Text2Motion: from natural language instructions to feasible plans

We propose Text2Motion, a language-based planning framework enabling robots to solve sequential manipulation tasks that require long-horizon reasoning. Given a natural language instruction, our framework constructs both a task- and motion-level plan that is verified to reach inferred symbolic goals....

Full description

Saved in:
Bibliographic Details
Published in:Autonomous robots Vol. 47; no. 8; pp. 1345 - 1365
Main Authors: Lin, Kevin, Agia, Christopher, Migimatsu, Toki, Pavone, Marco, Bohg, Jeannette
Format: Journal Article
Language:English
Published: New York Springer US 01.12.2023
Springer Nature B.V
Subjects:
ISSN:0929-5593, 1573-7527
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose Text2Motion, a language-based planning framework enabling robots to solve sequential manipulation tasks that require long-horizon reasoning. Given a natural language instruction, our framework constructs both a task- and motion-level plan that is verified to reach inferred symbolic goals. Text2Motion uses feasibility heuristics encoded in Q-functions of a library of skills to guide task planning with Large Language Models. Whereas previous language-based planners only consider the feasibility of individual skills, Text2Motion actively resolves geometric dependencies spanning skill sequences by performing geometric feasibility planning during its search. We evaluate our method on a suite of problems that require long-horizon reasoning, interpretation of abstract goals, and handling of partial affordance perception. Our experiments show that Text2Motion can solve these challenging problems with a success rate of 82%, while prior state-of-the-art language-based planning methods only achieve 13%. Text2Motion thus provides promising generalization characteristics to semantically diverse sequential manipulation tasks with geometric dependencies between skills. Qualitative results are made available at https://sites.google.com/stanford.edu/text2motion .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0929-5593
1573-7527
DOI:10.1007/s10514-023-10131-7