A Novel Video Face Verification Algorithm Based on TPLBP and the 3D Siamese-CNN

In order to reduce the computational consumption of the training and the testing phases of video face recognition methods based on a global statistical method and a deep learning network, a novel video face verification algorithm based on a three-patch local binary pattern (TPLBP) and the 3D Siamese...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) Vol. 8; no. 12; p. 1544
Main Authors: Wang, Yu, Ma, Shuyang, Shen, Xuanjing
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.12.2019
Subjects:
ISSN:2079-9292, 2079-9292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In order to reduce the computational consumption of the training and the testing phases of video face recognition methods based on a global statistical method and a deep learning network, a novel video face verification algorithm based on a three-patch local binary pattern (TPLBP) and the 3D Siamese convolutional neural network is proposed in this paper. The proposed method takes the TPLBP texture feature which has excellent performance in face analysis as the input of the network. In order to extract the inter-frame information of the video, the texture feature maps of the multi-frames are stacked, and then a shallow Siamese 3D convolutional neural network is used to realize dimension reduction. The similarity of high-level features of the video pair is solved by the shallow Siamese 3D convolutional neural network, and then mapped to the interval of 0 to 1 by linear transformation. The classification result can be obtained with the threshold of 0.5. Through an experiment on the YouTube Face database, the proposed algorithm got higher accuracy with less computational consumption than baseline methods and deep learning methods.
AbstractList In order to reduce the computational consumption of the training and the testing phases of video face recognition methods based on a global statistical method and a deep learning network, a novel video face verification algorithm based on a three-patch local binary pattern (TPLBP) and the 3D Siamese convolutional neural network is proposed in this paper. The proposed method takes the TPLBP texture feature which has excellent performance in face analysis as the input of the network. In order to extract the inter-frame information of the video, the texture feature maps of the multi-frames are stacked, and then a shallow Siamese 3D convolutional neural network is used to realize dimension reduction. The similarity of high-level features of the video pair is solved by the shallow Siamese 3D convolutional neural network, and then mapped to the interval of 0 to 1 by linear transformation. The classification result can be obtained with the threshold of 0.5. Through an experiment on the YouTube Face database, the proposed algorithm got higher accuracy with less computational consumption than baseline methods and deep learning methods.
Author Wang, Yu
Ma, Shuyang
Shen, Xuanjing
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0002-9173-1209
  surname: Wang
  fullname: Wang, Yu
– sequence: 2
  givenname: Shuyang
  surname: Ma
  fullname: Ma, Shuyang
– sequence: 3
  givenname: Xuanjing
  surname: Shen
  fullname: Shen, Xuanjing
BookMark eNp9kE9LAzEQxYNUsNZ-AU8Bz6v5u7s5ttWqUNqCtdclZCc2ZbupSSr47V2tB1FwLjMM7zePeeeo1_oWELqk5JpzRW6gAZOCb52JJWVUCnGC-owUKlNMsd6P-QwNY9ySrhTlJSd9tBjhuX-DBq9dDR5PtQG8huCsMzo53-JR8-KDS5sdHusINe5Wq-VsvMS6rXHaAOa3-MnpHUTIJvP5BTq1uokw_O4D9Dy9W00estni_nEymmWGU5UyXjPJJSmlYaJk1Oq6kKbghVBgai2FNHlR09wyQgW3Wmme05xArizTglPgA3R1vLsP_vUAMVVbfwhtZ1kxKUohCsVJpyqPKhN8jAFsZVz6-isF7ZqKkuozwepvgh3KfqH74HY6vP8HfQDtVnbw
CitedBy_id crossref_primary_10_1061_IJGNAI_GMENG_8234
crossref_primary_10_3390_electronics10202522
crossref_primary_10_1016_j_infrared_2025_106056
crossref_primary_10_3389_fnins_2024_1349204
Cites_doi 10.1016/j.neucom.2016.09.015
10.1109/CVPR.2011.5995566
10.1109/TPAMI.2017.2787130
10.1007/978-3-319-16811-1_2
10.1109/CVPR.2017.113
10.1109/TPAMI.2012.59
10.1109/CVPR.2018.00052
10.1016/j.cviu.2019.102805
10.1109/TIP.2015.2493448
10.1109/ICOIN.2018.8343173
10.1007/978-3-319-25958-1_8
10.1109/CVPR.2013.449
10.1109/BTAS.2013.6712699
10.1109/CVPR.2015.7299032
10.1109/CVPR.2016.90
10.1109/CVPR.2014.220
10.1145/1961189.1961199
10.1109/ITNEC.2019.8729185
10.1166/jctn.2016.5065
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics8121544
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10_3390_electronics8121544
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-3d2535085c24821fad75c73749ecda545c67d16f20143fa9a36160e69f2a431e3
IEDL.DBID P5Z
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506678200169&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Sun Nov 30 04:11:36 EST 2025
Sat Nov 29 07:08:51 EST 2025
Tue Nov 18 21:32:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-3d2535085c24821fad75c73749ecda545c67d16f20143fa9a36160e69f2a431e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9173-1209
OpenAccessLink https://www.proquest.com/docview/2548447930?pq-origsite=%requestingapplication%
PQID 2548447930
PQPubID 2032404
ParticipantIDs proquest_journals_2548447930
crossref_citationtrail_10_3390_electronics8121544
crossref_primary_10_3390_electronics8121544
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chen (ref_8) 2016; 219
Yu (ref_12) 2015; 26
Srivastava (ref_15) 2014; 15
Ji (ref_23) 2013; 35
ref_14
ref_11
ref_22
ref_10
ref_21
Chang (ref_16) 2011; 2
ref_1
ref_3
ref_2
ref_19
Wang (ref_20) 2016; 13
ref_18
Wu (ref_7) 2018; 40
ref_17
Guo (ref_13) 2019; 189
ref_9
Huang (ref_5) 2015; 24
ref_4
ref_6
References_xml – volume: 219
  start-page: 26
  year: 2016
  ident: ref_8
  article-title: Recurrent Neural Network for Facial Landmark Detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.015
– ident: ref_21
  doi: 10.1109/CVPR.2011.5995566
– volume: 40
  start-page: 3067
  year: 2018
  ident: ref_7
  article-title: Facial landmark detection with tweaked convolutional neural networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2787130
– ident: ref_11
  doi: 10.1007/978-3-319-16811-1_2
– volume: 26
  start-page: 2897
  year: 2015
  ident: ref_12
  article-title: Discriminative joint multi-manifold analysis for video-based face recognition
  publication-title: Ruan Jian Xue Bao/J. Softw.
– ident: ref_19
  doi: 10.1109/CVPR.2017.113
– volume: 35
  start-page: 221
  year: 2013
  ident: ref_23
  article-title: 3D Convolutional Neural Networks for Human Action Recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.59
– ident: ref_2
  doi: 10.1109/CVPR.2018.00052
– volume: 189
  start-page: 102805
  year: 2019
  ident: ref_13
  article-title: A survey on deep learning based face recognition
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2019.102805
– volume: 24
  start-page: 5967
  year: 2015
  ident: ref_5
  article-title: A Benchmark and Comparative Study of Video-Based Face Recognition on COX Face Database
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2493448
– ident: ref_17
  doi: 10.1109/ICOIN.2018.8343173
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_15
  article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref_6
  doi: 10.1007/978-3-319-25958-1_8
– ident: ref_10
  doi: 10.1109/CVPR.2013.449
– ident: ref_14
– ident: ref_4
  doi: 10.1109/BTAS.2013.6712699
– ident: ref_1
– ident: ref_9
  doi: 10.1109/CVPR.2015.7299032
– ident: ref_22
  doi: 10.1109/CVPR.2016.90
– ident: ref_3
  doi: 10.1109/CVPR.2014.220
– volume: 2
  start-page: 27
  year: 2011
  ident: ref_16
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– ident: ref_18
  doi: 10.1109/ITNEC.2019.8729185
– volume: 13
  start-page: 1436
  year: 2016
  ident: ref_20
  article-title: Video Face Recognition Based on the Convex Hull Model of Kernel Subspace Sample Selection
  publication-title: J. Comput. Theor. Nanosci.
  doi: 10.1166/jctn.2016.5065
SSID ssj0000913830
Score 2.1474187
Snippet In order to reduce the computational consumption of the training and the testing phases of video face recognition methods based on a global statistical method...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1544
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Consumption
Deep learning
Face recognition
Feature extraction
Feature maps
Linear transformations
Machine learning
Neural networks
Statistical methods
Texture
Verification
Title A Novel Video Face Verification Algorithm Based on TPLBP and the 3D Siamese-CNN
URI https://www.proquest.com/docview/2548447930
Volume 8
WOSCitedRecordID wos000506678200169&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oetCDbyOKZA_eTCPtbh97MoAQTbQ2iga9NNt9KAmCCnL0tzsLRSUmXLzOdpu2szuvzn4fwJGJaCZNYI_9aokJCg2dTHHlSBVwHXKXZUqMySbCOI7abZ7kBbdB3lY5tYljQ6360tbITzCRiZgtA1VOX98cyxpl_67mFBqLsGRREix1Q-I_ftdYLOZlRCuTszIUs_uTH26ZQWRnMDbrj2bN8djHNNf_-3QbsJZHl6Q6WQ6bsKB7W7D6C3NwG66rJO6PdJfcd5Tuk6aQmtzjmMmLd6TafcI7D59fSA09nCIoaiWXtYSIniIYLhJ6Rm47trlWO_U43oG7ZqNVP3dyVgVH4nYbOlR5PsWwzJceizzXCBX6MqQh41oqgQGVDELlBsazyH9GcEEDN6jogBtPYLSh6S4Uev2e3gPCuJsZ35dRoDImTCY4SnRFYAokDWWiCO7026Yyhxy3zBfdFFMPq4_0rz6KcPw953UCuDH36tJUH2m--QbpjzL25w8fwAq-JZ90p5SgMHz_0IewLEfDzuC9DEu1RpzclGHx6rNRHq8slCUXV8nDF2SR2Is
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9tAFH6CgER7KGvVUJY5wAlZ2J7xMgdUhSUiIhhLBAQnM56ljZQmlARQ_xS_kTexzSIkbhy4zngsjb9Pb_NbADZMTHNpQlv2qyU6KDRycsWVI1XIdcQ9lisxHjYRJUl8ccHTCXioamFsWmUlE8eCWg2kjZFvoyMTMxsGcn9d_3Ps1Cj7d7UaoVHQ4kj_v0eXbbjT2kd8N32_edDZO3TKqQKORLqNHKr8gKJZEkifxb5nhIoCGdGIcS2VQINChpHyQuPbzndGcEFDL3R1yI0vUNtqiu-dhClmyV6DqbR1nF4-RXVsl82YukV1DqXc3X6eZjOMbScHxl5rwNcKYKzVmrOf7XvMwbfSfiaNgvDzMKH7C_D1RVfFRThpkGRwp3vkvKv0gDSF1OQc90wZniSN3m-8yejPX7KLOlwRXOqk7d2UiL4iaBATuk9OuzZ9WDt7SbIEZx9yo-9Q6w_6-gcQxr3cBIGMQ5UzYXLBcUW7Ap08aSgTdfAqLDNZNlW3sz16GTpXFv_sLf512Ho6c120FHn36ZUK_6wUL8PsGfzl97fXYeawc9zO2q3k6Cd8wRvzIhdnBWqjm1u9CtPybtQd3qyVTCZw9dFkeQR9gi_b
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB5BWSE4AMuCeOMDnFDUJHYePiBUKNUiUIi0gNBeguMHVCottAXEX-PXMW4SWITEjcNe7STSxF_mlZlvALZMTHNpQtv2qyUGKDRycsWVI1XIdcQ9lisxGjYRJUl8ecnTMXipemFsWWWlE0eKWvWkzZHXMZCJmU0DuXVTlkWkzdbe3b1jJ0jZP63VOI0CIsf6-QnDt8HuURPPetv3W4dnB7-dcsKAIxF6Q4cqP6DoogTSZ7HvGaGiQEY0YlxLJdC5kGGkvND4lgXPCC5o6IWuDrnxBVpeTfG54zARYYxpywnT4O9bfsfybcbULfp0KOVu_X2uzSC2nA6MfbSFH03ByL61Zv_nNzMHM6VXTRrFZ_ATxnR3Hqb_4Vr8BacNkvQedYdctJXukZaQmlzgnimTlqTRuUZJhje3ZB8tuyK4dJae7KdEdBVBN5nQJvnTtkXF2jlIkgU4_xaJFqHW7XX1EhDGvdwEgYxDlTNhcsFxRbsCQz9pKBPL4FXnmsmSat1O_OhkGHJZLGSfsbAMO2_33BVEI19evVZhISuVziB7B8LK19ubMIkIyU6OkuNVmEKBeVGgswa1Yf9Br8MP-ThsD_obI0gTuPpupLwC96I3Pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Video+Face+Verification+Algorithm+Based+on+TPLBP+and+the+3D+Siamese-CNN&rft.jtitle=Electronics+%28Basel%29&rft.au=Wang%2C+Yu&rft.au=Ma%2C+Shuyang&rft.au=Shen%2C+Xuanjing&rft.date=2019-12-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=8&rft.issue=12&rft.spage=1544&rft_id=info:doi/10.3390%2Felectronics8121544&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics8121544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon