A real-time fall detection model based on BlazePose and improved ST-GCN
Providing timely rescue when a fall occurs can greatly reduce fall mortality for older people. With the growing number of single-resided elders, real-time smart fall incident detection has become a new research hotspot. Accuracy, computational complexity and real-time response are key issues to be s...
Saved in:
| Published in: | Journal of real-time image processing Vol. 20; no. 6; p. 121 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1861-8200, 1861-8219 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Providing timely rescue when a fall occurs can greatly reduce fall mortality for older people. With the growing number of single-resided elders, real-time smart fall incident detection has become a new research hotspot. Accuracy, computational complexity and real-time response are key issues to be solved in this topic. A fall detection model that combines an improved Spatial–Temporal Graph Convolutional Network (ST-GCN) with the BlazePose algorithm is proposed in this paper. The computational speed is improved by removing four redundant layers from the ST-GCN network. Meanwhile, an attention mechanism focussing on the key joints involved in the falling action and their correlation is applied in the model, which introduces an Effective SE Block (ESE Block) to the residual structure of ST-GCN. It is achieved by fusing the original features with channel attention weights obtained by global average pooling and fully connected operations for the joint features. The BlazePose algorithm of the mediapipe framework is used to recognise human targets and locate the spatial coordinates of specific joints. Then the spatiotemporal graph features of the human body are extracted by the improved ST-GCN from the temporal and spatial displacements of 30 consecutive frames. Furthermore, fall behaviour is judged by the action type defined by the spatiotemporal graph. The accuracy of the proposed model for public datasets, such as Le2i Fall, Multicam Fall and UR Fall, is 99.29%, 99.22% and 98.64% respectively, which are higher than the Alphapose + ST-GCN model by 9.04%, 20% and 25.2%. Such accuracy is even better than the existing best algorithms by 0.89%, 0.92% and 1.04%. When running on the i5-10200H CPU and the Jetson Nano edge computing device, the Alphapose + ST-GCN model achieves frame rates of 11.42fps and 1.5fps, whilst the frame rates of this paper are up to 24.5fps and 9.37fps. The experimental results fully show that based on BlazePose with the improved ST-GCN makes the fall detection model higher accuracy, faster speed, real-time performance and high compatibility with the Jetson Nano edge computing device. |
|---|---|
| AbstractList | Providing timely rescue when a fall occurs can greatly reduce fall mortality for older people. With the growing number of single-resided elders, real-time smart fall incident detection has become a new research hotspot. Accuracy, computational complexity and real-time response are key issues to be solved in this topic. A fall detection model that combines an improved Spatial–Temporal Graph Convolutional Network (ST-GCN) with the BlazePose algorithm is proposed in this paper. The computational speed is improved by removing four redundant layers from the ST-GCN network. Meanwhile, an attention mechanism focussing on the key joints involved in the falling action and their correlation is applied in the model, which introduces an Effective SE Block (ESE Block) to the residual structure of ST-GCN. It is achieved by fusing the original features with channel attention weights obtained by global average pooling and fully connected operations for the joint features. The BlazePose algorithm of the mediapipe framework is used to recognise human targets and locate the spatial coordinates of specific joints. Then the spatiotemporal graph features of the human body are extracted by the improved ST-GCN from the temporal and spatial displacements of 30 consecutive frames. Furthermore, fall behaviour is judged by the action type defined by the spatiotemporal graph. The accuracy of the proposed model for public datasets, such as Le2i Fall, Multicam Fall and UR Fall, is 99.29%, 99.22% and 98.64% respectively, which are higher than the Alphapose + ST-GCN model by 9.04%, 20% and 25.2%. Such accuracy is even better than the existing best algorithms by 0.89%, 0.92% and 1.04%. When running on the i5-10200H CPU and the Jetson Nano edge computing device, the Alphapose + ST-GCN model achieves frame rates of 11.42fps and 1.5fps, whilst the frame rates of this paper are up to 24.5fps and 9.37fps. The experimental results fully show that based on BlazePose with the improved ST-GCN makes the fall detection model higher accuracy, faster speed, real-time performance and high compatibility with the Jetson Nano edge computing device. |
| ArticleNumber | 121 |
| Author | Gan, Junsi Zhang, Yu Tu, Shuqin Diao, Yinliang Chen, Junliang Zhao, Zewei Chen, Xiaofeng |
| Author_xml | – sequence: 1 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University – sequence: 2 givenname: Junsi surname: Gan fullname: Gan, Junsi organization: College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University – sequence: 3 givenname: Zewei surname: Zhao fullname: Zhao, Zewei organization: College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University – sequence: 4 givenname: Junliang surname: Chen fullname: Chen, Junliang organization: College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University – sequence: 5 givenname: Xiaofeng surname: Chen fullname: Chen, Xiaofeng organization: College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University – sequence: 6 givenname: Yinliang surname: Diao fullname: Diao, Yinliang email: diaoyinliang@yeah.net organization: College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University – sequence: 7 givenname: Shuqin surname: Tu fullname: Tu, Shuqin organization: College of Mathematics and Informatics (College of Software Engineering), South China Agricultural University |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz9F8bLKbYy1ahaKC9Ryyyaxs2e7WZCvorzd1RcFDL5kM8z7z8U7QqO1aQOic0UtGaX4VGZMyI5QLQpnIc6KO0JgVipGCMz36_VN6giYxrilVuRJyjBYzHMA2pK83gCvbNNhDD66vuxZvOg8NLm0Ej1N63dhPeOoiYNt6XG-2oXtPlecVWcwfTtFxoiOc_cQperm9Wc3vyPJxcT-fLYkTTPdEeA8yk9Yp6nKVl0DLsqoyobW20stKMi0qXWQio5Zp7yRVLr1WsLxk1lViii6Gvmn62w5ib9bdLrRppOGac6G5LnhSFYPKhS7GAJVxdW_3R_XB1o1h1OxtM4NtJtlmvm0zKqH8H7oN9caGj8OQGKCYxO0rhL-tDlBfrTKARQ |
| CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e40035 crossref_primary_10_1016_j_autcon_2025_106216 crossref_primary_10_2478_amns_2024_3173 crossref_primary_10_3390_s24072037 crossref_primary_10_1007_s11554_024_01454_4 crossref_primary_10_1007_s10489_025_06316_5 crossref_primary_10_1007_s12530_024_09601_9 crossref_primary_10_1007_s11760_025_04358_3 |
| Cites_doi | 10.1109/ACCESS.2019.2946522 10.1109/JSEN.2016.2625099 10.1117/1.JEI.22.4.041106 10.1109/JSEN.2021.3082180 10.1109/ACCESS.2021.3113824 10.1109/TBME.2009.2030171 10.3389/frobt.2020.00071 10.1109/JSEN.2019.2918690 10.1155/2020/9532067 10.1155/2022/9962666 10.1007/978-3-030-01234-2_1 10.1016/j.cmpb.2014.09.005 10.1109/ACCESS.2019.2936320 10.1097/NR9.0000000000000007 10.1016/j.sigpro.2014.08.021 10.1609/aaai.v32i1.12328 10.1007/s00500-021-06238-7 10.1109/ACCESS.2020.2999503 10.1109/CVPR42600.2020.01155 10.1145/3503161.3548546 10.1109/SeGAH49190.2020.9201701 10.1109/CVPR42600.2020.01392 10.1109/ICCV.2017.256 10.1109/CVPR.2017.143 10.1109/RCAR54675.2022.9872276 10.1109/CVPR.2018.00745 10.1109/CVPR.2019.01230 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s11554-023-01377-6 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1861-8219 |
| ExternalDocumentID | 10_1007_s11554_023_01377_6 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LLZTM M4Y MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-3dde545ac60c767be0bbff43999a5d5f5193f984340a19dc506cdc5a317b1acf3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001093593700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1861-8200 |
| IngestDate | Wed Nov 05 09:18:00 EST 2025 Sat Nov 29 03:23:17 EST 2025 Tue Nov 18 21:24:31 EST 2025 Fri Feb 21 02:44:24 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Real-time fall detection Pose estimation Improved spatial–temporal graph convolution Edge computing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-3dde545ac60c767be0bbff43999a5d5f5193f984340a19dc506cdc5a317b1acf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2922392982 |
| PQPubID | 2044148 |
| ParticipantIDs | proquest_journals_2922392982 crossref_citationtrail_10_1007_s11554_023_01377_6 crossref_primary_10_1007_s11554_023_01377_6 springer_journals_10_1007_s11554_023_01377_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20231200 2023-12-00 20231201 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 20231200 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Journal of real-time image processing |
| PublicationTitleAbbrev | J Real-Time Image Proc |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Cao, Zhu, Zhang, Lyu, Yang (CR8) 2022; 42 CR18 CR17 Harrou, Zerrouki, Sun, Houacine (CR30) 2019; 7 Vishnu, Datla, Roy, Babu, Mohan (CR31) 2021; 21 Wang, Ellul, Azzopardi (CR6) 2020; 7 CR14 CR13 Xi, Jiang, Lü, Miran, Luo (CR5) 2020; 2020 CR12 CR11 Alaoui, El Fkihi, Thami (CR24) 2019; 7 CR10 Zheng, Liu (CR26) 2022; 2022 Yan, Xiong, Lin (CR16) 2018 Yadav, Tiwari, Pandey, Akbar (CR9) 2022; 26 Wang, Yu, Wang, Bao, Mao (CR23) 2020; 8 Lee, Tseng (CR4) 2019; 19 Zigel, Litvak, Gannot (CR2) 2009; 56 CR7 CR29 Tian, Zhang, Wang, Wang (CR27) 2022; 1 CR28 Chang, Hsu, Chen (CR25) 2021; 9 CR22 CR21 Salman Khan, Yu, Feng, Wang, Chambers (CR3) 2015; 110 Kwolek, Kepski (CR20) 2014; 117 Daher, Diab, El Najjar, Khalil, Charpillet (CR1) 2017; 17 Woo, Park, Lee, Kweon, Ferrari, Hebert, Sminchisescu, Weiss (CR15) 2018 Charfi, Miteran, Dubois, Atri, Tourki (CR19) 2013; 22 X Xi (1377_CR5) 2020; 2020 J Cao (1377_CR8) 2022; 42 S Woo (1377_CR15) 2018 J-S Lee (1377_CR4) 2019; 19 C Vishnu (1377_CR31) 2021; 21 M Daher (1377_CR1) 2017; 17 1377_CR10 1377_CR11 1377_CR12 1377_CR13 1377_CR14 1377_CR17 1377_CR18 W-J Chang (1377_CR25) 2021; 9 F Harrou (1377_CR30) 2019; 7 Y Zigel (1377_CR2) 2009; 56 H Zheng (1377_CR26) 2022; 2022 M Salman Khan (1377_CR3) 2015; 110 B Kwolek (1377_CR20) 2014; 117 1377_CR21 AY Alaoui (1377_CR24) 2019; 7 1377_CR22 1377_CR7 X Wang (1377_CR6) 2020; 7 1377_CR28 S Yan (1377_CR16) 2018 I Charfi (1377_CR19) 2013; 22 1377_CR29 B-H Wang (1377_CR23) 2020; 8 Z Tian (1377_CR27) 2022; 1 SK Yadav (1377_CR9) 2022; 26 |
| References_xml | – ident: CR22 – volume: 7 start-page: 154786 year: 2019 end-page: 154795 ident: CR24 article-title: Fall detection for elderly people using the variation of key points of human skeleton publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2946522 – volume: 17 start-page: 469 year: 2017 end-page: 479 ident: CR1 article-title: Elder tracking and fall detection system using smart tiles publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2016.2625099 – volume: 22 year: 2013 ident: CR19 article-title: Optimized spatio-temporal descriptors for real-time fall detection: comparison of support vector machine and Adaboost-based classification publication-title: J. Electron. Imaging doi: 10.1117/1.JEI.22.4.041106 – volume: 21 start-page: 17162 year: 2021 end-page: 17170 ident: CR31 article-title: Human fall detection in surveillance videos using fall motion vector modeling publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2021.3082180 – ident: CR18 – volume: 9 start-page: 12 year: 2021 ident: CR25 article-title: A pose estimation-based fall detection methodology using artificial intelligence edge computing publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3113824 – volume: 56 start-page: 2858 year: 2009 end-page: 2867 ident: CR2 article-title: A method for automatic fall detection of elderly people using floor vibrations and sound—proof of concept on human mimicking doll falls publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2030171 – ident: CR14 – volume: 7 start-page: 71 year: 2020 ident: CR6 article-title: Elderly fall detection systems: a literature survey publication-title: Front Robot AI. doi: 10.3389/frobt.2020.00071 – volume: 19 start-page: 8293 year: 2019 end-page: 8302 ident: CR4 article-title: Development of an enhanced threshold-based fall detection system using smartphones with built-in accelerometers publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2019.2918690 – ident: CR12 – volume: 2020 start-page: 1 year: 2020 end-page: 12 ident: CR5 article-title: Daily activity monitoring and fall detection based on surface electromyography and plantar pressure publication-title: Complexity doi: 10.1155/2020/9532067 – volume: 42 start-page: 622 year: 2022 end-page: 630 ident: CR8 article-title: Fall detection algorithm based on joint point features publication-title: J. Comput. Appl. – ident: CR10 – ident: CR29 – volume: 2022 start-page: 1 year: 2022 end-page: 15 ident: CR26 article-title: Lightweight fall detection algorithm based on alphapose optimization model and ST-GCN publication-title: Math. Probl. Eng. doi: 10.1155/2022/9962666 – start-page: 3 year: 2018 end-page: 19 ident: CR15 article-title: CBAM: Convolutional block attention module publication-title: Computer Vision – ECCV 2018 doi: 10.1007/978-3-030-01234-2_1 – volume: 117 start-page: 489 year: 2014 end-page: 501 ident: CR20 article-title: Human fall detection on embedded platform using depth maps and wireless accelerometer publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2014.09.005 – ident: CR21 – volume: 7 start-page: 114966 year: 2019 end-page: 114974 ident: CR30 article-title: An integrated vision-based approach for efficient human fall detection in a home environment publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2936320 – ident: CR17 – volume: 1 start-page: 14 year: 2022 end-page: 26 ident: CR27 article-title: An RGB camera-based fall detection algorithm in complex home environments publication-title: Interdiscip. Nurs. Res. doi: 10.1097/NR9.0000000000000007 – ident: CR13 – ident: CR11 – volume: 110 start-page: 199 year: 2015 end-page: 210 ident: CR3 article-title: An unsupervised acoustic fall detection system using source separation for sound interference suppression publication-title: Signal Process. doi: 10.1016/j.sigpro.2014.08.021 – ident: CR7 – year: 2018 ident: CR16 article-title: Spatial temporal graph convolutional networks for skeleton-based action recognition publication-title: AAAI doi: 10.1609/aaai.v32i1.12328 – ident: CR28 – volume: 26 start-page: 877 year: 2022 end-page: 890 ident: CR9 article-title: Skeleton-based human activity recognition using ConvLSTM and guided feature learning publication-title: Soft. Comput. doi: 10.1007/s00500-021-06238-7 – volume: 8 start-page: 103443 year: 2020 end-page: 103453 ident: CR23 article-title: Fall detection based on dual-channel feature integration publication-title: IEEE Access. doi: 10.1109/ACCESS.2020.2999503 – ident: 1377_CR22 doi: 10.1109/CVPR42600.2020.01155 – volume: 56 start-page: 2858 year: 2009 ident: 1377_CR2 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2030171 – ident: 1377_CR18 doi: 10.1145/3503161.3548546 – volume: 110 start-page: 199 year: 2015 ident: 1377_CR3 publication-title: Signal Process. doi: 10.1016/j.sigpro.2014.08.021 – volume: 7 start-page: 71 year: 2020 ident: 1377_CR6 publication-title: Front Robot AI. doi: 10.3389/frobt.2020.00071 – ident: 1377_CR7 doi: 10.1109/SeGAH49190.2020.9201701 – ident: 1377_CR14 doi: 10.1109/CVPR42600.2020.01392 – volume: 8 start-page: 103443 year: 2020 ident: 1377_CR23 publication-title: IEEE Access. doi: 10.1109/ACCESS.2020.2999503 – ident: 1377_CR28 – volume: 2020 start-page: 1 year: 2020 ident: 1377_CR5 publication-title: Complexity doi: 10.1155/2020/9532067 – ident: 1377_CR11 doi: 10.1109/ICCV.2017.256 – ident: 1377_CR10 doi: 10.1109/CVPR.2017.143 – year: 2018 ident: 1377_CR16 publication-title: AAAI doi: 10.1609/aaai.v32i1.12328 – volume: 7 start-page: 154786 year: 2019 ident: 1377_CR24 publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2946522 – volume: 22 year: 2013 ident: 1377_CR19 publication-title: J. Electron. Imaging doi: 10.1117/1.JEI.22.4.041106 – volume: 42 start-page: 622 year: 2022 ident: 1377_CR8 publication-title: J. Comput. Appl. – volume: 26 start-page: 877 year: 2022 ident: 1377_CR9 publication-title: Soft. Comput. doi: 10.1007/s00500-021-06238-7 – volume: 21 start-page: 17162 year: 2021 ident: 1377_CR31 publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2021.3082180 – ident: 1377_CR29 doi: 10.1109/RCAR54675.2022.9872276 – volume: 17 start-page: 469 year: 2017 ident: 1377_CR1 publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2016.2625099 – start-page: 3 volume-title: Computer Vision – ECCV 2018 year: 2018 ident: 1377_CR15 doi: 10.1007/978-3-030-01234-2_1 – ident: 1377_CR21 – volume: 117 start-page: 489 year: 2014 ident: 1377_CR20 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2014.09.005 – ident: 1377_CR12 – volume: 9 start-page: 12 year: 2021 ident: 1377_CR25 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3113824 – volume: 2022 start-page: 1 year: 2022 ident: 1377_CR26 publication-title: Math. Probl. Eng. doi: 10.1155/2022/9962666 – ident: 1377_CR13 doi: 10.1109/CVPR.2018.00745 – volume: 19 start-page: 8293 year: 2019 ident: 1377_CR4 publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2019.2918690 – volume: 1 start-page: 14 year: 2022 ident: 1377_CR27 publication-title: Interdiscip. Nurs. Res. doi: 10.1097/NR9.0000000000000007 – volume: 7 start-page: 114966 year: 2019 ident: 1377_CR30 publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2936320 – ident: 1377_CR17 doi: 10.1109/CVPR.2019.01230 |
| SSID | ssj0067635 |
| Score | 2.3316894 |
| Snippet | Providing timely rescue when a fall occurs can greatly reduce fall mortality for older people. With the growing number of single-resided elders, real-time... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 121 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Computer Graphics Computer Science Edge computing Fall detection Human body Image Processing and Computer Vision Model accuracy Multimedia Information Systems Pattern Recognition Real time Semantics Signal,Image and Speech Processing Target recognition Time response |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o9ODF-ROnU3LwpoH-TJPjHG6exmBTditpmsKgdLJWD_71vmStRVFBL4U2aSjvJfm-1yTvA7hmngo0xl0UwTyigfIU5UIKdIh2RRoKnbLMik1EkwlfLMS0PhRWNrvdmyVJO1O3h90M9FHEGGrT5FG2DTuhyTZjYvTZUzP_MpNizYRZnLkU8c2pj8p838ZnOGo55pdlUYs2o-7_vvMA9mt2SQab7nAIW7o4gm6j3EDqgXwM4wFBsphToyxPMpnnJNWV3ZRVEKuNQwy6pQRv73L5pqerUhNZpGRp_0FgyWxOx8PJCTyO7ufDB1pLKlCFY62iPs5myJmkYo6KWJRoJ0myzMQkQoZpmBk-lwke-IEj0VcqdJjCq0SWkbhSZf4pdIpVoc-ABJH2E47PPU8EOhRcaiRbPFIsU0K7bg_cxrKxqvONG9mLPG4zJRtLxWip2FoqZj24-XjneZNt49fa_cZhcT3yytgTSHiQ83GvB7eNg9rin1s7_1v1C9gzyvObnS196FTrF30Ju-q1WpbrK9sj3wFdtNcM priority: 102 providerName: Springer Nature |
| Title | A real-time fall detection model based on BlazePose and improved ST-GCN |
| URI | https://link.springer.com/article/10.1007/s11554-023-01377-6 https://www.proquest.com/docview/2922392982 |
| Volume | 20 |
| WOSCitedRecordID | wos001093593700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1861-8219 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: P5Z dateStart: 20060301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1861-8219 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: K7- dateStart: 20060301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1861-8219 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: BENPR dateStart: 20060301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1861-8219 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8200 databaseCode: RSV dateStart: 20060301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH64zYMX50-czpGDNw22XZs2J5myTRDGmFOGl5KmKQxKN7fpwb_elyx1KOjFS6BNG0q_5H0vL8n7AC6YJ32F8y6KZB5SX3qSRlxwBES5PA24SllmxCbCwSCaTPjQBtyWdltlaRONoU5nUsfIrz2ORIZcHnk381eqVaP06qqV0KhATWdJ0NINw-CltMRMJ1vTE66IuRSZzrGHZtZH5zSRUmQsapLuUfadmDbe5o8FUsM7vfp_v3gPdq3HSTrrLrIPW6o4gHqp5kDs4D6EfoegA5lTrTZPMpHnJFUrs1GrIEYvh2jGSwle3ubiQw1nS0VEkZKpiUtgzeOY9u8GR_DU647v7qmVWaASx9-KttHCoR8lJHNkyMJEOUmSZXqewkWQBpn28TIe-W3fEYifDBwmsRToeSSukFn7GKrFrFAnQPxQtZMI73se91XAI6HQAYtCyTLJles2wC3_cSxtDnIthZHHm-zJGpcYcYkNLjFrwOXXO_N1Bo4_n26WYMR2NC7jDRINuCrh3FT_3trp362dwY5Wn1_vbmlCdbV4U-ewLd9X0-WiBbXb7mA4akHlIaQt0zOxHD0-fwKX_eS4 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB6loVK5AH2paSnsoZzaVe21vd49oCoNBKKECKmpxM1dr9dSJOOkiWlVfhS_kdmN3YhK5caBiyV77ZXt-Wa-mX3MAHzgTIcG4y6KZB7TUDNNhVQSBWJ8mUXSZDx3xSbi8VhcXMjzFtw0e2HsssrGJjpDnc20HSP_zCQSGXK5YF_mP6mtGmVnV5sSGitYDM2f3xiyLQ8HRyjfA8b6x5PeKa2rClCNcKtogAqNboPS3NMxj1PjpWmeW7dcqiiLcuvS5FKEQegpfF0deVzjUSHRpr7SeYD9PoGNMBDcatQwpo3l5za5mw3wBPcpMqtXb9JZbdWzxE2RIalL8kf5XSJce7f_TMg6nutvP7Y_tANbtUdNuisVeA4tU76A7aZaBamN10s46RJ0kAtaTS8NyVVRkMxUbiFaSVw9IGIZPSN4-rVQ1-Z8tjRElRmZunEXbPk2oSe98Sv4_iCf8xra5aw0b4CEsQlSgdcZk6GJpFAGHUwRa55raXy_A34j00TXOdZtqY8iWWeHtjhIEAeJw0HCO_Dx7zPzVYaRe-_ebYSf1NZmmawl34FPDXzWzf_v7e39ve3Ds9PJ2SgZDcbDd7DJLHrdSp5daFeLK_Menupf1XS52HN6QODHQ8PqFhhuP0I |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfHiW1xdNQdvGmy7bdoc18eqKGXxhbeSpgkslCq71YO_3km2tSoqiJdCmzSUmSTzTTMzH8Ae86Sv0O-iaMxD6ktP0ogLjgpRLs8CrjKmLdlEGMfRwwMffMjit9Hu9ZHkJKfBVGkqysOnTB82iW_GDFK0N9SWzKNsGmZ89GRMUNf1zX29FzNTbs24XBFzKdo6p0qb-X6Mz6apwZtfjkit5ekv_v-bl2ChQp2kN5kmyzClihVYrBkdSLXAV-GsRxBE5tQwzhMt8pxkqrTBWgWxnDnEWL2M4O1RLl7V4HGsiCgyMrT_JrDl5paeHcdrcNc_vT0-pxXVApW4BkvaxV0OsZSQzJEhC1PlpKnWxlfhIsgCbXCe5pHf9R2BOpSBwyReBaKP1BVSd9ehVTwWagOIH6puGuFzz-O-CngkFIKwKJRMS65ctw1uLeVEVnXIDR1GnjQVlI2kEpRUYiWVsDbsv7_zNKnC8WvvTq28pFqR48TjCIQQC0ZeGw5qZTXNP4-2-bfuuzA3OOknVxfx5RbMG3L6SfBLB1rl6Fltw6x8KYfj0Y6dqG-QkeLU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+real-time+fall+detection+model+based+on+BlazePose+and+improved+ST-GCN&rft.jtitle=Journal+of+real-time+image+processing&rft.au=Zhang%2C+Yu&rft.au=Gan%2C+Junsi&rft.au=Zhao%2C+Zewei&rft.au=Chen%2C+Junliang&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1861-8200&rft.eissn=1861-8219&rft.volume=20&rft.issue=6&rft.spage=121&rft_id=info:doi/10.1007%2Fs11554-023-01377-6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8200&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8200&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8200&client=summon |