A real-time fall detection model based on BlazePose and improved ST-GCN

Providing timely rescue when a fall occurs can greatly reduce fall mortality for older people. With the growing number of single-resided elders, real-time smart fall incident detection has become a new research hotspot. Accuracy, computational complexity and real-time response are key issues to be s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of real-time image processing Vol. 20; no. 6; p. 121
Main Authors: Zhang, Yu, Gan, Junsi, Zhao, Zewei, Chen, Junliang, Chen, Xiaofeng, Diao, Yinliang, Tu, Shuqin
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2023
Springer Nature B.V
Subjects:
ISSN:1861-8200, 1861-8219
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Providing timely rescue when a fall occurs can greatly reduce fall mortality for older people. With the growing number of single-resided elders, real-time smart fall incident detection has become a new research hotspot. Accuracy, computational complexity and real-time response are key issues to be solved in this topic. A fall detection model that combines an improved Spatial–Temporal Graph Convolutional Network (ST-GCN) with the BlazePose algorithm is proposed in this paper. The computational speed is improved by removing four redundant layers from the ST-GCN network. Meanwhile, an attention mechanism focussing on the key joints involved in the falling action and their correlation is applied in the model, which introduces an Effective SE Block (ESE Block) to the residual structure of ST-GCN. It is achieved by fusing the original features with channel attention weights obtained by global average pooling and fully connected operations for the joint features. The BlazePose algorithm of the mediapipe framework is used to recognise human targets and locate the spatial coordinates of specific joints. Then the spatiotemporal graph features of the human body are extracted by the improved ST-GCN from the temporal and spatial displacements of 30 consecutive frames. Furthermore, fall behaviour is judged by the action type defined by the spatiotemporal graph. The accuracy of the proposed model for public datasets, such as Le2i Fall, Multicam Fall and UR Fall, is 99.29%, 99.22% and 98.64% respectively, which are higher than the Alphapose + ST-GCN model by 9.04%, 20% and 25.2%. Such accuracy is even better than the existing best algorithms by 0.89%, 0.92% and 1.04%. When running on the i5-10200H CPU and the Jetson Nano edge computing device, the Alphapose + ST-GCN model achieves frame rates of 11.42fps and 1.5fps, whilst the frame rates of this paper are up to 24.5fps and 9.37fps. The experimental results fully show that based on BlazePose with the improved ST-GCN makes the fall detection model higher accuracy, faster speed, real-time performance and high compatibility with the Jetson Nano edge computing device.
AbstractList Providing timely rescue when a fall occurs can greatly reduce fall mortality for older people. With the growing number of single-resided elders, real-time smart fall incident detection has become a new research hotspot. Accuracy, computational complexity and real-time response are key issues to be solved in this topic. A fall detection model that combines an improved Spatial–Temporal Graph Convolutional Network (ST-GCN) with the BlazePose algorithm is proposed in this paper. The computational speed is improved by removing four redundant layers from the ST-GCN network. Meanwhile, an attention mechanism focussing on the key joints involved in the falling action and their correlation is applied in the model, which introduces an Effective SE Block (ESE Block) to the residual structure of ST-GCN. It is achieved by fusing the original features with channel attention weights obtained by global average pooling and fully connected operations for the joint features. The BlazePose algorithm of the mediapipe framework is used to recognise human targets and locate the spatial coordinates of specific joints. Then the spatiotemporal graph features of the human body are extracted by the improved ST-GCN from the temporal and spatial displacements of 30 consecutive frames. Furthermore, fall behaviour is judged by the action type defined by the spatiotemporal graph. The accuracy of the proposed model for public datasets, such as Le2i Fall, Multicam Fall and UR Fall, is 99.29%, 99.22% and 98.64% respectively, which are higher than the Alphapose + ST-GCN model by 9.04%, 20% and 25.2%. Such accuracy is even better than the existing best algorithms by 0.89%, 0.92% and 1.04%. When running on the i5-10200H CPU and the Jetson Nano edge computing device, the Alphapose + ST-GCN model achieves frame rates of 11.42fps and 1.5fps, whilst the frame rates of this paper are up to 24.5fps and 9.37fps. The experimental results fully show that based on BlazePose with the improved ST-GCN makes the fall detection model higher accuracy, faster speed, real-time performance and high compatibility with the Jetson Nano edge computing device.
ArticleNumber 121
Author Gan, Junsi
Zhang, Yu
Tu, Shuqin
Diao, Yinliang
Chen, Junliang
Zhao, Zewei
Chen, Xiaofeng
Author_xml – sequence: 1
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University
– sequence: 2
  givenname: Junsi
  surname: Gan
  fullname: Gan, Junsi
  organization: College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University
– sequence: 3
  givenname: Zewei
  surname: Zhao
  fullname: Zhao, Zewei
  organization: College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University
– sequence: 4
  givenname: Junliang
  surname: Chen
  fullname: Chen, Junliang
  organization: College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University
– sequence: 5
  givenname: Xiaofeng
  surname: Chen
  fullname: Chen, Xiaofeng
  organization: College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University
– sequence: 6
  givenname: Yinliang
  surname: Diao
  fullname: Diao, Yinliang
  email: diaoyinliang@yeah.net
  organization: College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University
– sequence: 7
  givenname: Shuqin
  surname: Tu
  fullname: Tu, Shuqin
  organization: College of Mathematics and Informatics (College of Software Engineering), South China Agricultural University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz9F8bLKbYy1ahaKC9Ryyyaxs2e7WZCvorzd1RcFDL5kM8z7z8U7QqO1aQOic0UtGaX4VGZMyI5QLQpnIc6KO0JgVipGCMz36_VN6giYxrilVuRJyjBYzHMA2pK83gCvbNNhDD66vuxZvOg8NLm0Ej1N63dhPeOoiYNt6XG-2oXtPlecVWcwfTtFxoiOc_cQperm9Wc3vyPJxcT-fLYkTTPdEeA8yk9Yp6nKVl0DLsqoyobW20stKMi0qXWQio5Zp7yRVLr1WsLxk1lViii6Gvmn62w5ib9bdLrRppOGac6G5LnhSFYPKhS7GAJVxdW_3R_XB1o1h1OxtM4NtJtlmvm0zKqH8H7oN9caGj8OQGKCYxO0rhL-tDlBfrTKARQ
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e40035
crossref_primary_10_1016_j_autcon_2025_106216
crossref_primary_10_2478_amns_2024_3173
crossref_primary_10_3390_s24072037
crossref_primary_10_1007_s11554_024_01454_4
crossref_primary_10_1007_s10489_025_06316_5
crossref_primary_10_1007_s12530_024_09601_9
crossref_primary_10_1007_s11760_025_04358_3
Cites_doi 10.1109/ACCESS.2019.2946522
10.1109/JSEN.2016.2625099
10.1117/1.JEI.22.4.041106
10.1109/JSEN.2021.3082180
10.1109/ACCESS.2021.3113824
10.1109/TBME.2009.2030171
10.3389/frobt.2020.00071
10.1109/JSEN.2019.2918690
10.1155/2020/9532067
10.1155/2022/9962666
10.1007/978-3-030-01234-2_1
10.1016/j.cmpb.2014.09.005
10.1109/ACCESS.2019.2936320
10.1097/NR9.0000000000000007
10.1016/j.sigpro.2014.08.021
10.1609/aaai.v32i1.12328
10.1007/s00500-021-06238-7
10.1109/ACCESS.2020.2999503
10.1109/CVPR42600.2020.01155
10.1145/3503161.3548546
10.1109/SeGAH49190.2020.9201701
10.1109/CVPR42600.2020.01392
10.1109/ICCV.2017.256
10.1109/CVPR.2017.143
10.1109/RCAR54675.2022.9872276
10.1109/CVPR.2018.00745
10.1109/CVPR.2019.01230
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s11554-023-01377-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1861-8219
ExternalDocumentID 10_1007_s11554_023_01377_6
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-3dde545ac60c767be0bbff43999a5d5f5193f984340a19dc506cdc5a317b1acf3
IEDL.DBID P5Z
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001093593700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1861-8200
IngestDate Wed Nov 05 09:18:00 EST 2025
Sat Nov 29 03:23:17 EST 2025
Tue Nov 18 21:24:31 EST 2025
Fri Feb 21 02:44:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Real-time fall detection
Pose estimation
Improved spatial–temporal graph convolution
Edge computing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-3dde545ac60c767be0bbff43999a5d5f5193f984340a19dc506cdc5a317b1acf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2922392982
PQPubID 2044148
ParticipantIDs proquest_journals_2922392982
crossref_citationtrail_10_1007_s11554_023_01377_6
crossref_primary_10_1007_s11554_023_01377_6
springer_journals_10_1007_s11554_023_01377_6
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of real-time image processing
PublicationTitleAbbrev J Real-Time Image Proc
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Cao, Zhu, Zhang, Lyu, Yang (CR8) 2022; 42
CR18
CR17
Harrou, Zerrouki, Sun, Houacine (CR30) 2019; 7
Vishnu, Datla, Roy, Babu, Mohan (CR31) 2021; 21
Wang, Ellul, Azzopardi (CR6) 2020; 7
CR14
CR13
Xi, Jiang, Lü, Miran, Luo (CR5) 2020; 2020
CR12
CR11
Alaoui, El Fkihi, Thami (CR24) 2019; 7
CR10
Zheng, Liu (CR26) 2022; 2022
Yan, Xiong, Lin (CR16) 2018
Yadav, Tiwari, Pandey, Akbar (CR9) 2022; 26
Wang, Yu, Wang, Bao, Mao (CR23) 2020; 8
Lee, Tseng (CR4) 2019; 19
Zigel, Litvak, Gannot (CR2) 2009; 56
CR7
CR29
Tian, Zhang, Wang, Wang (CR27) 2022; 1
CR28
Chang, Hsu, Chen (CR25) 2021; 9
CR22
CR21
Salman Khan, Yu, Feng, Wang, Chambers (CR3) 2015; 110
Kwolek, Kepski (CR20) 2014; 117
Daher, Diab, El Najjar, Khalil, Charpillet (CR1) 2017; 17
Woo, Park, Lee, Kweon, Ferrari, Hebert, Sminchisescu, Weiss (CR15) 2018
Charfi, Miteran, Dubois, Atri, Tourki (CR19) 2013; 22
X Xi (1377_CR5) 2020; 2020
J Cao (1377_CR8) 2022; 42
S Woo (1377_CR15) 2018
J-S Lee (1377_CR4) 2019; 19
C Vishnu (1377_CR31) 2021; 21
M Daher (1377_CR1) 2017; 17
1377_CR10
1377_CR11
1377_CR12
1377_CR13
1377_CR14
1377_CR17
1377_CR18
W-J Chang (1377_CR25) 2021; 9
F Harrou (1377_CR30) 2019; 7
Y Zigel (1377_CR2) 2009; 56
H Zheng (1377_CR26) 2022; 2022
M Salman Khan (1377_CR3) 2015; 110
B Kwolek (1377_CR20) 2014; 117
1377_CR21
AY Alaoui (1377_CR24) 2019; 7
1377_CR22
1377_CR7
X Wang (1377_CR6) 2020; 7
1377_CR28
S Yan (1377_CR16) 2018
I Charfi (1377_CR19) 2013; 22
1377_CR29
B-H Wang (1377_CR23) 2020; 8
Z Tian (1377_CR27) 2022; 1
SK Yadav (1377_CR9) 2022; 26
References_xml – ident: CR22
– volume: 7
  start-page: 154786
  year: 2019
  end-page: 154795
  ident: CR24
  article-title: Fall detection for elderly people using the variation of key points of human skeleton
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2946522
– volume: 17
  start-page: 469
  year: 2017
  end-page: 479
  ident: CR1
  article-title: Elder tracking and fall detection system using smart tiles
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2016.2625099
– volume: 22
  year: 2013
  ident: CR19
  article-title: Optimized spatio-temporal descriptors for real-time fall detection: comparison of support vector machine and Adaboost-based classification
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.22.4.041106
– volume: 21
  start-page: 17162
  year: 2021
  end-page: 17170
  ident: CR31
  article-title: Human fall detection in surveillance videos using fall motion vector modeling
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2021.3082180
– ident: CR18
– volume: 9
  start-page: 12
  year: 2021
  ident: CR25
  article-title: A pose estimation-based fall detection methodology using artificial intelligence edge computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3113824
– volume: 56
  start-page: 2858
  year: 2009
  end-page: 2867
  ident: CR2
  article-title: A method for automatic fall detection of elderly people using floor vibrations and sound—proof of concept on human mimicking doll falls
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2030171
– ident: CR14
– volume: 7
  start-page: 71
  year: 2020
  ident: CR6
  article-title: Elderly fall detection systems: a literature survey
  publication-title: Front Robot AI.
  doi: 10.3389/frobt.2020.00071
– volume: 19
  start-page: 8293
  year: 2019
  end-page: 8302
  ident: CR4
  article-title: Development of an enhanced threshold-based fall detection system using smartphones with built-in accelerometers
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2019.2918690
– ident: CR12
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR5
  article-title: Daily activity monitoring and fall detection based on surface electromyography and plantar pressure
  publication-title: Complexity
  doi: 10.1155/2020/9532067
– volume: 42
  start-page: 622
  year: 2022
  end-page: 630
  ident: CR8
  article-title: Fall detection algorithm based on joint point features
  publication-title: J. Comput. Appl.
– ident: CR10
– ident: CR29
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 15
  ident: CR26
  article-title: Lightweight fall detection algorithm based on alphapose optimization model and ST-GCN
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2022/9962666
– start-page: 3
  year: 2018
  end-page: 19
  ident: CR15
  article-title: CBAM: Convolutional block attention module
  publication-title: Computer Vision – ECCV 2018
  doi: 10.1007/978-3-030-01234-2_1
– volume: 117
  start-page: 489
  year: 2014
  end-page: 501
  ident: CR20
  article-title: Human fall detection on embedded platform using depth maps and wireless accelerometer
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2014.09.005
– ident: CR21
– volume: 7
  start-page: 114966
  year: 2019
  end-page: 114974
  ident: CR30
  article-title: An integrated vision-based approach for efficient human fall detection in a home environment
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2936320
– ident: CR17
– volume: 1
  start-page: 14
  year: 2022
  end-page: 26
  ident: CR27
  article-title: An RGB camera-based fall detection algorithm in complex home environments
  publication-title: Interdiscip. Nurs. Res.
  doi: 10.1097/NR9.0000000000000007
– ident: CR13
– ident: CR11
– volume: 110
  start-page: 199
  year: 2015
  end-page: 210
  ident: CR3
  article-title: An unsupervised acoustic fall detection system using source separation for sound interference suppression
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2014.08.021
– ident: CR7
– year: 2018
  ident: CR16
  article-title: Spatial temporal graph convolutional networks for skeleton-based action recognition
  publication-title: AAAI
  doi: 10.1609/aaai.v32i1.12328
– ident: CR28
– volume: 26
  start-page: 877
  year: 2022
  end-page: 890
  ident: CR9
  article-title: Skeleton-based human activity recognition using ConvLSTM and guided feature learning
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-021-06238-7
– volume: 8
  start-page: 103443
  year: 2020
  end-page: 103453
  ident: CR23
  article-title: Fall detection based on dual-channel feature integration
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.2999503
– ident: 1377_CR22
  doi: 10.1109/CVPR42600.2020.01155
– volume: 56
  start-page: 2858
  year: 2009
  ident: 1377_CR2
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2030171
– ident: 1377_CR18
  doi: 10.1145/3503161.3548546
– volume: 110
  start-page: 199
  year: 2015
  ident: 1377_CR3
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2014.08.021
– volume: 7
  start-page: 71
  year: 2020
  ident: 1377_CR6
  publication-title: Front Robot AI.
  doi: 10.3389/frobt.2020.00071
– ident: 1377_CR7
  doi: 10.1109/SeGAH49190.2020.9201701
– ident: 1377_CR14
  doi: 10.1109/CVPR42600.2020.01392
– volume: 8
  start-page: 103443
  year: 2020
  ident: 1377_CR23
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.2999503
– ident: 1377_CR28
– volume: 2020
  start-page: 1
  year: 2020
  ident: 1377_CR5
  publication-title: Complexity
  doi: 10.1155/2020/9532067
– ident: 1377_CR11
  doi: 10.1109/ICCV.2017.256
– ident: 1377_CR10
  doi: 10.1109/CVPR.2017.143
– year: 2018
  ident: 1377_CR16
  publication-title: AAAI
  doi: 10.1609/aaai.v32i1.12328
– volume: 7
  start-page: 154786
  year: 2019
  ident: 1377_CR24
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2946522
– volume: 22
  year: 2013
  ident: 1377_CR19
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.22.4.041106
– volume: 42
  start-page: 622
  year: 2022
  ident: 1377_CR8
  publication-title: J. Comput. Appl.
– volume: 26
  start-page: 877
  year: 2022
  ident: 1377_CR9
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-021-06238-7
– volume: 21
  start-page: 17162
  year: 2021
  ident: 1377_CR31
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2021.3082180
– ident: 1377_CR29
  doi: 10.1109/RCAR54675.2022.9872276
– volume: 17
  start-page: 469
  year: 2017
  ident: 1377_CR1
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2016.2625099
– start-page: 3
  volume-title: Computer Vision – ECCV 2018
  year: 2018
  ident: 1377_CR15
  doi: 10.1007/978-3-030-01234-2_1
– ident: 1377_CR21
– volume: 117
  start-page: 489
  year: 2014
  ident: 1377_CR20
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2014.09.005
– ident: 1377_CR12
– volume: 9
  start-page: 12
  year: 2021
  ident: 1377_CR25
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3113824
– volume: 2022
  start-page: 1
  year: 2022
  ident: 1377_CR26
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2022/9962666
– ident: 1377_CR13
  doi: 10.1109/CVPR.2018.00745
– volume: 19
  start-page: 8293
  year: 2019
  ident: 1377_CR4
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2019.2918690
– volume: 1
  start-page: 14
  year: 2022
  ident: 1377_CR27
  publication-title: Interdiscip. Nurs. Res.
  doi: 10.1097/NR9.0000000000000007
– volume: 7
  start-page: 114966
  year: 2019
  ident: 1377_CR30
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2936320
– ident: 1377_CR17
  doi: 10.1109/CVPR.2019.01230
SSID ssj0067635
Score 2.3316894
Snippet Providing timely rescue when a fall occurs can greatly reduce fall mortality for older people. With the growing number of single-resided elders, real-time...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Computer Graphics
Computer Science
Edge computing
Fall detection
Human body
Image Processing and Computer Vision
Model accuracy
Multimedia Information Systems
Pattern Recognition
Real time
Semantics
Signal,Image and Speech Processing
Target recognition
Time response
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o9ODF-ROnU3LwpoH-TJPjHG6exmBTditpmsKgdLJWD_71vmStRVFBL4U2aSjvJfm-1yTvA7hmngo0xl0UwTyigfIU5UIKdIh2RRoKnbLMik1EkwlfLMS0PhRWNrvdmyVJO1O3h90M9FHEGGrT5FG2DTuhyTZjYvTZUzP_MpNizYRZnLkU8c2pj8p838ZnOGo55pdlUYs2o-7_vvMA9mt2SQab7nAIW7o4gm6j3EDqgXwM4wFBsphToyxPMpnnJNWV3ZRVEKuNQwy6pQRv73L5pqerUhNZpGRp_0FgyWxOx8PJCTyO7ufDB1pLKlCFY62iPs5myJmkYo6KWJRoJ0myzMQkQoZpmBk-lwke-IEj0VcqdJjCq0SWkbhSZf4pdIpVoc-ABJH2E47PPU8EOhRcaiRbPFIsU0K7bg_cxrKxqvONG9mLPG4zJRtLxWip2FoqZj24-XjneZNt49fa_cZhcT3yytgTSHiQ83GvB7eNg9rin1s7_1v1C9gzyvObnS196FTrF30Ju-q1WpbrK9sj3wFdtNcM
  priority: 102
  providerName: Springer Nature
Title A real-time fall detection model based on BlazePose and improved ST-GCN
URI https://link.springer.com/article/10.1007/s11554-023-01377-6
https://www.proquest.com/docview/2922392982
Volume 20
WOSCitedRecordID wos001093593700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: P5Z
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: K7-
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: BENPR
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8200
  databaseCode: RSV
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH64zYMX50-czpGDNw22XZs2J5myTRDGmFOGl5KmKQxKN7fpwb_elyx1KOjFS6BNG0q_5H0vL8n7AC6YJ32F8y6KZB5SX3qSRlxwBES5PA24SllmxCbCwSCaTPjQBtyWdltlaRONoU5nUsfIrz2ORIZcHnk381eqVaP06qqV0KhATWdJ0NINw-CltMRMJ1vTE66IuRSZzrGHZtZH5zSRUmQsapLuUfadmDbe5o8FUsM7vfp_v3gPdq3HSTrrLrIPW6o4gHqp5kDs4D6EfoegA5lTrTZPMpHnJFUrs1GrIEYvh2jGSwle3ubiQw1nS0VEkZKpiUtgzeOY9u8GR_DU647v7qmVWaASx9-KttHCoR8lJHNkyMJEOUmSZXqewkWQBpn28TIe-W3fEYifDBwmsRToeSSukFn7GKrFrFAnQPxQtZMI73se91XAI6HQAYtCyTLJles2wC3_cSxtDnIthZHHm-zJGpcYcYkNLjFrwOXXO_N1Bo4_n26WYMR2NC7jDRINuCrh3FT_3trp362dwY5Wn1_vbmlCdbV4U-ewLd9X0-WiBbXb7mA4akHlIaQt0zOxHD0-fwKX_eS4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB6loVK5AH2paSnsoZzaVe21vd49oCoNBKKECKmpxM1dr9dSJOOkiWlVfhS_kdmN3YhK5caBiyV77ZXt-Wa-mX3MAHzgTIcG4y6KZB7TUDNNhVQSBWJ8mUXSZDx3xSbi8VhcXMjzFtw0e2HsssrGJjpDnc20HSP_zCQSGXK5YF_mP6mtGmVnV5sSGitYDM2f3xiyLQ8HRyjfA8b6x5PeKa2rClCNcKtogAqNboPS3NMxj1PjpWmeW7dcqiiLcuvS5FKEQegpfF0deVzjUSHRpr7SeYD9PoGNMBDcatQwpo3l5za5mw3wBPcpMqtXb9JZbdWzxE2RIalL8kf5XSJce7f_TMg6nutvP7Y_tANbtUdNuisVeA4tU76A7aZaBamN10s46RJ0kAtaTS8NyVVRkMxUbiFaSVw9IGIZPSN4-rVQ1-Z8tjRElRmZunEXbPk2oSe98Sv4_iCf8xra5aw0b4CEsQlSgdcZk6GJpFAGHUwRa55raXy_A34j00TXOdZtqY8iWWeHtjhIEAeJw0HCO_Dx7zPzVYaRe-_ebYSf1NZmmawl34FPDXzWzf_v7e39ve3Ds9PJ2SgZDcbDd7DJLHrdSp5daFeLK_Menupf1XS52HN6QODHQ8PqFhhuP0I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfHiW1xdNQdvGmy7bdoc18eqKGXxhbeSpgkslCq71YO_3km2tSoqiJdCmzSUmSTzTTMzH8Ae86Sv0O-iaMxD6ktP0ogLjgpRLs8CrjKmLdlEGMfRwwMffMjit9Hu9ZHkJKfBVGkqysOnTB82iW_GDFK0N9SWzKNsGmZ89GRMUNf1zX29FzNTbs24XBFzKdo6p0qb-X6Mz6apwZtfjkit5ekv_v-bl2ChQp2kN5kmyzClihVYrBkdSLXAV-GsRxBE5tQwzhMt8pxkqrTBWgWxnDnEWL2M4O1RLl7V4HGsiCgyMrT_JrDl5paeHcdrcNc_vT0-pxXVApW4BkvaxV0OsZSQzJEhC1PlpKnWxlfhIsgCbXCe5pHf9R2BOpSBwyReBaKP1BVSd9ehVTwWagOIH6puGuFzz-O-CngkFIKwKJRMS65ctw1uLeVEVnXIDR1GnjQVlI2kEpRUYiWVsDbsv7_zNKnC8WvvTq28pFqR48TjCIQQC0ZeGw5qZTXNP4-2-bfuuzA3OOknVxfx5RbMG3L6SfBLB1rl6Fltw6x8KYfj0Y6dqG-QkeLU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+real-time+fall+detection+model+based+on+BlazePose+and+improved+ST-GCN&rft.jtitle=Journal+of+real-time+image+processing&rft.au=Zhang%2C+Yu&rft.au=Gan%2C+Junsi&rft.au=Zhao%2C+Zewei&rft.au=Chen%2C+Junliang&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1861-8200&rft.eissn=1861-8219&rft.volume=20&rft.issue=6&rft.spage=121&rft_id=info:doi/10.1007%2Fs11554-023-01377-6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8200&client=summon