A Novel Video Face Verification Algorithm Based on TPLBP and the 3D Siamese-CNN
In order to reduce the computational consumption of the training and the testing phases of video face recognition methods based on a global statistical method and a deep learning network, a novel video face verification algorithm based on a three-patch local binary pattern (TPLBP) and the 3D Siamese...
Saved in:
| Published in: | Electronics (Basel) Vol. 8; no. 12; p. 1544 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.12.2019
|
| Subjects: | |
| ISSN: | 2079-9292, 2079-9292 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In order to reduce the computational consumption of the training and the testing phases of video face recognition methods based on a global statistical method and a deep learning network, a novel video face verification algorithm based on a three-patch local binary pattern (TPLBP) and the 3D Siamese convolutional neural network is proposed in this paper. The proposed method takes the TPLBP texture feature which has excellent performance in face analysis as the input of the network. In order to extract the inter-frame information of the video, the texture feature maps of the multi-frames are stacked, and then a shallow Siamese 3D convolutional neural network is used to realize dimension reduction. The similarity of high-level features of the video pair is solved by the shallow Siamese 3D convolutional neural network, and then mapped to the interval of 0 to 1 by linear transformation. The classification result can be obtained with the threshold of 0.5. Through an experiment on the YouTube Face database, the proposed algorithm got higher accuracy with less computational consumption than baseline methods and deep learning methods. |
|---|---|
| AbstractList | In order to reduce the computational consumption of the training and the testing phases of video face recognition methods based on a global statistical method and a deep learning network, a novel video face verification algorithm based on a three-patch local binary pattern (TPLBP) and the 3D Siamese convolutional neural network is proposed in this paper. The proposed method takes the TPLBP texture feature which has excellent performance in face analysis as the input of the network. In order to extract the inter-frame information of the video, the texture feature maps of the multi-frames are stacked, and then a shallow Siamese 3D convolutional neural network is used to realize dimension reduction. The similarity of high-level features of the video pair is solved by the shallow Siamese 3D convolutional neural network, and then mapped to the interval of 0 to 1 by linear transformation. The classification result can be obtained with the threshold of 0.5. Through an experiment on the YouTube Face database, the proposed algorithm got higher accuracy with less computational consumption than baseline methods and deep learning methods. |
| Author | Wang, Yu Ma, Shuyang Shen, Xuanjing |
| Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0002-9173-1209 surname: Wang fullname: Wang, Yu – sequence: 2 givenname: Shuyang surname: Ma fullname: Ma, Shuyang – sequence: 3 givenname: Xuanjing surname: Shen fullname: Shen, Xuanjing |
| BookMark | eNp9kE9LAzEQxYNUsNZ-AU8Bz6v5u7s5ttWqUNqCtdclZCc2ZbupSSr47V2tB1FwLjMM7zePeeeo1_oWELqk5JpzRW6gAZOCb52JJWVUCnGC-owUKlNMsd6P-QwNY9ySrhTlJSd9tBjhuX-DBq9dDR5PtQG8huCsMzo53-JR8-KDS5sdHusINe5Wq-VsvMS6rXHaAOa3-MnpHUTIJvP5BTq1uokw_O4D9Dy9W00estni_nEymmWGU5UyXjPJJSmlYaJk1Oq6kKbghVBgai2FNHlR09wyQgW3Wmme05xArizTglPgA3R1vLsP_vUAMVVbfwhtZ1kxKUohCsVJpyqPKhN8jAFsZVz6-isF7ZqKkuozwepvgh3KfqH74HY6vP8HfQDtVnbw |
| CitedBy_id | crossref_primary_10_1061_IJGNAI_GMENG_8234 crossref_primary_10_3390_electronics10202522 crossref_primary_10_1016_j_infrared_2025_106056 crossref_primary_10_3389_fnins_2024_1349204 |
| Cites_doi | 10.1016/j.neucom.2016.09.015 10.1109/CVPR.2011.5995566 10.1109/TPAMI.2017.2787130 10.1007/978-3-319-16811-1_2 10.1109/CVPR.2017.113 10.1109/TPAMI.2012.59 10.1109/CVPR.2018.00052 10.1016/j.cviu.2019.102805 10.1109/TIP.2015.2493448 10.1109/ICOIN.2018.8343173 10.1007/978-3-319-25958-1_8 10.1109/CVPR.2013.449 10.1109/BTAS.2013.6712699 10.1109/CVPR.2015.7299032 10.1109/CVPR.2016.90 10.1109/CVPR.2014.220 10.1145/1961189.1961199 10.1109/ITNEC.2019.8729185 10.1166/jctn.2016.5065 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/electronics8121544 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10_3390_electronics8121544 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-3d2535085c24821fad75c73749ecda545c67d16f20143fa9a36160e69f2a431e3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506678200169&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Sun Nov 30 04:11:36 EST 2025 Sat Nov 29 07:08:51 EST 2025 Tue Nov 18 21:32:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-3d2535085c24821fad75c73749ecda545c67d16f20143fa9a36160e69f2a431e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9173-1209 |
| OpenAccessLink | https://www.proquest.com/docview/2548447930?pq-origsite=%requestingapplication% |
| PQID | 2548447930 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_2548447930 crossref_citationtrail_10_3390_electronics8121544 crossref_primary_10_3390_electronics8121544 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-01 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2019 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Chen (ref_8) 2016; 219 Yu (ref_12) 2015; 26 Srivastava (ref_15) 2014; 15 Ji (ref_23) 2013; 35 ref_14 ref_11 ref_22 ref_10 ref_21 Chang (ref_16) 2011; 2 ref_1 ref_3 ref_2 ref_19 Wang (ref_20) 2016; 13 ref_18 Wu (ref_7) 2018; 40 ref_17 Guo (ref_13) 2019; 189 ref_9 Huang (ref_5) 2015; 24 ref_4 ref_6 |
| References_xml | – volume: 219 start-page: 26 year: 2016 ident: ref_8 article-title: Recurrent Neural Network for Facial Landmark Detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.015 – ident: ref_21 doi: 10.1109/CVPR.2011.5995566 – volume: 40 start-page: 3067 year: 2018 ident: ref_7 article-title: Facial landmark detection with tweaked convolutional neural networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2787130 – ident: ref_11 doi: 10.1007/978-3-319-16811-1_2 – volume: 26 start-page: 2897 year: 2015 ident: ref_12 article-title: Discriminative joint multi-manifold analysis for video-based face recognition publication-title: Ruan Jian Xue Bao/J. Softw. – ident: ref_19 doi: 10.1109/CVPR.2017.113 – volume: 35 start-page: 221 year: 2013 ident: ref_23 article-title: 3D Convolutional Neural Networks for Human Action Recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.59 – ident: ref_2 doi: 10.1109/CVPR.2018.00052 – volume: 189 start-page: 102805 year: 2019 ident: ref_13 article-title: A survey on deep learning based face recognition publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2019.102805 – volume: 24 start-page: 5967 year: 2015 ident: ref_5 article-title: A Benchmark and Comparative Study of Video-Based Face Recognition on COX Face Database publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2493448 – ident: ref_17 doi: 10.1109/ICOIN.2018.8343173 – volume: 15 start-page: 1929 year: 2014 ident: ref_15 article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting publication-title: J. Mach. Learn. Res. – ident: ref_6 doi: 10.1007/978-3-319-25958-1_8 – ident: ref_10 doi: 10.1109/CVPR.2013.449 – ident: ref_14 – ident: ref_4 doi: 10.1109/BTAS.2013.6712699 – ident: ref_1 – ident: ref_9 doi: 10.1109/CVPR.2015.7299032 – ident: ref_22 doi: 10.1109/CVPR.2016.90 – ident: ref_3 doi: 10.1109/CVPR.2014.220 – volume: 2 start-page: 27 year: 2011 ident: ref_16 article-title: LIBSVM: A library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – ident: ref_18 doi: 10.1109/ITNEC.2019.8729185 – volume: 13 start-page: 1436 year: 2016 ident: ref_20 article-title: Video Face Recognition Based on the Convex Hull Model of Kernel Subspace Sample Selection publication-title: J. Comput. Theor. Nanosci. doi: 10.1166/jctn.2016.5065 |
| SSID | ssj0000913830 |
| Score | 2.1474187 |
| Snippet | In order to reduce the computational consumption of the training and the testing phases of video face recognition methods based on a global statistical method... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1544 |
| SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Consumption Deep learning Face recognition Feature extraction Feature maps Linear transformations Machine learning Neural networks Statistical methods Texture Verification |
| Title | A Novel Video Face Verification Algorithm Based on TPLBP and the 3D Siamese-CNN |
| URI | https://www.proquest.com/docview/2548447930 |
| Volume | 8 |
| WOSCitedRecordID | wos000506678200169&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oetCDbyOKZA_eTCPtbh97MoAQTbQ2iga9NNt9KAmCCnL0tzsLRSUmXLzOdpu2szuvzn4fwJGJaCZNYI_9aokJCg2dTHHlSBVwHXKXZUqMySbCOI7abZ7kBbdB3lY5tYljQ6360tbITzCRiZgtA1VOX98cyxpl_67mFBqLsGRREix1Q-I_ftdYLOZlRCuTszIUs_uTH26ZQWRnMDbrj2bN8djHNNf_-3QbsJZHl6Q6WQ6bsKB7W7D6C3NwG66rJO6PdJfcd5Tuk6aQmtzjmMmLd6TafcI7D59fSA09nCIoaiWXtYSIniIYLhJ6Rm47trlWO_U43oG7ZqNVP3dyVgVH4nYbOlR5PsWwzJceizzXCBX6MqQh41oqgQGVDELlBsazyH9GcEEDN6jogBtPYLSh6S4Uev2e3gPCuJsZ35dRoDImTCY4SnRFYAokDWWiCO7026Yyhxy3zBfdFFMPq4_0rz6KcPw953UCuDH36tJUH2m--QbpjzL25w8fwAq-JZ90p5SgMHz_0IewLEfDzuC9DEu1RpzclGHx6rNRHq8slCUXV8nDF2SR2Is |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9tAFH6CgER7KGvVUJY5wAlZ2J7xMgdUhSUiIhhLBAQnM56ljZQmlARQ_xS_kTexzSIkbhy4zngsjb9Pb_NbADZMTHNpQlv2qyU6KDRycsWVI1XIdcQ9lisxHjYRJUl8ccHTCXioamFsWmUlE8eCWg2kjZFvoyMTMxsGcn9d_3Ps1Cj7d7UaoVHQ4kj_v0eXbbjT2kd8N32_edDZO3TKqQKORLqNHKr8gKJZEkifxb5nhIoCGdGIcS2VQINChpHyQuPbzndGcEFDL3R1yI0vUNtqiu-dhClmyV6DqbR1nF4-RXVsl82YukV1DqXc3X6eZjOMbScHxl5rwNcKYKzVmrOf7XvMwbfSfiaNgvDzMKH7C_D1RVfFRThpkGRwp3vkvKv0gDSF1OQc90wZniSN3m-8yejPX7KLOlwRXOqk7d2UiL4iaBATuk9OuzZ9WDt7SbIEZx9yo-9Q6w_6-gcQxr3cBIGMQ5UzYXLBcUW7Ap08aSgTdfAqLDNZNlW3sz16GTpXFv_sLf512Ho6c120FHn36ZUK_6wUL8PsGfzl97fXYeawc9zO2q3k6Cd8wRvzIhdnBWqjm1u9CtPybtQd3qyVTCZw9dFkeQR9gi_b |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB5BWSE4AMuCeOMDnFDUJHYePiBUKNUiUIi0gNBeguMHVCottAXEX-PXMW4SWITEjcNe7STSxF_mlZlvALZMTHNpQtv2qyUGKDRycsWVI1XIdcQ9lisxGjYRJUl8ecnTMXipemFsWWWlE0eKWvWkzZHXMZCJmU0DuXVTlkWkzdbe3b1jJ0jZP63VOI0CIsf6-QnDt8HuURPPetv3W4dnB7-dcsKAIxF6Q4cqP6DoogTSZ7HvGaGiQEY0YlxLJdC5kGGkvND4lgXPCC5o6IWuDrnxBVpeTfG54zARYYxpywnT4O9bfsfybcbULfp0KOVu_X2uzSC2nA6MfbSFH03ByL61Zv_nNzMHM6VXTRrFZ_ATxnR3Hqb_4Vr8BacNkvQedYdctJXukZaQmlzgnimTlqTRuUZJhje3ZB8tuyK4dJae7KdEdBVBN5nQJvnTtkXF2jlIkgU4_xaJFqHW7XX1EhDGvdwEgYxDlTNhcsFxRbsCQz9pKBPL4FXnmsmSat1O_OhkGHJZLGSfsbAMO2_33BVEI19evVZhISuVziB7B8LK19ubMIkIyU6OkuNVmEKBeVGgswa1Yf9Br8MP-ThsD_obI0gTuPpupLwC96I3Pg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Video+Face+Verification+Algorithm+Based+on+TPLBP+and+the+3D+Siamese-CNN&rft.jtitle=Electronics+%28Basel%29&rft.au=Wang%2C+Yu&rft.au=Ma%2C+Shuyang&rft.au=Shen%2C+Xuanjing&rft.date=2019-12-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=8&rft.issue=12&rft.spage=1544&rft_id=info:doi/10.3390%2Felectronics8121544&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics8121544 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |