.1016/j.trc.2013.07.001
SweetingWJHutchinsonARSavageSDFactors affecting electric vehicle energy consumptionInt. J. Sustain. Eng.20114319220110.1080/19397038.2011.592956
MartinsEQVOn a multicriteria shortest path problemEur. J. Oper. Res.19841622362457414030533.9009010.1016/0377-2217(84)90077-8
Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph partitioning with natural cuts. In: Proceedings of the 25th IEEE International Parallel and Distributed Processing Symposium (IPDPS’11), pp. 1135–1146. IEEE (2011)
DreyfusSEAn appraisal of some shortest-path algorithmsOper. Res.19691733954120172.4420210.1287/opre.17.3.395
Baum, M.: Engineering Route Planning Algorithms for Battery Electric Vehicles. Phd thesis, Karlsruhe Institute of Technology (2018)
Kobayashi, Y., Kiyama, N., Aoshima, H., Kashiyama, M.: A Route search method for electric vehicles in consideration of range and locations of charging stations. In: Proceedings of the 7th IEEE Intelligent Vehicles Symposium (IV’11), pp. 920–925. IEEE (2011)
FoschiniLHershbergerJSuriSOn the complexity of time-dependent shortest pathsAlgorithmica20146841075109731650491317.6806910.1007/s00453-012-9714-7
Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Energy-optimal routes for electric vehicles. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’13), pp. 54–63. ACM (2013)
Eisner, J., Funke, S., Storandt, S.: Optimal route planning for electric vehicles in large networks. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI’11), pp. 1108–1113. AAAI Press (2011)
BellmanROn a routing problemQ Appl. Math.195816187900081.1440310.1090/qam/102435
AtallahMJSome dynamic computational geometry problemsComput. Math. Appl.19851112117111818220830586.6808510.1016/0898-1221(85)90105-1
GeisbergerRSandersPSchultesDVetterCExact routing in large road networks using contraction hierarchiesTransp. Sci.201246338840410.1287/trsc.1110.0401
DavenportHSchinzelAA combinatorial problem connected with differential equationsAm. J. Math.19658736846941900100132.0060110.2307/2373068
HuberGBogenbergerKLong-trip optimization of charging strategies for battery electric vehiclesTransp. Res. Record: J. Transp. Res. Board20152497455310.3141/2497-05
Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Proceedings of the 6th Workshop on Experimental Algorithms (WEA’07), Lecture Notes in Computer Science, vol. 4525, pp. 52–65. Springer (2007)
Baum, M., Dibbelt, J., Hübschle-Schneider, L., Pajor, T., Wagner, D.: Speed-consumption tradeoff for electric vehicle route planning. In: Proceedings of the 14th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’14), OpenAccess Series in Informatics (OASIcs), vol. 42, pp. 138–151. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2014)
HartPENilssonNJRaphaelBA formal basis for the heuristic determination of minimum cost pathsIEEE Trans. Syst. Sci. Cybern.19684210010710.1109/TSSC.1968.300136
SmithOJBolandNWatererHSolving shortest path problems with a weight constraint and replenishment arcsComput. Oper. Res.201239596498428342921251.9007210.1016/j.cor.2011.07.017
Storandt, S., Funke, S.: Cruising with a battery-powered vehicle and not getting stranded. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI’12), pp. 1628–1634. AAAI Press (2012)
OrdaARomRMinimum weight paths in time-dependent networksNetworks199121329531911037460742.9008210.1002/net.3230210304
DellingDGoldbergAVPajorTWerneckRFCustomizable route planning in road networksTransp. Sci.201751256659110.1287/trsc.2014.0579
Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing. In: Proceedings of the 6th ACM SIGSPATIAL International Workshop on Computational Transportation Science (IWCTS’13), pp. 25–30. ACM (2013)
SunZZhouXTo save money or to save time: intelligent routing design for plug-in hybrid electric vehicleTransp. Res. Part D: Transp. Environ.20164323825010.1016/j.trd.2016.01.001
Hausberger, S., Rexeis, M., Zallinger, M., Luz, R.: Emission Factors from the Model PHEM for the HBEFA Version 3. Technical Report I-20/2009, University of Technology, Graz (2009)
Schulz, F., Wagner, D., Zaroliagis, C.: Using multi-level graphs for timetable information in railway systems. In: Proceedings of the 4th Workshop on Algorithm Engineering & Experiments (ALENEX’02), Lecture Notes in Computer Science, vol. 2409, pp. 43–59. Springer (2002)
DellingDTime-dependent SHARC-routingAlgorithmica2011601609427759101216.6820110.1007/s00453-009-9341-0
Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-performance multi-level routing, dimacs series. In: Discrete Mathematics and Theoretical Computer Science, vol. 74, pp. 73–92. American Mathematical Society (2009)
Baum, M., Sauer, J., Wagner, D., Zündorf, T.: Consumption profiles in route planning for electric vehicles: theory and applications. In: Proceedings of the 16th International Symposium on Experimental Algorithms (SEA’17), Leibniz International Proceedings in Informatics (LIPIcs), vol. 75, pp. 19:1–19:18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2017)
DijkstraEWA note on two problems in connexion with graphsNumer. Math.1959112692711076090092.1600210.1007/BF01386390
Delling, D., Wagner, D.: Time-Dependent Route Planning, Lecture Notes in Computer Science, vol. 5868, pp. 207–230. Springer (2009)
Artmeier, A., Haselmayr, J., Leucker, M., Sachenbacher, M.: The shortest path problem revisited: optimal routing for electric vehicles. In: Proceedings of the 33rd Annual German Conference on Advances in Artificial Intelligence (KI’10), Lecture Notes in Computer Science, vol. 6359, pp. 309–316. Springer (2010)
FioriCAhnKRakhaHAPower-based electric vehicle energy consumption model: model development and validationAppl. Energy201616825726810.1016/j.apenergy.2016.01.097
Tielert, T., Rieger, D., Hartenstein, H., Luz, R., Hausberger, S.: Can V2X communication help electric vehicles save energy? In: Proceedings of the 12th International Conference on ITS Telecommunications (ITST’12), pp. 232–237. IEEE (2012)
Goldberg, A.V., Harrelson, C.: Computing the shortest path: a* search meets graph theory. In: Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’05), pp. 156–165. SIAM (2005)
CherkasskyBVGeorgiadisLGoldbergAVTarjanREWerneckRFShortest-path feasibility algorithms: an experimental evaluationACM J. Exp. Algorithmics2010142.7:12.7:3727708451284.05275
CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20093CambridgeMIT Press1187.68679
BatzGVGeisbergerRSandersPVetterCMinimum time-dependent travel times with contraction hierarchiesACM J. Exp. Algorithmics2013181.4:11.4:4330611291322.05128
JungSPramanikSAn efficient path computation model for hierarchically structured topographical road mapsIEEE Trans. Knowl. Data Eng.20021451029104610.1109/TKDE.2002.1033772
Dean, B.C.: Shortest Paths in FIFO Time-Dependent Networks: Theory and Algorithms. Technical Report, Massachusetts Institute of Technology (2004)
Batz, G.V., Sanders, P.: Time-dependent route planning with generalized objective functions. In: Proceedings of the 20th Annual European Symposium on Algorithms (ESA’12), Lecture Notes in Computer Science, vol. 7501, pp. 169–180. Springer (2012)
JohnsonDBEfficient algorithms for shortest paths in sparse networksJ. ACM19772411134497100343.6802810.1145/321992.321993
WangYJiangJMuTContext-aware and energy-driven route optimization for fully electric vehicles via crowdsourcingIEEE Trans. Intell. Transp. Syst.20131431331134510.1109/TITS.2013.2261064
DibbeltJStrasserBWagnerDCusto
MJ Atallah (655_CR2) 1985; 11
C Fiori (655_CR30) 2016; 168
655_CR48
F Schulz (655_CR56) 2000; 5
655_CR45
655_CR47
OJ Smith (655_CR58) 2012; 39
M Holzer (655_CR39) 2009; 13
M Strehler (655_CR62) 2017; 103
EQV Martins (655_CR49) 1984; 16
A Wiernik (655_CR68) 1988; 3
R Bauer (655_CR6) 2010; 15
655_CR1
655_CR31
S Jung (655_CR43) 2002; 14
655_CR3
655_CR5
655_CR7
655_CR38
DB Johnson (655_CR42) 1977; 24
BV Cherkassky (655_CR15) 2010; 14
655_CR34
655_CR35
655_CR36
WJ Sweeting (655_CR65) 2011; 4
J Dibbelt (655_CR25) 2016; 21
TH Cormen (655_CR16) 2009
L Foschini (655_CR32) 2014; 68
G Huber (655_CR40) 2015; 2497
655_CR64
655_CR21
DB Johnson (655_CR41) 1973; 20
655_CR60
655_CR61
655_CR28
655_CR29
655_CR22
R Geisberger (655_CR33) 2012; 46
655_CR66
655_CR23
S Kluge (655_CR44) 2013; 36
655_CR24
CS Liao (655_CR46) 2016; 86
655_CR8
Y Wang (655_CR67) 2013; 14
655_CR9
Z Sun (655_CR63) 2016; 43
D Delling (655_CR19) 2011; 60
655_CR51
655_CR52
R Bellman (655_CR14) 1958; 16
655_CR53
655_CR10
655_CR54
A Orda (655_CR50) 1991; 21
D Delling (655_CR20) 2017; 51
655_CR59
655_CR18
655_CR11
655_CR55
655_CR12
SE Dreyfus (655_CR27) 1969; 17
655_CR13
655_CR57
GV Batz (655_CR4) 2013; 18
PE Hart (655_CR37) 1968; 4
H Davenport (655_CR17) 1965; 87
EW Dijkstra (655_CR26) 1959; 1
References_xml – reference: Storandt, S.: Quick and energy-efficient routes: computing constrained shortest paths for electric vehicles. In: Proceedings of the 5th ACM SIGSPATIAL International Workshop on Computational Transportation Science (IWCTS’12), pp. 20–25. ACM (2012)
– reference: JohnsonDBEfficient algorithms for shortest paths in sparse networksJ. ACM19772411134497100343.6802810.1145/321992.321993
– reference: Schönfelder, R., Leucker, M.: Abstract routing models and abstractions in the context of vehicle routing. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15), pp. 2639–2645. AAAI Press (2015)
– reference: Goldberg, A.V., Harrelson, C.: Computing the shortest path: a* search meets graph theory. In: Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’05), pp. 156–165. SIAM (2005)
– reference: HartPENilssonNJRaphaelBA formal basis for the heuristic determination of minimum cost pathsIEEE Trans. Syst. Sci. Cybern.19684210010710.1109/TSSC.1968.300136
– reference: Schulz, F., Wagner, D., Zaroliagis, C.: Using multi-level graphs for timetable information in railway systems. In: Proceedings of the 4th Workshop on Algorithm Engineering & Experiments (ALENEX’02), Lecture Notes in Computer Science, vol. 2409, pp. 43–59. Springer (2002)
– reference: Kobayashi, Y., Kiyama, N., Aoshima, H., Kashiyama, M.: A Route search method for electric vehicles in consideration of range and locations of charging stations. In: Proceedings of the 7th IEEE Intelligent Vehicles Symposium (IV’11), pp. 920–925. IEEE (2011)
– reference: Storandt, S.: Algorithms for Vehicle Navigation. Ph.D. thesis, Universität Stuttgart (2013)
– reference: Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing. In: Proceedings of the 6th ACM SIGSPATIAL International Workshop on Computational Transportation Science (IWCTS’13), pp. 25–30. ACM (2013)
– reference: Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: Proceedings of the 14th Meeting on Algorithm Engineering & Experiments (ALENEX’12), pp. 16–29. SIAM (2012)
– reference: DreyfusSEAn appraisal of some shortest-path algorithmsOper. Res.19691733954120172.4420210.1287/opre.17.3.395
– reference: BauerRDellingDSandersPSchieferdeckerDSchultesDWagnerDCombining hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithmACM J. Exp. Algorithmics2010152.3:12.3:3127758611284.05265
– reference: Ford, L.R.: Network Flow Theory. Technical Report P-923, Rand Corporation, Santa Monica, California (1956)
– reference: AtallahMJSome dynamic computational geometry problemsComput. Math. Appl.19851112117111818220830586.6808510.1016/0898-1221(85)90105-1
– reference: SunZZhouXTo save money or to save time: intelligent routing design for plug-in hybrid electric vehicleTransp. Res. Part D: Transp. Environ.20164323825010.1016/j.trd.2016.01.001
– reference: SmithOJBolandNWatererHSolving shortest path problems with a weight constraint and replenishment arcsComput. Oper. Res.201239596498428342921251.9007210.1016/j.cor.2011.07.017
– reference: Goodrich, M.T., Pszona, P.: Two-phase bicriterion search for finding fast and efficient electric vehicle routes. In: Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’14), pp. 193–202. ACM (2014)
– reference: HuberGBogenbergerKLong-trip optimization of charging strategies for battery electric vehiclesTransp. Res. Record: J. Transp. Res. Board20152497455310.3141/2497-05
– reference: JungSPramanikSAn efficient path computation model for hierarchically structured topographical road mapsIEEE Trans. Knowl. Data Eng.20021451029104610.1109/TKDE.2002.1033772
– reference: KlugeSSántaCDanglSWildSMBrokateMReifKBuschFOn the computation of the energy-optimal route dependent on the traffic load in IngolstadtTransp. Res. Part C: Emerg. Technol.2013369711510.1016/j.trc.2013.07.001
– reference: CherkasskyBVGeorgiadisLGoldbergAVTarjanREWerneckRFShortest-path feasibility algorithms: an experimental evaluationACM J. Exp. Algorithmics2010142.7:12.7:3727708451284.05275
– reference: Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-performance multi-level routing, dimacs series. In: Discrete Mathematics and Theoretical Computer Science, vol. 74, pp. 73–92. American Mathematical Society (2009)
– reference: Baum, M., Sauer, J., Wagner, D., Zündorf, T.: Consumption profiles in route planning for electric vehicles: theory and applications. In: Proceedings of the 16th International Symposium on Experimental Algorithms (SEA’17), Leibniz International Proceedings in Informatics (LIPIcs), vol. 75, pp. 19:1–19:18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2017)
– reference: JohnsonDBA note on Dijkstra’s shortest path algorithmJ. ACM19732033853883345730265.6802610.1145/321765.321768
– reference: Luxen, D., Vetter, C.: Real-time routing with OpenStreetMap data. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’11), pp. 513–516. ACM (2011)
– reference: Artmeier, A., Haselmayr, J., Leucker, M., Sachenbacher, M.: The shortest path problem revisited: optimal routing for electric vehicles. In: Proceedings of the 33rd Annual German Conference on Advances in Artificial Intelligence (KI’10), Lecture Notes in Computer Science, vol. 6359, pp. 309–316. Springer (2010)
– reference: Baum, M., Dibbelt, J., Wagner, D., Zündorf, T.: Modeling and engineering constrained shortest path algorithms for battery electric vehicles. In: Proceedings of the 25th Annual European Symposium on Algorithms (ESA’17), Leibniz International Proceedings in Informatics (LIPIcs), vol. 87, pp. 11:1–11:16. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2017)
– reference: DijkstraEWA note on two problems in connexion with graphsNumer. Math.1959112692711076090092.1600210.1007/BF01386390
– reference: Baum, M.: Engineering Route Planning Algorithms for Battery Electric Vehicles. Phd thesis, Karlsruhe Institute of Technology (2018)
– reference: Batz, G.V., Sanders, P.: Time-dependent route planning with generalized objective functions. In: Proceedings of the 20th Annual European Symposium on Algorithms (ESA’12), Lecture Notes in Computer Science, vol. 7501, pp. 169–180. Springer (2012)
– reference: Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Dynamic time-dependent route planning in road networks with user preferences. In: Proceedings of the 15th International Symposium on Experimental Algorithms (SEA’16), Lecture Notes in Computer Science, vol. 9685, pp. 33–49. Springer (2016)
– reference: SchulzFWagnerDWeiheKDijkstra’s algorithm on-line: an empirical case study from public railroad transportACM J. Exp. Algorithmics2000512:112:2318939631070.90509
– reference: Storandt, S., Funke, S.: Cruising with a battery-powered vehicle and not getting stranded. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI’12), pp. 1628–1634. AAAI Press (2012)
– reference: SweetingWJHutchinsonARSavageSDFactors affecting electric vehicle energy consumptionInt. J. Sustain. Eng.20114319220110.1080/19397038.2011.592956
– reference: HolzerMSchulzFWagnerDEngineering multilevel overlay graphs for shortest-path queriesACM J. Exp. Algorithmics2009132.5:12.5:2624437081284.05289
– reference: Tielert, T., Rieger, D., Hartenstein, H., Luz, R., Hausberger, S.: Can V2X communication help electric vehicles save energy? In: Proceedings of the 12th International Conference on ITS Telecommunications (ITST’12), pp. 232–237. IEEE (2012)
– reference: WangYJiangJMuTContext-aware and energy-driven route optimization for fully electric vehicles via crowdsourcingIEEE Trans. Intell. Transp. Syst.20131431331134510.1109/TITS.2013.2261064
– reference: Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph partitioning with natural cuts. In: Proceedings of the 25th IEEE International Parallel and Distributed Processing Symposium (IPDPS’11), pp. 1135–1146. IEEE (2011)
– reference: StrehlerMMertingSSchwanCEnergy-efficient shortest routes for electric and hybrid vehiclesTransp. Res. Part B: Methodol.201710311113510.1016/j.trb.2017.03.007
– reference: DibbeltJStrasserBWagnerDCustomizable contraction hierarchiesACM J. Exp. Algorithmics2016211.5:11.5:4934843491365.68353
– reference: Sachenbacher, M., Leucker, M., Artmeier, A., Haselmayr, J.: Efficient energy-optimal routing for electric vehicles. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI’11), pp. 1402–1407. AAAI Press (2011)
– reference: Baum, M., Dibbelt, J., Hübschle-Schneider, L., Pajor, T., Wagner, D.: Speed-consumption tradeoff for electric vehicle route planning. In: Proceedings of the 14th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’14), OpenAccess Series in Informatics (OASIcs), vol. 42, pp. 138–151. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2014)
– reference: FoschiniLHershbergerJSuriSOn the complexity of time-dependent shortest pathsAlgorithmica20146841075109731650491317.6806910.1007/s00453-012-9714-7
– reference: Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Proceedings of the 6th Workshop on Experimental Algorithms (WEA’07), Lecture Notes in Computer Science, vol. 4525, pp. 52–65. Springer (2007)
– reference: DavenportHSchinzelAA combinatorial problem connected with differential equationsAm. J. Math.19658736846941900100132.0060110.2307/2373068
– reference: BellmanROn a routing problemQ Appl. Math.195816187900081.1440310.1090/qam/102435
– reference: Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. In: Proceedings of the 13th Annual European Conference on Algorithms (ESA’05), Lecture Notes in Computer Science, vol. 3669, pp. 568–579. Springer (2005)
– reference: BatzGVGeisbergerRSandersPVetterCMinimum time-dependent travel times with contraction hierarchiesACM J. Exp. Algorithmics2013181.4:11.4:4330611291322.05128
– reference: DellingDGoldbergAVPajorTWerneckRFCustomizable route planning in road networksTransp. Sci.201751256659110.1287/trsc.2014.0579
– reference: Sweda, T.M., Dolinskaya, I.S., Klabjan, D.: Adaptive Routing and Recharging Policies for Electric Vehicles. Working paper no. 14-02, Northwestern University, Illinois (2014)
– reference: Bast, H., Delling, D., Goldberg, A.V., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, R.F.: Route Planning in Transportation Networks, Lecture Notes in Computer Science, vol. 9220, pp. 19–80. Springer (2016)
– reference: Baum, M., Dibbelt, J., Gemsa, A., Wagner, D., Zündorf, T.: Shortest feasible paths with charging stops for battery electric vehicles. In: Proceedings of the 23rd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’15), pp. 44:1–44:10. ACM (2015)
– reference: Delling, D., Wagner, D.: Time-Dependent Route Planning, Lecture Notes in Computer Science, vol. 5868, pp. 207–230. Springer (2009)
– reference: LiaoCSLuSHShenZJMThe electric vehicle touring problemTransp. Res. Part B: Methodol.20168616318010.1016/j.trb.2016.02.002
– reference: CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20093CambridgeMIT Press1187.68679
– reference: Eisner, J., Funke, S., Storandt, S.: Optimal route planning for electric vehicles in large networks. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI’11), pp. 1108–1113. AAAI Press (2011)
– reference: Dean, B.C.: Shortest Paths in FIFO Time-Dependent Networks: Theory and Algorithms. Technical Report, Massachusetts Institute of Technology (2004)
– reference: FioriCAhnKRakhaHAPower-based electric vehicle energy consumption model: model development and validationAppl. Energy201616825726810.1016/j.apenergy.2016.01.097
– reference: Hausberger, S., Rexeis, M., Zallinger, M., Luz, R.: Emission Factors from the Model PHEM for the HBEFA Version 3. Technical Report I-20/2009, University of Technology, Graz (2009)
– reference: Gutman, R.J.: Reach-based routing: a new approach to shortest path algorithms optimized for road networks. In: Proceedings of the 6th Workshop on Algorithm Engineering & Experiments (ALENEX’04), pp. 100–111. SIAM (2004)
– reference: MartinsEQVOn a multicriteria shortest path problemEur. J. Oper. Res.19841622362457414030533.9009010.1016/0377-2217(84)90077-8
– reference: GeisbergerRSandersPSchultesDVetterCExact routing in large road networks using contraction hierarchiesTransp. Sci.201246338840410.1287/trsc.1110.0401
– reference: OrdaARomRMinimum weight paths in time-dependent networksNetworks199121329531911037460742.9008210.1002/net.3230210304
– reference: Liu, C., Wu, J., Long, C.: Joint charging and routing optimization for electric vehicle navigation systems. In: Proceedings of the 19th International Federation of Automatic Control World Congress (IFAC’14), IFAC Proceedings Volumes, vol. 47, pp. 9611–9616. Elsevier (2014)
– reference: Schönfelder, R., Leucker, M., Walther, S.: Efficient profile routing for electric vehicles. In: Proceedings of the 1st International Conference on Internet of Vehicles (IOV’14), Lecture Notes in Computer Science, vol. 8662, pp. 21–30. Springer (2014)
– reference: WiernikASharirMPlanar realizations of nonlinear Davenport–Schinzel sequences by segmentsDiscret. Comput. Geom.19883115479181770636.6804310.1007/BF02187894
– reference: DellingDTime-dependent SHARC-routingAlgorithmica2011601609427759101216.6820110.1007/s00453-009-9341-0
– reference: Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Energy-optimal routes for electric vehicles. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’13), pp. 54–63. ACM (2013)
– ident: 655_CR64
– ident: 655_CR29
  doi: 10.1609/aaai.v25i1.7991
– volume: 39
  start-page: 964
  issue: 5
  year: 2012
  ident: 655_CR58
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.07.017
– volume: 13
  start-page: 2.5:1
  year: 2009
  ident: 655_CR39
  publication-title: ACM J. Exp. Algorithmics
  doi: 10.1145/1412228.1412239
– volume: 4
  start-page: 100
  issue: 2
  year: 1968
  ident: 655_CR37
  publication-title: IEEE Trans. Syst. Sci. Cybern.
  doi: 10.1109/TSSC.1968.300136
– ident: 655_CR51
  doi: 10.1609/aaai.v25i1.7803
– volume: 24
  start-page: 1
  issue: 1
  year: 1977
  ident: 655_CR42
  publication-title: J. ACM
  doi: 10.1145/321992.321993
– volume: 21
  start-page: 1.5:1
  year: 2016
  ident: 655_CR25
  publication-title: ACM J. Exp. Algorithmics
  doi: 10.1145/2886843
– ident: 655_CR23
  doi: 10.1007/978-3-540-72845-0_5
– volume: 20
  start-page: 385
  issue: 3
  year: 1973
  ident: 655_CR41
  publication-title: J. ACM
  doi: 10.1145/321765.321768
– volume: 16
  start-page: 236
  issue: 2
  year: 1984
  ident: 655_CR49
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(84)90077-8
– ident: 655_CR60
– volume: 4
  start-page: 192
  issue: 3
  year: 2011
  ident: 655_CR65
  publication-title: Int. J. Sustain. Eng.
  doi: 10.1080/19397038.2011.592956
– ident: 655_CR55
  doi: 10.1007/978-3-319-11167-4_3
– ident: 655_CR59
  doi: 10.1145/2442942.2442947
– volume: 43
  start-page: 238
  year: 2016
  ident: 655_CR63
  publication-title: Transp. Res. Part D: Transp. Environ.
  doi: 10.1016/j.trd.2016.01.001
– ident: 655_CR1
  doi: 10.1007/978-3-642-16111-7_35
– ident: 655_CR9
– ident: 655_CR12
– ident: 655_CR31
– ident: 655_CR22
  doi: 10.1090/dimacs/074/04
– ident: 655_CR54
– ident: 655_CR13
– volume: 103
  start-page: 111
  year: 2017
  ident: 655_CR62
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2017.03.007
– volume: 11
  start-page: 1171
  issue: 12
  year: 1985
  ident: 655_CR2
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(85)90105-1
– volume: 36
  start-page: 97
  year: 2013
  ident: 655_CR44
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2013.07.001
– volume-title: Introduction to Algorithms
  year: 2009
  ident: 655_CR16
– volume: 86
  start-page: 163
  year: 2016
  ident: 655_CR46
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2016.02.002
– ident: 655_CR34
– volume: 5
  start-page: 12:1
  year: 2000
  ident: 655_CR56
  publication-title: ACM J. Exp. Algorithmics
  doi: 10.1145/351827.384254
– volume: 17
  start-page: 395
  issue: 3
  year: 1969
  ident: 655_CR27
  publication-title: Oper. Res.
  doi: 10.1287/opre.17.3.395
– ident: 655_CR48
  doi: 10.1145/2093973.2094062
– ident: 655_CR38
– ident: 655_CR10
  doi: 10.1145/2525314.2525361
– volume: 87
  start-page: 684
  issue: 3
  year: 1965
  ident: 655_CR17
  publication-title: Am. J. Math.
  doi: 10.2307/2373068
– volume: 168
  start-page: 257
  year: 2016
  ident: 655_CR30
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.01.097
– volume: 68
  start-page: 1075
  issue: 4
  year: 2014
  ident: 655_CR32
  publication-title: Algorithmica
  doi: 10.1007/s00453-012-9714-7
– volume: 14
  start-page: 1029
  issue: 5
  year: 2002
  ident: 655_CR43
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2002.1033772
– ident: 655_CR66
  doi: 10.1109/ITST.2012.6425172
– ident: 655_CR24
  doi: 10.1007/978-3-642-05465-5_8
– volume: 14
  start-page: 2.7:1
  year: 2010
  ident: 655_CR15
  publication-title: ACM J. Exp. Algorithmics
– ident: 655_CR57
  doi: 10.1007/3-540-45643-0_4
– volume: 2497
  start-page: 45
  year: 2015
  ident: 655_CR40
  publication-title: Transp. Res. Record: J. Transp. Res. Board
  doi: 10.3141/2497-05
– ident: 655_CR5
  doi: 10.1007/978-3-642-33090-2_16
– volume: 18
  start-page: 1.4:1
  year: 2013
  ident: 655_CR4
  publication-title: ACM J. Exp. Algorithmics
– volume: 1
  start-page: 269
  issue: 1
  year: 1959
  ident: 655_CR26
  publication-title: Numer. Math.
  doi: 10.1007/BF01386390
– ident: 655_CR7
– ident: 655_CR28
  doi: 10.1145/2533828.2533838
– ident: 655_CR18
– volume: 14
  start-page: 1331
  issue: 3
  year: 2013
  ident: 655_CR67
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2013.2261064
– volume: 46
  start-page: 388
  issue: 3
  year: 2012
  ident: 655_CR33
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.1110.0401
– volume: 16
  start-page: 87
  issue: 1
  year: 1958
  ident: 655_CR14
  publication-title: Q Appl. Math.
  doi: 10.1090/qam/102435
– volume: 15
  start-page: 2.3:1
  year: 2010
  ident: 655_CR6
  publication-title: ACM J. Exp. Algorithmics
  doi: 10.1145/1671970.1671976
– ident: 655_CR8
  doi: 10.1145/2820783.2820826
– ident: 655_CR45
  doi: 10.1109/IVS.2011.5940556
– ident: 655_CR52
  doi: 10.1007/11561071_51
– ident: 655_CR21
  doi: 10.1109/IPDPS.2011.108
– volume: 21
  start-page: 295
  issue: 3
  year: 1991
  ident: 655_CR50
  publication-title: Networks
  doi: 10.1002/net.3230210304
– ident: 655_CR61
  doi: 10.1609/aaai.v26i1.8326
– volume: 3
  start-page: 15
  issue: 1
  year: 1988
  ident: 655_CR68
  publication-title: Discret. Comput. Geom.
  doi: 10.1007/BF02187894
– ident: 655_CR11
  doi: 10.1007/978-3-319-38851-9_3
– ident: 655_CR47
  doi: 10.3182/20140824-6-ZA-1003.01532
– ident: 655_CR53
  doi: 10.1137/1.9781611972924.2
– ident: 655_CR3
  doi: 10.1007/978-3-319-49487-6_2
– volume: 60
  start-page: 60
  issue: 1
  year: 2011
  ident: 655_CR19
  publication-title: Algorithmica
  doi: 10.1007/s00453-009-9341-0
– ident: 655_CR35
  doi: 10.1145/2666310.2666382
– volume: 51
  start-page: 566
  issue: 2
  year: 2017
  ident: 655_CR20
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.2014.0579
– ident: 655_CR36
SSID ssj0012796
Score 2.3275704
Snippet We study the problem of computing paths that minimize energy consumption of a battery electric vehicle. For that, we must cope with specific properties, such...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1490
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Electric vehicles
Energy conservation
Energy consumption
Hierarchies
Mathematics of Computing
Polynomials
Power consumption
Regenerative braking
Roads & highways
Route planning
Theory of Computation
Weather forecasting
Title Energy-Optimal Routes for Battery Electric Vehicles
URI https://link.springer.com/article/10.1007/s00453-019-00655-9
https://www.proquest.com/docview/2376270894
Volume 82
WOSCitedRecordID wos000500271700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60evBifWK1yh68aWAf2U1yFGnxIFV8lN6WzQsLWqVbBf-9k3R3i6KC3hbyYJnJZGYy38wAHGuaSMuFJqmIJKEpfnEdUWJZJN0ToVb-6WJ4yQYDPhqJ6yoprKzR7nVI0t_UTbKbsz4c9kcQpzdTIpZhBdUdd-J4cztsYgcx8125XN95QlFBV6ky3-_xWR0tbMwvYVGvbfrt__3nBqxX1mVwNj8Om7BkJlvQrjs3BJUgb0PS8yl_5AovjCdc4HBBpgzQgA3mBTffg57vjzNWwdA8eOjcDtz3e3fnF6Rqn0AUytWMJDaNCnQHCp1ykzH0SxQtLBVWZ4USBU3RkwuVUBG1IrFWIs-MZnGmuZVoNoTJLrQmzxOzBwF6OTpUlFpNLWr8UDJWqJhmcaRCSWPWgaimYq6q2uKuxcVj3lRF9lTJkSq5p0ouOnDSrHmZV9b4dXa3Zk5eSVmZO0RPzEIuaAdOa2Yshn_ebf9v0w9gLXZutsc5dqE1m76aQ1hVb7NxOT3yp-8D897RaA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MTp1D74poF-XJvmUWRj4pyic-wttEmDA52yTsH_3iRrOxQV9K2QD8pdLneX-90dwLHEIFUxkyRkXkow1F-x9JAo6qXmiVAK-3Qx6NJeLx4O2U2RFJaXaPcyJGlv6irZzVgfBvvDiNGbIWGLsIRaYxkg3-3doIod-NR25TJ95wlqBV2kyny_x2d1NLcxv4RFrbZp1__3n-uwVliXztnsOGzAQjbehHrZucEpBHkLgpZN-SPX-sJ40gsMLijLHW3AOrOCm-9Oy_bHGQlnkD1Y6Nw23Ldb_fMOKdonEKHlakoCFXqJdgcSGcZZRLVfIjBRyJSMEsESDLUn5womPFQsUCrVPMsk9SMZq1SbDW6wA7Xx8zjbBUd7OdIViEqi0hrfTSlNhI-R7wk3RZ82wCupyEVRW9y0uHjkVVVkSxWuqcItVThrwEm15mVWWePX2c2SObyQspwbRI9P3ZhhA05LZsyHf95t72_Tj2Cl07_q8u5F73IfVn3jclvMYxNq08lrdgDL4m06yieH9iR-AM5d1Ew
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFPHFecXp1D74pmG9pE3zKLqhOOZAHXsLbdLgQOtYq-C_N0kvU1FBfCs0CeWcpOd8OZcP4FhgL5YhFcinToywr55C4WAkiRPrK0LBzdXFqE8Gg3A8psMPVfwm270KSRY1DbpLU5p3pkJ26sI37YnoPCCKtA31EV2EJaxJgzRevx3VcQSXGIYuzUGPsDLWZdnM92t8Nk1zf_NLiNRYnl7z_9-8Dmul12mdFdtkAxaSdBOaFaODVR7wLfC6phQQ3agfyZOaoPOFksxSjq1VNOJ8s7qGN2fCrVHyYFLqtuG-1707v0QlrQLi6rzlyJO-EymYEAk_TAKi8ArHkcRUiiDiNMK-Qng2p9zBknpSxkqXiSBuIEIZK3fC9nagkT6nyS5YCv0Im2MsBZbKE7BjQiLu4sB1uB1jl7TAqSTKeNlzXFNfPLK6W7KRClNSYUYqjLbgpJ4zLTpu_Dq6XSmKlacvYzrTxyV2SHELTivFzF__vNre34Yfwcrwosf6V4PrfVh1NRI3qZBtaOSzl-QAlvlrPslmh2ZTvgNARt0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Optimal+Routes+for+Battery+Electric+Vehicles&rft.jtitle=Algorithmica&rft.au=Baum%2C+Moritz&rft.au=Dibbelt%2C+Julian&rft.au=Pajor%2C+Thomas&rft.au=Sauer%2C+Jonas&rft.date=2020-05-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=82&rft.issue=5&rft.spage=1490&rft.epage=1546&rft_id=info:doi/10.1007%2Fs00453-019-00655-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_019_00655_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon