Energy-Optimal Routes for Battery Electric Vehicles
We study the problem of computing paths that minimize energy consumption of a battery electric vehicle. For that, we must cope with specific properties, such as regenerative braking and constraints imposed by the battery capacity. These restrictions can be captured by profiles , which are a function...
Uloženo v:
| Vydáno v: | Algorithmica Ročník 82; číslo 5; s. 1490 - 1546 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.05.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 0178-4617, 1432-0541 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We study the problem of computing paths that minimize energy consumption of a battery electric vehicle. For that, we must cope with specific properties, such as regenerative braking and constraints imposed by the battery capacity. These restrictions can be captured by
profiles
, which are a functional representation of optimal energy consumption between two locations, subject to initial state of charge. Efficient computation of profiles is a relevant problem on its own, but also a fundamental ingredient to many route planning approaches for battery electric vehicles. In this work, we prove that profiles have linear complexity. We examine different variants of Dijkstra’s algorithm to compute energy-optimal paths or profiles. Further, we derive a
polynomial-time
algorithm for the problem of finding an energy-optimal path between two locations that allows stops at charging stations. We also discuss a heuristic variant that is easy to implement, and carefully integrate it with the well-known Contraction Hierarchies algorithm and A* search. Finally, we propose a practical approach that enables computation of energy-optimal routes within milliseconds after fast (metric-dependent) preprocessing of the
whole
network. This enables flexible updates due to, e. g., weather forecasts or refinements of the consumption model. Practicality of our approaches is demonstrated in a comprehensive experimental study on realistic, large-scale road networks. |
|---|---|
| AbstractList | We study the problem of computing paths that minimize energy consumption of a battery electric vehicle. For that, we must cope with specific properties, such as regenerative braking and constraints imposed by the battery capacity. These restrictions can be captured by profiles, which are a functional representation of optimal energy consumption between two locations, subject to initial state of charge. Efficient computation of profiles is a relevant problem on its own, but also a fundamental ingredient to many route planning approaches for battery electric vehicles. In this work, we prove that profiles have linear complexity. We examine different variants of Dijkstra’s algorithm to compute energy-optimal paths or profiles. Further, we derive a polynomial-time algorithm for the problem of finding an energy-optimal path between two locations that allows stops at charging stations. We also discuss a heuristic variant that is easy to implement, and carefully integrate it with the well-known Contraction Hierarchies algorithm and A* search. Finally, we propose a practical approach that enables computation of energy-optimal routes within milliseconds after fast (metric-dependent) preprocessing of the whole network. This enables flexible updates due to, e. g., weather forecasts or refinements of the consumption model. Practicality of our approaches is demonstrated in a comprehensive experimental study on realistic, large-scale road networks. We study the problem of computing paths that minimize energy consumption of a battery electric vehicle. For that, we must cope with specific properties, such as regenerative braking and constraints imposed by the battery capacity. These restrictions can be captured by profiles , which are a functional representation of optimal energy consumption between two locations, subject to initial state of charge. Efficient computation of profiles is a relevant problem on its own, but also a fundamental ingredient to many route planning approaches for battery electric vehicles. In this work, we prove that profiles have linear complexity. We examine different variants of Dijkstra’s algorithm to compute energy-optimal paths or profiles. Further, we derive a polynomial-time algorithm for the problem of finding an energy-optimal path between two locations that allows stops at charging stations. We also discuss a heuristic variant that is easy to implement, and carefully integrate it with the well-known Contraction Hierarchies algorithm and A* search. Finally, we propose a practical approach that enables computation of energy-optimal routes within milliseconds after fast (metric-dependent) preprocessing of the whole network. This enables flexible updates due to, e. g., weather forecasts or refinements of the consumption model. Practicality of our approaches is demonstrated in a comprehensive experimental study on realistic, large-scale road networks. |
| Author | Baum, Moritz Pajor, Thomas Sauer, Jonas Wagner, Dorothea Dibbelt, Julian Zündorf, Tobias |
| Author_xml | – sequence: 1 givenname: Moritz orcidid: 0000-0003-0898-7244 surname: Baum fullname: Baum, Moritz email: moritz.baum@kit.edu organization: Karlsruhe Institute of Technology (KIT) – sequence: 2 givenname: Julian surname: Dibbelt fullname: Dibbelt, Julian – sequence: 3 givenname: Thomas surname: Pajor fullname: Pajor, Thomas – sequence: 4 givenname: Jonas surname: Sauer fullname: Sauer, Jonas organization: Karlsruhe Institute of Technology (KIT) – sequence: 5 givenname: Dorothea surname: Wagner fullname: Wagner, Dorothea organization: Karlsruhe Institute of Technology (KIT) – sequence: 6 givenname: Tobias surname: Zündorf fullname: Zündorf, Tobias organization: Karlsruhe Institute of Technology (KIT) |
| BookMark | eNp9kE1LAzEQQINUsK3-AU8LnqOTr01y1FI_oFAQ9RrSbFK3rLs1yR76711dQfDQ01zemxneDE3arvUIXRK4JgDyJgFwwTAQjQFKIbA-QVPCGcUgOJmgKRCpMC-JPEOzlHYAhEpdThFbtj5uD3i9z_WHbYrnrs8-FaGLxZ3N2cdDsWy8y7F2xZt_r13j0zk6DbZJ_uJ3ztHr_fJl8YhX64enxe0KO0Z0xiwIYqVQthLKl1IK5rgNXIeqtE5bLiSR4LQjPGgWwmYTlK8kLSsVNopSYHN0Ne7dx-6z9ymbXdfHdjhpKJMllaA0Hyg1Ui52KUUfjKuzzXXX5mjrxhAw34nMmMgMicxPIqMHlf5T93GoEA_HJTZKaYDbrY9_Xx2xvgBynXoW |
| CitedBy_id | crossref_primary_10_1145_3571282 crossref_primary_10_1080_19427867_2024_2315359 crossref_primary_10_3390_en15249471 crossref_primary_10_1016_j_trd_2022_103447 crossref_primary_10_3389_fenrg_2022_996726 crossref_primary_10_3390_math13010145 crossref_primary_10_1016_j_trc_2023_104411 crossref_primary_10_3390_a16090402 crossref_primary_10_1016_j_trb_2025_103207 crossref_primary_10_1007_s10707_022_00485_y crossref_primary_10_1109_ACCESS_2025_3589363 crossref_primary_10_1109_TITS_2020_3044177 crossref_primary_10_3390_en16104173 |
| Cites_doi | 10.1609/aaai.v25i1.7991 10.1016/j.cor.2011.07.017 10.1145/1412228.1412239 10.1109/TSSC.1968.300136 10.1609/aaai.v25i1.7803 10.1145/321992.321993 10.1145/2886843 10.1007/978-3-540-72845-0_5 10.1145/321765.321768 10.1016/0377-2217(84)90077-8 10.1080/19397038.2011.592956 10.1007/978-3-319-11167-4_3 10.1145/2442942.2442947 10.1016/j.trd.2016.01.001 10.1007/978-3-642-16111-7_35 10.1090/dimacs/074/04 10.1016/j.trb.2017.03.007 10.1016/0898-1221(85)90105-1 10.1016/j.trc.2013.07.001 10.1016/j.trb.2016.02.002 10.1145/351827.384254 10.1287/opre.17.3.395 10.1145/2093973.2094062 10.1145/2525314.2525361 10.2307/2373068 10.1016/j.apenergy.2016.01.097 10.1007/s00453-012-9714-7 10.1109/TKDE.2002.1033772 10.1109/ITST.2012.6425172 10.1007/978-3-642-05465-5_8 10.1007/3-540-45643-0_4 10.3141/2497-05 10.1007/978-3-642-33090-2_16 10.1007/BF01386390 10.1145/2533828.2533838 10.1109/TITS.2013.2261064 10.1287/trsc.1110.0401 10.1090/qam/102435 10.1145/1671970.1671976 10.1145/2820783.2820826 10.1109/IVS.2011.5940556 10.1007/11561071_51 10.1109/IPDPS.2011.108 10.1002/net.3230210304 10.1609/aaai.v26i1.8326 10.1007/BF02187894 10.1007/978-3-319-38851-9_3 10.3182/20140824-6-ZA-1003.01532 10.1137/1.9781611972924.2 10.1007/978-3-319-49487-6_2 10.1007/s00453-009-9341-0 10.1145/2666310.2666382 10.1287/trsc.2014.0579 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 2019© Springer Science+Business Media, LLC, part of Springer Nature 2019 |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: 2019© Springer Science+Business Media, LLC, part of Springer Nature 2019 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s00453-019-00655-9 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-0541 |
| EndPage | 1546 |
| ExternalDocumentID | 10_1007_s00453_019_00655_9 |
| GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: WA 654/23-1 funderid: http://dx.doi.org/10.13039/501100001659 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 VXZ W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c319t-3f51a758ad58e67753c4af49fd6ac9a457170c9c14f93ffbbf8ed726d8fb82203 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000500271700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-4617 |
| IngestDate | Thu Oct 02 16:29:23 EDT 2025 Sat Nov 29 02:20:29 EST 2025 Tue Nov 18 20:42:59 EST 2025 Fri Feb 21 02:43:06 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Electric vehicles Speedup techniques Algorithm engineering Profile search Shortest paths |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-3f51a758ad58e67753c4af49fd6ac9a457170c9c14f93ffbbf8ed726d8fb82203 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0898-7244 |
| PQID | 2376270894 |
| PQPubID | 2043795 |
| PageCount | 57 |
| ParticipantIDs | proquest_journals_2376270894 crossref_citationtrail_10_1007_s00453_019_00655_9 crossref_primary_10_1007_s00453_019_00655_9 springer_journals_10_1007_s00453_019_00655_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-01 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Algorithmica |
| PublicationTitleAbbrev | Algorithmica |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | BauerRDellingDSandersPSchieferdeckerDSchultesDWagnerDCombining hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithmACM J. Exp. Algorithmics2010152.3:12.3:3127758611284.05265 Schönfelder, R., Leucker, M., Walther, S.: Efficient profile routing for electric vehicles. In: Proceedings of the 1st International Conference on Internet of Vehicles (IOV’14), Lecture Notes in Computer Science, vol. 8662, pp. 21–30. Springer (2014) HolzerMSchulzFWagnerDEngineering multilevel overlay graphs for shortest-path queriesACM J. Exp. Algorithmics2009132.5:12.5:2624437081284.05289 Storandt, S.: Algorithms for Vehicle Navigation. Ph.D. thesis, Universität Stuttgart (2013) Ford, L.R.: Network Flow Theory. Technical Report P-923, Rand Corporation, Santa Monica, California (1956) Storandt, S.: Quick and energy-efficient routes: computing constrained shortest paths for electric vehicles. In: Proceedings of the 5th ACM SIGSPATIAL International Workshop on Computational Transportation Science (IWCTS’12), pp. 20–25. ACM (2012) JohnsonDBA note on Dijkstra’s shortest path algorithmJ. ACM19732033853883345730265.6802610.1145/321765.321768 LiaoCSLuSHShenZJMThe electric vehicle touring problemTransp. Res. Part B: Methodol.20168616318010.1016/j.trb.2016.02.002 Baum, M., Dibbelt, J., Wagner, D., Zündorf, T.: Modeling and engineering constrained shortest path algorithms for battery electric vehicles. In: Proceedings of the 25th Annual European Symposium on Algorithms (ESA’17), Leibniz International Proceedings in Informatics (LIPIcs), vol. 87, pp. 11:1–11:16. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2017) Liu, C., Wu, J., Long, C.: Joint charging and routing optimization for electric vehicle navigation systems. In: Proceedings of the 19th International Federation of Automatic Control World Congress (IFAC’14), IFAC Proceedings Volumes, vol. 47, pp. 9611–9616. Elsevier (2014) Baum, M., Dibbelt, J., Gemsa, A., Wagner, D., Zündorf, T.: Shortest feasible paths with charging stops for battery electric vehicles. In: Proceedings of the 23rd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’15), pp. 44:1–44:10. ACM (2015) KlugeSSántaCDanglSWildSMBrokateMReifKBuschFOn the computation of the energy-optimal route dependent on the traffic load in IngolstadtTransp. Res. Part C: Emerg. Technol.2013369711510.1016/j.trc.2013.07.001 SweetingWJHutchinsonARSavageSDFactors affecting electric vehicle energy consumptionInt. J. Sustain. Eng.20114319220110.1080/19397038.2011.592956 MartinsEQVOn a multicriteria shortest path problemEur. J. Oper. Res.19841622362457414030533.9009010.1016/0377-2217(84)90077-8 Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph partitioning with natural cuts. In: Proceedings of the 25th IEEE International Parallel and Distributed Processing Symposium (IPDPS’11), pp. 1135–1146. IEEE (2011) DreyfusSEAn appraisal of some shortest-path algorithmsOper. Res.19691733954120172.4420210.1287/opre.17.3.395 Baum, M.: Engineering Route Planning Algorithms for Battery Electric Vehicles. Phd thesis, Karlsruhe Institute of Technology (2018) Kobayashi, Y., Kiyama, N., Aoshima, H., Kashiyama, M.: A Route search method for electric vehicles in consideration of range and locations of charging stations. In: Proceedings of the 7th IEEE Intelligent Vehicles Symposium (IV’11), pp. 920–925. IEEE (2011) FoschiniLHershbergerJSuriSOn the complexity of time-dependent shortest pathsAlgorithmica20146841075109731650491317.6806910.1007/s00453-012-9714-7 Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Energy-optimal routes for electric vehicles. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’13), pp. 54–63. ACM (2013) Eisner, J., Funke, S., Storandt, S.: Optimal route planning for electric vehicles in large networks. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI’11), pp. 1108–1113. AAAI Press (2011) BellmanROn a routing problemQ Appl. Math.195816187900081.1440310.1090/qam/102435 AtallahMJSome dynamic computational geometry problemsComput. Math. Appl.19851112117111818220830586.6808510.1016/0898-1221(85)90105-1 GeisbergerRSandersPSchultesDVetterCExact routing in large road networks using contraction hierarchiesTransp. Sci.201246338840410.1287/trsc.1110.0401 DavenportHSchinzelAA combinatorial problem connected with differential equationsAm. J. Math.19658736846941900100132.0060110.2307/2373068 HuberGBogenbergerKLong-trip optimization of charging strategies for battery electric vehiclesTransp. Res. Record: J. Transp. Res. Board20152497455310.3141/2497-05 Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Proceedings of the 6th Workshop on Experimental Algorithms (WEA’07), Lecture Notes in Computer Science, vol. 4525, pp. 52–65. Springer (2007) Baum, M., Dibbelt, J., Hübschle-Schneider, L., Pajor, T., Wagner, D.: Speed-consumption tradeoff for electric vehicle route planning. In: Proceedings of the 14th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’14), OpenAccess Series in Informatics (OASIcs), vol. 42, pp. 138–151. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2014) HartPENilssonNJRaphaelBA formal basis for the heuristic determination of minimum cost pathsIEEE Trans. Syst. Sci. Cybern.19684210010710.1109/TSSC.1968.300136 SmithOJBolandNWatererHSolving shortest path problems with a weight constraint and replenishment arcsComput. Oper. Res.201239596498428342921251.9007210.1016/j.cor.2011.07.017 Storandt, S., Funke, S.: Cruising with a battery-powered vehicle and not getting stranded. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI’12), pp. 1628–1634. AAAI Press (2012) OrdaARomRMinimum weight paths in time-dependent networksNetworks199121329531911037460742.9008210.1002/net.3230210304 DellingDGoldbergAVPajorTWerneckRFCustomizable route planning in road networksTransp. Sci.201751256659110.1287/trsc.2014.0579 Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing. In: Proceedings of the 6th ACM SIGSPATIAL International Workshop on Computational Transportation Science (IWCTS’13), pp. 25–30. ACM (2013) SunZZhouXTo save money or to save time: intelligent routing design for plug-in hybrid electric vehicleTransp. Res. Part D: Transp. Environ.20164323825010.1016/j.trd.2016.01.001 Hausberger, S., Rexeis, M., Zallinger, M., Luz, R.: Emission Factors from the Model PHEM for the HBEFA Version 3. Technical Report I-20/2009, University of Technology, Graz (2009) Schulz, F., Wagner, D., Zaroliagis, C.: Using multi-level graphs for timetable information in railway systems. In: Proceedings of the 4th Workshop on Algorithm Engineering & Experiments (ALENEX’02), Lecture Notes in Computer Science, vol. 2409, pp. 43–59. Springer (2002) DellingDTime-dependent SHARC-routingAlgorithmica2011601609427759101216.6820110.1007/s00453-009-9341-0 Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-performance multi-level routing, dimacs series. In: Discrete Mathematics and Theoretical Computer Science, vol. 74, pp. 73–92. American Mathematical Society (2009) Baum, M., Sauer, J., Wagner, D., Zündorf, T.: Consumption profiles in route planning for electric vehicles: theory and applications. In: Proceedings of the 16th International Symposium on Experimental Algorithms (SEA’17), Leibniz International Proceedings in Informatics (LIPIcs), vol. 75, pp. 19:1–19:18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2017) DijkstraEWA note on two problems in connexion with graphsNumer. Math.1959112692711076090092.1600210.1007/BF01386390 Delling, D., Wagner, D.: Time-Dependent Route Planning, Lecture Notes in Computer Science, vol. 5868, pp. 207–230. Springer (2009) Artmeier, A., Haselmayr, J., Leucker, M., Sachenbacher, M.: The shortest path problem revisited: optimal routing for electric vehicles. In: Proceedings of the 33rd Annual German Conference on Advances in Artificial Intelligence (KI’10), Lecture Notes in Computer Science, vol. 6359, pp. 309–316. Springer (2010) FioriCAhnKRakhaHAPower-based electric vehicle energy consumption model: model development and validationAppl. Energy201616825726810.1016/j.apenergy.2016.01.097 Tielert, T., Rieger, D., Hartenstein, H., Luz, R., Hausberger, S.: Can V2X communication help electric vehicles save energy? In: Proceedings of the 12th International Conference on ITS Telecommunications (ITST’12), pp. 232–237. IEEE (2012) Goldberg, A.V., Harrelson, C.: Computing the shortest path: a* search meets graph theory. In: Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’05), pp. 156–165. SIAM (2005) CherkasskyBVGeorgiadisLGoldbergAVTarjanREWerneckRFShortest-path feasibility algorithms: an experimental evaluationACM J. Exp. Algorithmics2010142.7:12.7:3727708451284.05275 CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20093CambridgeMIT Press1187.68679 BatzGVGeisbergerRSandersPVetterCMinimum time-dependent travel times with contraction hierarchiesACM J. Exp. Algorithmics2013181.4:11.4:4330611291322.05128 JungSPramanikSAn efficient path computation model for hierarchically structured topographical road mapsIEEE Trans. Knowl. Data Eng.20021451029104610.1109/TKDE.2002.1033772 Dean, B.C.: Shortest Paths in FIFO Time-Dependent Networks: Theory and Algorithms. Technical Report, Massachusetts Institute of Technology (2004) Batz, G.V., Sanders, P.: Time-dependent route planning with generalized objective functions. In: Proceedings of the 20th Annual European Symposium on Algorithms (ESA’12), Lecture Notes in Computer Science, vol. 7501, pp. 169–180. Springer (2012) JohnsonDBEfficient algorithms for shortest paths in sparse networksJ. ACM19772411134497100343.6802810.1145/321992.321993 WangYJiangJMuTContext-aware and energy-driven route optimization for fully electric vehicles via crowdsourcingIEEE Trans. Intell. Transp. Syst.20131431331134510.1109/TITS.2013.2261064 DibbeltJStrasserBWagnerDCusto MJ Atallah (655_CR2) 1985; 11 C Fiori (655_CR30) 2016; 168 655_CR48 F Schulz (655_CR56) 2000; 5 655_CR45 655_CR47 OJ Smith (655_CR58) 2012; 39 M Holzer (655_CR39) 2009; 13 M Strehler (655_CR62) 2017; 103 EQV Martins (655_CR49) 1984; 16 A Wiernik (655_CR68) 1988; 3 R Bauer (655_CR6) 2010; 15 655_CR1 655_CR31 S Jung (655_CR43) 2002; 14 655_CR3 655_CR5 655_CR7 655_CR38 DB Johnson (655_CR42) 1977; 24 BV Cherkassky (655_CR15) 2010; 14 655_CR34 655_CR35 655_CR36 WJ Sweeting (655_CR65) 2011; 4 J Dibbelt (655_CR25) 2016; 21 TH Cormen (655_CR16) 2009 L Foschini (655_CR32) 2014; 68 G Huber (655_CR40) 2015; 2497 655_CR64 655_CR21 DB Johnson (655_CR41) 1973; 20 655_CR60 655_CR61 655_CR28 655_CR29 655_CR22 R Geisberger (655_CR33) 2012; 46 655_CR66 655_CR23 S Kluge (655_CR44) 2013; 36 655_CR24 CS Liao (655_CR46) 2016; 86 655_CR8 Y Wang (655_CR67) 2013; 14 655_CR9 Z Sun (655_CR63) 2016; 43 D Delling (655_CR19) 2011; 60 655_CR51 655_CR52 R Bellman (655_CR14) 1958; 16 655_CR53 655_CR10 655_CR54 A Orda (655_CR50) 1991; 21 D Delling (655_CR20) 2017; 51 655_CR59 655_CR18 655_CR11 655_CR55 655_CR12 SE Dreyfus (655_CR27) 1969; 17 655_CR13 655_CR57 GV Batz (655_CR4) 2013; 18 PE Hart (655_CR37) 1968; 4 H Davenport (655_CR17) 1965; 87 EW Dijkstra (655_CR26) 1959; 1 |
| References_xml | – reference: Storandt, S.: Quick and energy-efficient routes: computing constrained shortest paths for electric vehicles. In: Proceedings of the 5th ACM SIGSPATIAL International Workshop on Computational Transportation Science (IWCTS’12), pp. 20–25. ACM (2012) – reference: JohnsonDBEfficient algorithms for shortest paths in sparse networksJ. ACM19772411134497100343.6802810.1145/321992.321993 – reference: Schönfelder, R., Leucker, M.: Abstract routing models and abstractions in the context of vehicle routing. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15), pp. 2639–2645. AAAI Press (2015) – reference: Goldberg, A.V., Harrelson, C.: Computing the shortest path: a* search meets graph theory. In: Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’05), pp. 156–165. SIAM (2005) – reference: HartPENilssonNJRaphaelBA formal basis for the heuristic determination of minimum cost pathsIEEE Trans. Syst. Sci. Cybern.19684210010710.1109/TSSC.1968.300136 – reference: Schulz, F., Wagner, D., Zaroliagis, C.: Using multi-level graphs for timetable information in railway systems. In: Proceedings of the 4th Workshop on Algorithm Engineering & Experiments (ALENEX’02), Lecture Notes in Computer Science, vol. 2409, pp. 43–59. Springer (2002) – reference: Kobayashi, Y., Kiyama, N., Aoshima, H., Kashiyama, M.: A Route search method for electric vehicles in consideration of range and locations of charging stations. In: Proceedings of the 7th IEEE Intelligent Vehicles Symposium (IV’11), pp. 920–925. IEEE (2011) – reference: Storandt, S.: Algorithms for Vehicle Navigation. Ph.D. thesis, Universität Stuttgart (2013) – reference: Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing. In: Proceedings of the 6th ACM SIGSPATIAL International Workshop on Computational Transportation Science (IWCTS’13), pp. 25–30. ACM (2013) – reference: Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: Proceedings of the 14th Meeting on Algorithm Engineering & Experiments (ALENEX’12), pp. 16–29. SIAM (2012) – reference: DreyfusSEAn appraisal of some shortest-path algorithmsOper. Res.19691733954120172.4420210.1287/opre.17.3.395 – reference: BauerRDellingDSandersPSchieferdeckerDSchultesDWagnerDCombining hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithmACM J. Exp. Algorithmics2010152.3:12.3:3127758611284.05265 – reference: Ford, L.R.: Network Flow Theory. Technical Report P-923, Rand Corporation, Santa Monica, California (1956) – reference: AtallahMJSome dynamic computational geometry problemsComput. Math. Appl.19851112117111818220830586.6808510.1016/0898-1221(85)90105-1 – reference: SunZZhouXTo save money or to save time: intelligent routing design for plug-in hybrid electric vehicleTransp. Res. Part D: Transp. Environ.20164323825010.1016/j.trd.2016.01.001 – reference: SmithOJBolandNWatererHSolving shortest path problems with a weight constraint and replenishment arcsComput. Oper. Res.201239596498428342921251.9007210.1016/j.cor.2011.07.017 – reference: Goodrich, M.T., Pszona, P.: Two-phase bicriterion search for finding fast and efficient electric vehicle routes. In: Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’14), pp. 193–202. ACM (2014) – reference: HuberGBogenbergerKLong-trip optimization of charging strategies for battery electric vehiclesTransp. Res. Record: J. Transp. Res. Board20152497455310.3141/2497-05 – reference: JungSPramanikSAn efficient path computation model for hierarchically structured topographical road mapsIEEE Trans. Knowl. Data Eng.20021451029104610.1109/TKDE.2002.1033772 – reference: KlugeSSántaCDanglSWildSMBrokateMReifKBuschFOn the computation of the energy-optimal route dependent on the traffic load in IngolstadtTransp. Res. Part C: Emerg. Technol.2013369711510.1016/j.trc.2013.07.001 – reference: CherkasskyBVGeorgiadisLGoldbergAVTarjanREWerneckRFShortest-path feasibility algorithms: an experimental evaluationACM J. Exp. Algorithmics2010142.7:12.7:3727708451284.05275 – reference: Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-performance multi-level routing, dimacs series. In: Discrete Mathematics and Theoretical Computer Science, vol. 74, pp. 73–92. American Mathematical Society (2009) – reference: Baum, M., Sauer, J., Wagner, D., Zündorf, T.: Consumption profiles in route planning for electric vehicles: theory and applications. In: Proceedings of the 16th International Symposium on Experimental Algorithms (SEA’17), Leibniz International Proceedings in Informatics (LIPIcs), vol. 75, pp. 19:1–19:18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2017) – reference: JohnsonDBA note on Dijkstra’s shortest path algorithmJ. ACM19732033853883345730265.6802610.1145/321765.321768 – reference: Luxen, D., Vetter, C.: Real-time routing with OpenStreetMap data. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’11), pp. 513–516. ACM (2011) – reference: Artmeier, A., Haselmayr, J., Leucker, M., Sachenbacher, M.: The shortest path problem revisited: optimal routing for electric vehicles. In: Proceedings of the 33rd Annual German Conference on Advances in Artificial Intelligence (KI’10), Lecture Notes in Computer Science, vol. 6359, pp. 309–316. Springer (2010) – reference: Baum, M., Dibbelt, J., Wagner, D., Zündorf, T.: Modeling and engineering constrained shortest path algorithms for battery electric vehicles. In: Proceedings of the 25th Annual European Symposium on Algorithms (ESA’17), Leibniz International Proceedings in Informatics (LIPIcs), vol. 87, pp. 11:1–11:16. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2017) – reference: DijkstraEWA note on two problems in connexion with graphsNumer. Math.1959112692711076090092.1600210.1007/BF01386390 – reference: Baum, M.: Engineering Route Planning Algorithms for Battery Electric Vehicles. Phd thesis, Karlsruhe Institute of Technology (2018) – reference: Batz, G.V., Sanders, P.: Time-dependent route planning with generalized objective functions. In: Proceedings of the 20th Annual European Symposium on Algorithms (ESA’12), Lecture Notes in Computer Science, vol. 7501, pp. 169–180. Springer (2012) – reference: Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Dynamic time-dependent route planning in road networks with user preferences. In: Proceedings of the 15th International Symposium on Experimental Algorithms (SEA’16), Lecture Notes in Computer Science, vol. 9685, pp. 33–49. Springer (2016) – reference: SchulzFWagnerDWeiheKDijkstra’s algorithm on-line: an empirical case study from public railroad transportACM J. Exp. Algorithmics2000512:112:2318939631070.90509 – reference: Storandt, S., Funke, S.: Cruising with a battery-powered vehicle and not getting stranded. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI’12), pp. 1628–1634. AAAI Press (2012) – reference: SweetingWJHutchinsonARSavageSDFactors affecting electric vehicle energy consumptionInt. J. Sustain. Eng.20114319220110.1080/19397038.2011.592956 – reference: HolzerMSchulzFWagnerDEngineering multilevel overlay graphs for shortest-path queriesACM J. Exp. Algorithmics2009132.5:12.5:2624437081284.05289 – reference: Tielert, T., Rieger, D., Hartenstein, H., Luz, R., Hausberger, S.: Can V2X communication help electric vehicles save energy? In: Proceedings of the 12th International Conference on ITS Telecommunications (ITST’12), pp. 232–237. IEEE (2012) – reference: WangYJiangJMuTContext-aware and energy-driven route optimization for fully electric vehicles via crowdsourcingIEEE Trans. Intell. Transp. Syst.20131431331134510.1109/TITS.2013.2261064 – reference: Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph partitioning with natural cuts. In: Proceedings of the 25th IEEE International Parallel and Distributed Processing Symposium (IPDPS’11), pp. 1135–1146. IEEE (2011) – reference: StrehlerMMertingSSchwanCEnergy-efficient shortest routes for electric and hybrid vehiclesTransp. Res. Part B: Methodol.201710311113510.1016/j.trb.2017.03.007 – reference: DibbeltJStrasserBWagnerDCustomizable contraction hierarchiesACM J. Exp. Algorithmics2016211.5:11.5:4934843491365.68353 – reference: Sachenbacher, M., Leucker, M., Artmeier, A., Haselmayr, J.: Efficient energy-optimal routing for electric vehicles. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI’11), pp. 1402–1407. AAAI Press (2011) – reference: Baum, M., Dibbelt, J., Hübschle-Schneider, L., Pajor, T., Wagner, D.: Speed-consumption tradeoff for electric vehicle route planning. In: Proceedings of the 14th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’14), OpenAccess Series in Informatics (OASIcs), vol. 42, pp. 138–151. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2014) – reference: FoschiniLHershbergerJSuriSOn the complexity of time-dependent shortest pathsAlgorithmica20146841075109731650491317.6806910.1007/s00453-012-9714-7 – reference: Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Proceedings of the 6th Workshop on Experimental Algorithms (WEA’07), Lecture Notes in Computer Science, vol. 4525, pp. 52–65. Springer (2007) – reference: DavenportHSchinzelAA combinatorial problem connected with differential equationsAm. J. Math.19658736846941900100132.0060110.2307/2373068 – reference: BellmanROn a routing problemQ Appl. Math.195816187900081.1440310.1090/qam/102435 – reference: Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. In: Proceedings of the 13th Annual European Conference on Algorithms (ESA’05), Lecture Notes in Computer Science, vol. 3669, pp. 568–579. Springer (2005) – reference: BatzGVGeisbergerRSandersPVetterCMinimum time-dependent travel times with contraction hierarchiesACM J. Exp. Algorithmics2013181.4:11.4:4330611291322.05128 – reference: DellingDGoldbergAVPajorTWerneckRFCustomizable route planning in road networksTransp. Sci.201751256659110.1287/trsc.2014.0579 – reference: Sweda, T.M., Dolinskaya, I.S., Klabjan, D.: Adaptive Routing and Recharging Policies for Electric Vehicles. Working paper no. 14-02, Northwestern University, Illinois (2014) – reference: Bast, H., Delling, D., Goldberg, A.V., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, R.F.: Route Planning in Transportation Networks, Lecture Notes in Computer Science, vol. 9220, pp. 19–80. Springer (2016) – reference: Baum, M., Dibbelt, J., Gemsa, A., Wagner, D., Zündorf, T.: Shortest feasible paths with charging stops for battery electric vehicles. In: Proceedings of the 23rd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’15), pp. 44:1–44:10. ACM (2015) – reference: Delling, D., Wagner, D.: Time-Dependent Route Planning, Lecture Notes in Computer Science, vol. 5868, pp. 207–230. Springer (2009) – reference: LiaoCSLuSHShenZJMThe electric vehicle touring problemTransp. Res. Part B: Methodol.20168616318010.1016/j.trb.2016.02.002 – reference: CormenTHLeisersonCERivestRLSteinCIntroduction to Algorithms20093CambridgeMIT Press1187.68679 – reference: Eisner, J., Funke, S., Storandt, S.: Optimal route planning for electric vehicles in large networks. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI’11), pp. 1108–1113. AAAI Press (2011) – reference: Dean, B.C.: Shortest Paths in FIFO Time-Dependent Networks: Theory and Algorithms. Technical Report, Massachusetts Institute of Technology (2004) – reference: FioriCAhnKRakhaHAPower-based electric vehicle energy consumption model: model development and validationAppl. Energy201616825726810.1016/j.apenergy.2016.01.097 – reference: Hausberger, S., Rexeis, M., Zallinger, M., Luz, R.: Emission Factors from the Model PHEM for the HBEFA Version 3. Technical Report I-20/2009, University of Technology, Graz (2009) – reference: Gutman, R.J.: Reach-based routing: a new approach to shortest path algorithms optimized for road networks. In: Proceedings of the 6th Workshop on Algorithm Engineering & Experiments (ALENEX’04), pp. 100–111. SIAM (2004) – reference: MartinsEQVOn a multicriteria shortest path problemEur. J. Oper. Res.19841622362457414030533.9009010.1016/0377-2217(84)90077-8 – reference: GeisbergerRSandersPSchultesDVetterCExact routing in large road networks using contraction hierarchiesTransp. Sci.201246338840410.1287/trsc.1110.0401 – reference: OrdaARomRMinimum weight paths in time-dependent networksNetworks199121329531911037460742.9008210.1002/net.3230210304 – reference: Liu, C., Wu, J., Long, C.: Joint charging and routing optimization for electric vehicle navigation systems. In: Proceedings of the 19th International Federation of Automatic Control World Congress (IFAC’14), IFAC Proceedings Volumes, vol. 47, pp. 9611–9616. Elsevier (2014) – reference: Schönfelder, R., Leucker, M., Walther, S.: Efficient profile routing for electric vehicles. In: Proceedings of the 1st International Conference on Internet of Vehicles (IOV’14), Lecture Notes in Computer Science, vol. 8662, pp. 21–30. Springer (2014) – reference: WiernikASharirMPlanar realizations of nonlinear Davenport–Schinzel sequences by segmentsDiscret. Comput. Geom.19883115479181770636.6804310.1007/BF02187894 – reference: DellingDTime-dependent SHARC-routingAlgorithmica2011601609427759101216.6820110.1007/s00453-009-9341-0 – reference: Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Energy-optimal routes for electric vehicles. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’13), pp. 54–63. ACM (2013) – ident: 655_CR64 – ident: 655_CR29 doi: 10.1609/aaai.v25i1.7991 – volume: 39 start-page: 964 issue: 5 year: 2012 ident: 655_CR58 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2011.07.017 – volume: 13 start-page: 2.5:1 year: 2009 ident: 655_CR39 publication-title: ACM J. Exp. Algorithmics doi: 10.1145/1412228.1412239 – volume: 4 start-page: 100 issue: 2 year: 1968 ident: 655_CR37 publication-title: IEEE Trans. Syst. Sci. Cybern. doi: 10.1109/TSSC.1968.300136 – ident: 655_CR51 doi: 10.1609/aaai.v25i1.7803 – volume: 24 start-page: 1 issue: 1 year: 1977 ident: 655_CR42 publication-title: J. ACM doi: 10.1145/321992.321993 – volume: 21 start-page: 1.5:1 year: 2016 ident: 655_CR25 publication-title: ACM J. Exp. Algorithmics doi: 10.1145/2886843 – ident: 655_CR23 doi: 10.1007/978-3-540-72845-0_5 – volume: 20 start-page: 385 issue: 3 year: 1973 ident: 655_CR41 publication-title: J. ACM doi: 10.1145/321765.321768 – volume: 16 start-page: 236 issue: 2 year: 1984 ident: 655_CR49 publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(84)90077-8 – ident: 655_CR60 – volume: 4 start-page: 192 issue: 3 year: 2011 ident: 655_CR65 publication-title: Int. J. Sustain. Eng. doi: 10.1080/19397038.2011.592956 – ident: 655_CR55 doi: 10.1007/978-3-319-11167-4_3 – ident: 655_CR59 doi: 10.1145/2442942.2442947 – volume: 43 start-page: 238 year: 2016 ident: 655_CR63 publication-title: Transp. Res. Part D: Transp. Environ. doi: 10.1016/j.trd.2016.01.001 – ident: 655_CR1 doi: 10.1007/978-3-642-16111-7_35 – ident: 655_CR9 – ident: 655_CR12 – ident: 655_CR31 – ident: 655_CR22 doi: 10.1090/dimacs/074/04 – ident: 655_CR54 – ident: 655_CR13 – volume: 103 start-page: 111 year: 2017 ident: 655_CR62 publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2017.03.007 – volume: 11 start-page: 1171 issue: 12 year: 1985 ident: 655_CR2 publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(85)90105-1 – volume: 36 start-page: 97 year: 2013 ident: 655_CR44 publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2013.07.001 – volume-title: Introduction to Algorithms year: 2009 ident: 655_CR16 – volume: 86 start-page: 163 year: 2016 ident: 655_CR46 publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2016.02.002 – ident: 655_CR34 – volume: 5 start-page: 12:1 year: 2000 ident: 655_CR56 publication-title: ACM J. Exp. Algorithmics doi: 10.1145/351827.384254 – volume: 17 start-page: 395 issue: 3 year: 1969 ident: 655_CR27 publication-title: Oper. Res. doi: 10.1287/opre.17.3.395 – ident: 655_CR48 doi: 10.1145/2093973.2094062 – ident: 655_CR38 – ident: 655_CR10 doi: 10.1145/2525314.2525361 – volume: 87 start-page: 684 issue: 3 year: 1965 ident: 655_CR17 publication-title: Am. J. Math. doi: 10.2307/2373068 – volume: 168 start-page: 257 year: 2016 ident: 655_CR30 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.01.097 – volume: 68 start-page: 1075 issue: 4 year: 2014 ident: 655_CR32 publication-title: Algorithmica doi: 10.1007/s00453-012-9714-7 – volume: 14 start-page: 1029 issue: 5 year: 2002 ident: 655_CR43 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2002.1033772 – ident: 655_CR66 doi: 10.1109/ITST.2012.6425172 – ident: 655_CR24 doi: 10.1007/978-3-642-05465-5_8 – volume: 14 start-page: 2.7:1 year: 2010 ident: 655_CR15 publication-title: ACM J. Exp. Algorithmics – ident: 655_CR57 doi: 10.1007/3-540-45643-0_4 – volume: 2497 start-page: 45 year: 2015 ident: 655_CR40 publication-title: Transp. Res. Record: J. Transp. Res. Board doi: 10.3141/2497-05 – ident: 655_CR5 doi: 10.1007/978-3-642-33090-2_16 – volume: 18 start-page: 1.4:1 year: 2013 ident: 655_CR4 publication-title: ACM J. Exp. Algorithmics – volume: 1 start-page: 269 issue: 1 year: 1959 ident: 655_CR26 publication-title: Numer. Math. doi: 10.1007/BF01386390 – ident: 655_CR7 – ident: 655_CR28 doi: 10.1145/2533828.2533838 – ident: 655_CR18 – volume: 14 start-page: 1331 issue: 3 year: 2013 ident: 655_CR67 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2261064 – volume: 46 start-page: 388 issue: 3 year: 2012 ident: 655_CR33 publication-title: Transp. Sci. doi: 10.1287/trsc.1110.0401 – volume: 16 start-page: 87 issue: 1 year: 1958 ident: 655_CR14 publication-title: Q Appl. Math. doi: 10.1090/qam/102435 – volume: 15 start-page: 2.3:1 year: 2010 ident: 655_CR6 publication-title: ACM J. Exp. Algorithmics doi: 10.1145/1671970.1671976 – ident: 655_CR8 doi: 10.1145/2820783.2820826 – ident: 655_CR45 doi: 10.1109/IVS.2011.5940556 – ident: 655_CR52 doi: 10.1007/11561071_51 – ident: 655_CR21 doi: 10.1109/IPDPS.2011.108 – volume: 21 start-page: 295 issue: 3 year: 1991 ident: 655_CR50 publication-title: Networks doi: 10.1002/net.3230210304 – ident: 655_CR61 doi: 10.1609/aaai.v26i1.8326 – volume: 3 start-page: 15 issue: 1 year: 1988 ident: 655_CR68 publication-title: Discret. Comput. Geom. doi: 10.1007/BF02187894 – ident: 655_CR11 doi: 10.1007/978-3-319-38851-9_3 – ident: 655_CR47 doi: 10.3182/20140824-6-ZA-1003.01532 – ident: 655_CR53 doi: 10.1137/1.9781611972924.2 – ident: 655_CR3 doi: 10.1007/978-3-319-49487-6_2 – volume: 60 start-page: 60 issue: 1 year: 2011 ident: 655_CR19 publication-title: Algorithmica doi: 10.1007/s00453-009-9341-0 – ident: 655_CR35 doi: 10.1145/2666310.2666382 – volume: 51 start-page: 566 issue: 2 year: 2017 ident: 655_CR20 publication-title: Transp. Sci. doi: 10.1287/trsc.2014.0579 – ident: 655_CR36 |
| SSID | ssj0012796 |
| Score | 2.3275704 |
| Snippet | We study the problem of computing paths that minimize energy consumption of a battery electric vehicle. For that, we must cope with specific properties, such... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1490 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Electric vehicles Energy conservation Energy consumption Hierarchies Mathematics of Computing Polynomials Power consumption Regenerative braking Roads & highways Route planning Theory of Computation Weather forecasting |
| Title | Energy-Optimal Routes for Battery Electric Vehicles |
| URI | https://link.springer.com/article/10.1007/s00453-019-00655-9 https://www.proquest.com/docview/2376270894 |
| Volume | 82 |
| WOSCitedRecordID | wos000500271700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1432-0541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012796 issn: 0178-4617 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60evBifWK1yh68aWAf2U1yFGnxIFV8lN6WzQsLWqVbBf-9k3R3i6KC3hbyYJnJZGYy38wAHGuaSMuFJqmIJKEpfnEdUWJZJN0ToVb-6WJ4yQYDPhqJ6yoprKzR7nVI0t_UTbKbsz4c9kcQpzdTIpZhBdUdd-J4cztsYgcx8125XN95QlFBV6ky3-_xWR0tbMwvYVGvbfrt__3nBqxX1mVwNj8Om7BkJlvQrjs3BJUgb0PS8yl_5AovjCdc4HBBpgzQgA3mBTffg57vjzNWwdA8eOjcDtz3e3fnF6Rqn0AUytWMJDaNCnQHCp1ykzH0SxQtLBVWZ4USBU3RkwuVUBG1IrFWIs-MZnGmuZVoNoTJLrQmzxOzBwF6OTpUlFpNLWr8UDJWqJhmcaRCSWPWgaimYq6q2uKuxcVj3lRF9lTJkSq5p0ouOnDSrHmZV9b4dXa3Zk5eSVmZO0RPzEIuaAdOa2Yshn_ebf9v0w9gLXZutsc5dqE1m76aQ1hVb7NxOT3yp-8D897RaA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MTp1D74poF-XJvmUWRj4pyic-wttEmDA52yTsH_3iRrOxQV9K2QD8pdLneX-90dwLHEIFUxkyRkXkow1F-x9JAo6qXmiVAK-3Qx6NJeLx4O2U2RFJaXaPcyJGlv6irZzVgfBvvDiNGbIWGLsIRaYxkg3-3doIod-NR25TJ95wlqBV2kyny_x2d1NLcxv4RFrbZp1__3n-uwVliXztnsOGzAQjbehHrZucEpBHkLgpZN-SPX-sJ40gsMLijLHW3AOrOCm-9Oy_bHGQlnkD1Y6Nw23Ldb_fMOKdonEKHlakoCFXqJdgcSGcZZRLVfIjBRyJSMEsESDLUn5womPFQsUCrVPMsk9SMZq1SbDW6wA7Xx8zjbBUd7OdIViEqi0hrfTSlNhI-R7wk3RZ82wCupyEVRW9y0uHjkVVVkSxWuqcItVThrwEm15mVWWePX2c2SObyQspwbRI9P3ZhhA05LZsyHf95t72_Tj2Cl07_q8u5F73IfVn3jclvMYxNq08lrdgDL4m06yieH9iR-AM5d1Ew |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFPHFecXp1D74pmG9pE3zKLqhOOZAHXsLbdLgQOtYq-C_N0kvU1FBfCs0CeWcpOd8OZcP4FhgL5YhFcinToywr55C4WAkiRPrK0LBzdXFqE8Gg3A8psMPVfwm270KSRY1DbpLU5p3pkJ26sI37YnoPCCKtA31EV2EJaxJgzRevx3VcQSXGIYuzUGPsDLWZdnM92t8Nk1zf_NLiNRYnl7z_9-8Dmul12mdFdtkAxaSdBOaFaODVR7wLfC6phQQ3agfyZOaoPOFksxSjq1VNOJ8s7qGN2fCrVHyYFLqtuG-1707v0QlrQLi6rzlyJO-EymYEAk_TAKi8ArHkcRUiiDiNMK-Qng2p9zBknpSxkqXiSBuIEIZK3fC9nagkT6nyS5YCv0Im2MsBZbKE7BjQiLu4sB1uB1jl7TAqSTKeNlzXFNfPLK6W7KRClNSYUYqjLbgpJ4zLTpu_Dq6XSmKlacvYzrTxyV2SHELTivFzF__vNre34Yfwcrwosf6V4PrfVh1NRI3qZBtaOSzl-QAlvlrPslmh2ZTvgNARt0w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Optimal+Routes+for+Battery+Electric+Vehicles&rft.jtitle=Algorithmica&rft.au=Baum%2C+Moritz&rft.au=Dibbelt%2C+Julian&rft.au=Pajor%2C+Thomas&rft.au=Sauer%2C+Jonas&rft.date=2020-05-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=82&rft.issue=5&rft.spage=1490&rft.epage=1546&rft_id=info:doi/10.1007%2Fs00453-019-00655-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_019_00655_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |