Parallel Algorithms for Successive Convolution
The development of modern computing architectures with ever-increasing amounts of parallelism has allowed for the solution of previously intractable problems across a variety of scientific disciplines. Despite these advances, multiscale computing problems continue to pose an incredible challenge to...
Saved in:
| Published in: | Journal of scientific computing Vol. 86; no. 1; p. 1 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.01.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0885-7474, 1573-7691 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The development of modern computing architectures with ever-increasing amounts of parallelism has allowed for the solution of previously intractable problems across a variety of scientific disciplines. Despite these advances, multiscale computing problems continue to pose an incredible challenge to modern architectures because they require resolving scales that often vary by orders of magnitude in both space and time. Such complications have led us to consider alternative discretizations for partial differential equations (PDEs) which use expansions involving integral operators to approximate spatial derivatives (Christlieb et al. in J Comput Phys 379:214–236, 2019; Christlieb et al. J Sci Comput 82:52(3):1–29, 2020; Christlieb et al. J Comput Phys 415:1–25, 2020). These constructions use explicit information within the integral terms, but treat boundary data implicitly, which contributes to the overall speed of the method. This approach is provably unconditionally stable for linear problems and stability has been demonstrated experimentally for nonlinear problems. Additionally, it is matrix-free in the sense that it is not necessary to invert linear systems and iteration is not required for nonlinear terms. Moreover, the scheme employs a fast summation algorithm that yields a method with a computational complexity of
O
(
N
)
, where
N
is the number of mesh points along a coordinate direction. While much work has been done to explore the theory behind these methods, their practicality in large scale computing environments is a largely unexplored topic. In this work, we explore the performance of these methods by developing a domain decomposition algorithm suitable for distributed memory systems along with shared memory algorithms. As a first pass, we derive an artificial Courant–Friedrichs–Lewy condition that enforces a nearest-neighbor (N-N) communication pattern and briefly discuss possible generalizations. We also analyze several approaches for implementing the parallel algorithms by optimizing predominant loop structures and maximizing data reuse. Using a hybrid design that employs MPI and Kokkos (Edwards and Trott in J Parallel Distrib Comput 74:3202–3216, 2014) for the distributed and shared memory components of the algorithms, respectively, we show that our methods are efficient and can sustain an update rate
>
1
×
10
8
DOF/node/s. We provide results that demonstrate the scalability and versatility of our algorithms using several different PDE test problems, including a nonlinear example, which employs an adaptive time-stepping rule. |
|---|---|
| AbstractList | The development of modern computing architectures with ever-increasing amounts of parallelism has allowed for the solution of previously intractable problems across a variety of scientific disciplines. Despite these advances, multiscale computing problems continue to pose an incredible challenge to modern architectures because they require resolving scales that often vary by orders of magnitude in both space and time. Such complications have led us to consider alternative discretizations for partial differential equations (PDEs) which use expansions involving integral operators to approximate spatial derivatives (Christlieb et al. in J Comput Phys 379:214–236, 2019; Christlieb et al. J Sci Comput 82:52(3):1–29, 2020; Christlieb et al. J Comput Phys 415:1–25, 2020). These constructions use explicit information within the integral terms, but treat boundary data implicitly, which contributes to the overall speed of the method. This approach is provably unconditionally stable for linear problems and stability has been demonstrated experimentally for nonlinear problems. Additionally, it is matrix-free in the sense that it is not necessary to invert linear systems and iteration is not required for nonlinear terms. Moreover, the scheme employs a fast summation algorithm that yields a method with a computational complexity of O(N), where N is the number of mesh points along a coordinate direction. While much work has been done to explore the theory behind these methods, their practicality in large scale computing environments is a largely unexplored topic. In this work, we explore the performance of these methods by developing a domain decomposition algorithm suitable for distributed memory systems along with shared memory algorithms. As a first pass, we derive an artificial Courant–Friedrichs–Lewy condition that enforces a nearest-neighbor (N-N) communication pattern and briefly discuss possible generalizations. We also analyze several approaches for implementing the parallel algorithms by optimizing predominant loop structures and maximizing data reuse. Using a hybrid design that employs MPI and Kokkos (Edwards and Trott in J Parallel Distrib Comput 74:3202–3216, 2014) for the distributed and shared memory components of the algorithms, respectively, we show that our methods are efficient and can sustain an update rate >1×108 DOF/node/s. We provide results that demonstrate the scalability and versatility of our algorithms using several different PDE test problems, including a nonlinear example, which employs an adaptive time-stepping rule. The development of modern computing architectures with ever-increasing amounts of parallelism has allowed for the solution of previously intractable problems across a variety of scientific disciplines. Despite these advances, multiscale computing problems continue to pose an incredible challenge to modern architectures because they require resolving scales that often vary by orders of magnitude in both space and time. Such complications have led us to consider alternative discretizations for partial differential equations (PDEs) which use expansions involving integral operators to approximate spatial derivatives (Christlieb et al. in J Comput Phys 379:214–236, 2019; Christlieb et al. J Sci Comput 82:52(3):1–29, 2020; Christlieb et al. J Comput Phys 415:1–25, 2020). These constructions use explicit information within the integral terms, but treat boundary data implicitly, which contributes to the overall speed of the method. This approach is provably unconditionally stable for linear problems and stability has been demonstrated experimentally for nonlinear problems. Additionally, it is matrix-free in the sense that it is not necessary to invert linear systems and iteration is not required for nonlinear terms. Moreover, the scheme employs a fast summation algorithm that yields a method with a computational complexity of O ( N ) , where N is the number of mesh points along a coordinate direction. While much work has been done to explore the theory behind these methods, their practicality in large scale computing environments is a largely unexplored topic. In this work, we explore the performance of these methods by developing a domain decomposition algorithm suitable for distributed memory systems along with shared memory algorithms. As a first pass, we derive an artificial Courant–Friedrichs–Lewy condition that enforces a nearest-neighbor (N-N) communication pattern and briefly discuss possible generalizations. We also analyze several approaches for implementing the parallel algorithms by optimizing predominant loop structures and maximizing data reuse. Using a hybrid design that employs MPI and Kokkos (Edwards and Trott in J Parallel Distrib Comput 74:3202–3216, 2014) for the distributed and shared memory components of the algorithms, respectively, we show that our methods are efficient and can sustain an update rate > 1 × 10 8 DOF/node/s. We provide results that demonstrate the scalability and versatility of our algorithms using several different PDE test problems, including a nonlinear example, which employs an adaptive time-stepping rule. |
| ArticleNumber | 1 |
| Author | Sands, William A. Guthrey, Pierson T. Christlieb, Andrew J. Thavappiragasm, Mathialakan |
| Author_xml | – sequence: 1 givenname: Andrew J. surname: Christlieb fullname: Christlieb, Andrew J. organization: Department of Computational Mathematics, Science and Engineering, Michigan State University – sequence: 2 givenname: Pierson T. surname: Guthrey fullname: Guthrey, Pierson T. organization: Department of Computational Mathematics, Science and Engineering, Michigan State University, Lawrence Livermore National Laboratory – sequence: 3 givenname: William A. orcidid: 0000-0003-3643-4751 surname: Sands fullname: Sands, William A. email: sandswi3@msu.edu organization: Department of Computational Mathematics, Science and Engineering, Michigan State University – sequence: 4 givenname: Mathialakan surname: Thavappiragasm fullname: Thavappiragasm, Mathialakan organization: Department of Computational Mathematics, Science and Engineering, Michigan State University, Oak Ridge National Laboratory |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Fz6n52Gwyx1L8goKCeg7ZJFu3bDc12S3137t1BcFDT3N5n3lnngkaNaHxCF1TMqeEyNtECVCBCSOYUC4AH87QmArJscyBjtCYKCWwzGR2gSYpbQghoICN0fzFRFPXvp4t6nWIVfuxTbMyxNlrZ61Pqdr72TI0-1B3bRWaS3Remjr5q985Re_3d2_LR7x6fnhaLlbYcgot5gXJCgksF8woUXjpcp5lrgTHiGAgIC-hsMIqcEI4KBhY7oykrjBWOVbyKboZ9u5i-Ox8avUmdLHpKzUDqjgVJM_7FBtSNoaUoi_1LlZbE780JfroRQ9edO9F_3jRhx5S_yBbteb4XBtNVZ9G-YCmvqdZ-_h31QnqG5KxeaM |
| CitedBy_id | crossref_primary_10_1007_s10915_024_02634_x crossref_primary_10_1007_s10915_025_02824_1 crossref_primary_10_1103_PhysRevD_111_104072 crossref_primary_10_1080_10556788_2023_2189711 |
| Cites_doi | 10.1137/0103004 10.1017/jfm.2020.228 10.1016/j.jcp.2011.04.023 10.1016/j.jcp.2018.07.037 10.1016/j.jcp.2003.08.011 10.1137/15M1035094 10.1007/s007910050013 10.1137/0907058 10.1016/j.jcp.2009.11.020 10.1016/j.camwa.2011.02.024 10.1137/070679065 10.1137/0103003 10.1137/19M1251953 10.1002/(SICI)1098-2426(200001)16:1<30::AID-NUM3>3.0.CO;2-V 10.1016/j.jcp.2016.09.048 10.1016/j.jcp.2006.03.021 10.1016/j.jcp.2020.109543 10.1137/S003614450036757X 10.1137/130932685 10.1016/j.jcp.2018.11.037 10.1016/j.jpdc.2014.07.003 10.3847/0067-0049/225/2/22 10.1007/BF01386295 10.1137/16M1104123 10.1002/nme.1910 10.1090/S0025-5718-2014-02834-2 10.1007/s10915-016-0328-0 10.2172/1169830 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s10915-020-01359-x |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1573-7691 |
| ExternalDocumentID | 10_1007_s10915_020_01359_x |
| GrantInformation_xml | – fundername: National Science Foundation grantid: DMS 1912183 funderid: http://dx.doi.org/10.13039/100000001 – fundername: Air Force Office of Scientific Research grantid: FA9550-19-1-0281; FA9550-17-1-0394 funderid: http://dx.doi.org/10.13039/100000181 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z92 ZMTXR ZWQNP ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-3b04b792652a85be7d6344df9d20529596f9bc5c89d55d9b29c3da71dbac8d2f3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596770400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-7474 |
| IngestDate | Wed Nov 05 04:18:07 EST 2025 Sat Nov 29 01:56:27 EST 2025 Tue Nov 18 22:40:00 EST 2025 Fri Feb 21 02:36:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Integral solution Numerical analysis High-performance computing Domain decomposition Method-of-lines-transpose Fast algorithms |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-3b04b792652a85be7d6344df9d20529596f9bc5c89d55d9b29c3da71dbac8d2f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3643-4751 |
| PQID | 2918315066 |
| PQPubID | 2043771 |
| ParticipantIDs | proquest_journals_2918315066 crossref_primary_10_1007_s10915_020_01359_x crossref_citationtrail_10_1007_s10915_020_01359_x springer_journals_10_1007_s10915_020_01359_x |
| PublicationCentury | 2000 |
| PublicationDate | 20210100 2021-01-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 1 year: 2021 text: 20210100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of scientific computing |
| PublicationTitleAbbrev | J Sci Comput |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Biros, Ying, Zorin (CR14) 2004; 193 Schemann, Bornemann (CR12) 1998; 1 Anderson, Bruno, Lyon (CR27) 2020; 42 Cheng, Christlieb, Guo, Ong (CR8) 2017; 71 Christlieb, Guo, Jiang, Yang (CR2) 2020; 82:52 CR13 Douglas (CR24) 1962; 3 CR32 Wang, Lei, Li, Huang, Yao (CR18) 2007; 70 Bruno, Lyon (CR21) 2010; 229 CR31 Kropinski, Quaife (CR16) 2011; 61 Albin, Bruno (CR26) 2011; 230 Causley, Cho, Christlieb, Seal (CR6) 2016; 54 Ying, Biros, Zorin (CR19) 2006; 219 Peaceman, Rachford (CR25) 1955; 3 Causley, Christlieb, Ong, Van Groningen (CR5) 2014; 83 Quaife, Moore (CR17) 2018; 375 Causley, Christlieb (CR28) 2014; 52 Bruno, Lyon (CR22) 2010; 229 Christlieb, Guo, Jiang (CR9) 2016; 327 Douglas (CR23) 1955; 3 CR29 Salazar, Raydan, Campo (CR11) 2000; 16 Chiu, Moore, Quaife (CR15) 2020; 893 Saad, Schultzn (CR20) 1986; 7 Christlieb, Sands, Yang (CR3) 2020; 415 Christlieb, Guo, Jiang (CR1) 2019; 379 Causley, Cho, Christlieb (CR7) 2017; 39 Gottlieb, Shu, Tadmor (CR10) 2001; 43 White, Stone, Gammie (CR33) 2016; 225 Edwards, Trott, Sunderland (CR4) 2014; 74 Shu (CR30) 2009; 51 S-H Chiu (1359_CR15) 2020; 893 A Salazar (1359_CR11) 2000; 16 C-W Shu (1359_CR30) 2009; 51 S Gottlieb (1359_CR10) 2001; 43 A Christlieb (1359_CR3) 2020; 415 OP Bruno (1359_CR22) 2010; 229 MF Causley (1359_CR28) 2014; 52 H Wang (1359_CR18) 2007; 70 MCA Kropinski (1359_CR16) 2011; 61 N Albin (1359_CR26) 2011; 230 M Causley (1359_CR5) 2014; 83 1359_CR13 HC Edwards (1359_CR4) 2014; 74 G Biros (1359_CR14) 2004; 193 DW Peaceman (1359_CR25) 1955; 3 1359_CR31 1359_CR32 MF Causley (1359_CR6) 2016; 54 A Christlieb (1359_CR1) 2019; 379 Y Cheng (1359_CR8) 2017; 71 M Schemann (1359_CR12) 1998; 1 CJ White (1359_CR33) 2016; 225 Y Saad (1359_CR20) 1986; 7 J Douglas Jr (1359_CR23) 1955; 3 TG Anderson (1359_CR27) 2020; 42 1359_CR29 BD Quaife (1359_CR17) 2018; 375 M Causley (1359_CR7) 2017; 39 L Ying (1359_CR19) 2006; 219 J Douglas Jr (1359_CR24) 1962; 3 A Christlieb (1359_CR9) 2016; 327 OP Bruno (1359_CR21) 2010; 229 A Christlieb (1359_CR2) 2020; 82:52 |
| References_xml | – volume: 3 start-page: 42 year: 1955 end-page: 65 ident: CR23 article-title: On the numerical integration of by implicit methods publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0103004 – volume: 893 start-page: A3 year: 2020 ident: CR15 article-title: Viscous transport in eroding porous media publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.228 – volume: 230 start-page: 6248 year: 2011 end-page: 6270 ident: CR26 article-title: A spectral fc solver for the compressible navier-stokes equations in general domains i: Explicit time-stepping publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.04.023 – volume: 375 start-page: 1 year: 2018 end-page: 21 ident: CR17 article-title: A boundary-integral framework to simulate viscous erosion of a porous medium publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.07.037 – volume: 193 start-page: 317 year: 2004 end-page: 348 ident: CR14 article-title: A fast solver for the stokes equations with distributed forces in complex geometries publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.08.011 – volume: 54 start-page: 1635 issue: 3 year: 2016 end-page: 1652 ident: CR6 article-title: Method of lines transpose: high order l-stable O(N) schemes for parabolic equations using successive convolution publication-title: SIAM J. Numer. Anal. doi: 10.1137/15M1035094 – volume: 1 start-page: 137 issue: 3 year: 1998 end-page: 144 ident: CR12 article-title: An adaptive rothe method for the wave equation publication-title: Comput. Vis. Sci. doi: 10.1007/s007910050013 – volume: 7 start-page: 856 year: 1986 end-page: 869 ident: CR20 article-title: Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0907058 – volume: 229 start-page: 2009 year: 2010 end-page: 2033 ident: CR21 article-title: High-order unconditionally stable fc-ad solvers for general smooth domains i. basic elements publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.11.020 – volume: 61 start-page: 2436 year: 2011 end-page: 2446 ident: CR16 article-title: Fast integral equation methods for rothe’s method applied to the isotropic heat equation publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.02.024 – ident: CR29 – volume: 51 start-page: 82 issue: 1 year: 2009 end-page: 126 ident: CR30 article-title: High order weighted essentially nonoscillatory schemes for convection dominated problems publication-title: SIAM Rev. doi: 10.1137/070679065 – volume: 3 start-page: 28 year: 1955 end-page: 41 ident: CR25 article-title: The numerical solution of parabolic and elliptic differential equations publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0103003 – volume: 42 start-page: 1348 year: 2020 end-page: 1379 ident: CR27 article-title: High-order, dispersionless “fast-hybrid” wave equation solver . part i: sampling cost via incident-field windowing and recentering publication-title: SIAM J. Sci. Comput. doi: 10.1137/19M1251953 – volume: 16 start-page: 30 issue: 1 year: 2000 end-page: 41 ident: CR11 article-title: Theoretical analysis of the exponential transversal method of lines for the diffusion equation publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/(SICI)1098-2426(200001)16:1<30::AID-NUM3>3.0.CO;2-V – volume: 327 start-page: 337 year: 2016 end-page: 367 ident: CR9 article-title: A weno-based method of lines transpose approach for vlasov simulations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.09.048 – volume: 219 start-page: 247 year: 2006 end-page: 275 ident: CR19 article-title: A high-order 3d boundary integral equation solver for elliptic pdes in smooth domains publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.03.021 – volume: 415 start-page: 1 year: 2020 end-page: 25 ident: CR3 article-title: A kernel-based explicit unconditionally stable scheme for hamilton-jacobi equations on nonuniform meshes publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109543 – volume: 43 start-page: 89 issue: 1 year: 2001 end-page: 112 ident: CR10 article-title: Strong stability-preserving high-order time discretization methods publication-title: SIAM Rev. doi: 10.1137/S003614450036757X – volume: 82:52 start-page: 1 issue: 3 year: 2020 end-page: 29 ident: CR2 article-title: Kernel based high order "explicit" unconditionally-stable scheme for nonlinear degenerate advection-diffusion equations publication-title: J. Sci. Comput. – volume: 52 start-page: 220 issue: 1 year: 2014 end-page: 235 ident: CR28 article-title: Higher order a-stable schemes for the wave equation using a successive convolution approach publication-title: SIAM J. Numer. Anal. doi: 10.1137/130932685 – volume: 379 start-page: 214 year: 2019 end-page: 236 ident: CR1 article-title: A kernel-based high order “explicit” unconditionally stable scheme for time dependent Hamilton–Jacobi equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.11.037 – volume: 74 start-page: 3202 year: 2014 end-page: 3216 ident: CR4 article-title: Kokkos: enabling manycore performance portability through polymorphic memory access patterns publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2014.07.003 – ident: CR31 – ident: CR13 – ident: CR32 – volume: 225 start-page: 2 year: 2016 ident: CR33 article-title: An extension of the athena++ code framework for grmhd based on advanced riemann solvers and staggered-mesh constrained transport publication-title: Astrophys. J. Suppl. doi: 10.3847/0067-0049/225/2/22 – volume: 229 start-page: 3358 year: 2010 end-page: 3381 ident: CR22 article-title: High-order unconditionally stable fc-ad solvers for general smooth domains ii. elliptic, parabolic and hyperbolic pdes. theoretical considerations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.11.020 – volume: 3 start-page: 41 year: 1962 end-page: 63 ident: CR24 article-title: Alternating direction methods for three space variables publication-title: Numer. Math. doi: 10.1007/BF01386295 – volume: 39 start-page: B968 issue: 5 year: 2017 end-page: B992 ident: CR7 article-title: Method of lines transpose: energy gradient flows using direct operator inversion for phase-field models publication-title: SIAM J. Sci. Comput. doi: 10.1137/16M1104123 – volume: 70 start-page: 812 year: 2007 end-page: 839 ident: CR18 article-title: A parallel fast multipole accelerated integral equation scheme for 3d stokes equations publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.1910 – volume: 83 start-page: 2763 issue: 290 year: 2014 end-page: 2786 ident: CR5 article-title: Method of lines transpose: an implicit solution to the wave equation publication-title: Math. Comput. doi: 10.1090/S0025-5718-2014-02834-2 – volume: 71 start-page: 959 issue: 3 year: 2017 end-page: 993 ident: CR8 article-title: An asymptotic preserving maxwell solver resulting in the darwin limit of electrodynamics publication-title: J. Sci. Comput. doi: 10.1007/s10915-016-0328-0 – volume: 219 start-page: 247 year: 2006 ident: 1359_CR19 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.03.021 – volume: 3 start-page: 42 year: 1955 ident: 1359_CR23 publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0103004 – ident: 1359_CR13 – ident: 1359_CR32 – volume: 379 start-page: 214 year: 2019 ident: 1359_CR1 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.11.037 – volume: 82:52 start-page: 1 issue: 3 year: 2020 ident: 1359_CR2 publication-title: J. Sci. Comput. – volume: 61 start-page: 2436 year: 2011 ident: 1359_CR16 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.02.024 – volume: 39 start-page: B968 issue: 5 year: 2017 ident: 1359_CR7 publication-title: SIAM J. Sci. Comput. doi: 10.1137/16M1104123 – volume: 375 start-page: 1 year: 2018 ident: 1359_CR17 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.07.037 – volume: 230 start-page: 6248 year: 2011 ident: 1359_CR26 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.04.023 – volume: 51 start-page: 82 issue: 1 year: 2009 ident: 1359_CR30 publication-title: SIAM Rev. doi: 10.1137/070679065 – volume: 43 start-page: 89 issue: 1 year: 2001 ident: 1359_CR10 publication-title: SIAM Rev. doi: 10.1137/S003614450036757X – volume: 229 start-page: 2009 year: 2010 ident: 1359_CR21 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.11.020 – volume: 83 start-page: 2763 issue: 290 year: 2014 ident: 1359_CR5 publication-title: Math. Comput. doi: 10.1090/S0025-5718-2014-02834-2 – volume: 54 start-page: 1635 issue: 3 year: 2016 ident: 1359_CR6 publication-title: SIAM J. Numer. Anal. doi: 10.1137/15M1035094 – volume: 70 start-page: 812 year: 2007 ident: 1359_CR18 publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.1910 – ident: 1359_CR31 doi: 10.2172/1169830 – volume: 193 start-page: 317 year: 2004 ident: 1359_CR14 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.08.011 – volume: 229 start-page: 3358 year: 2010 ident: 1359_CR22 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.11.020 – volume: 74 start-page: 3202 year: 2014 ident: 1359_CR4 publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2014.07.003 – volume: 893 start-page: A3 year: 2020 ident: 1359_CR15 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.228 – volume: 52 start-page: 220 issue: 1 year: 2014 ident: 1359_CR28 publication-title: SIAM J. Numer. Anal. doi: 10.1137/130932685 – ident: 1359_CR29 – volume: 327 start-page: 337 year: 2016 ident: 1359_CR9 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.09.048 – volume: 16 start-page: 30 issue: 1 year: 2000 ident: 1359_CR11 publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/(SICI)1098-2426(200001)16:1<30::AID-NUM3>3.0.CO;2-V – volume: 7 start-page: 856 year: 1986 ident: 1359_CR20 publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0907058 – volume: 42 start-page: 1348 year: 2020 ident: 1359_CR27 publication-title: SIAM J. Sci. Comput. doi: 10.1137/19M1251953 – volume: 225 start-page: 2 year: 2016 ident: 1359_CR33 publication-title: Astrophys. J. Suppl. doi: 10.3847/0067-0049/225/2/22 – volume: 415 start-page: 1 year: 2020 ident: 1359_CR3 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109543 – volume: 3 start-page: 28 year: 1955 ident: 1359_CR25 publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0103003 – volume: 1 start-page: 137 issue: 3 year: 1998 ident: 1359_CR12 publication-title: Comput. Vis. Sci. doi: 10.1007/s007910050013 – volume: 71 start-page: 959 issue: 3 year: 2017 ident: 1359_CR8 publication-title: J. Sci. Comput. doi: 10.1007/s10915-016-0328-0 – volume: 3 start-page: 41 year: 1962 ident: 1359_CR24 publication-title: Numer. Math. doi: 10.1007/BF01386295 |
| SSID | ssj0009892 |
| Score | 2.2934735 |
| Snippet | The development of modern computing architectures with ever-increasing amounts of parallelism has allowed for the solution of previously intractable problems... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Approximation Boundary conditions Computation Computational Mathematics and Numerical Analysis Decomposition Distributed memory Domain decomposition methods Integral equations Iterative methods Linear systems Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Methods Operators (mathematics) Optimization Partial differential equations Theoretical |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA4yPehB3VScTunBg6KRNulHcpTh8OIYTmW30nxUB7OTthv-fJMsXVVU0HOTEN5v-uZ9HgBOBOae0iaD0hcp9KUvIVOJGQoiZBi5XDA3MWQTUb9PRiM6sENhRfXavWpJmkj9YdiNenqaWD-kwgGFqnJcVemOaMKGu-FjDbVLDBWycp8AqmLZt6My35_xOR3VNeaXtqjJNr2t_91zG2za6tK5WphDE6zIrAU2bpfQrEULNK03F86phZw-2wGXgyTXpCpq6-Rpmo_L55fCUeWsM5wZQkUVEp3uNJtbO90FD73r--4NtEwKkCsXKyFmrs8iisIAJSRgMhIh9pVyqECm00fDlDIecEJFEAjKEOVYJJEnWMKJQCneA41smsl94LiYcKIiQ0JC5f80oZruKkSRm-KISkLawKsEGnMLM67ZLiZxDZCsBRQrAcVGQPFbG5wv97wuQDZ-Xd2p9BRbhytiRFVs0miJYRtcVHqpP_982sHflh-CdaRftZifMB3QKPOZPAJrfF6Oi_zYGOI74DXWDg priority: 102 providerName: Springer Nature |
| Title | Parallel Algorithms for Successive Convolution |
| URI | https://link.springer.com/article/10.1007/s10915-020-01359-x https://www.proquest.com/docview/2918315066 |
| Volume | 86 |
| WOSCitedRecordID | wos000596770400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7691 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: P5Z dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7691 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: K7- dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7691 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4IePCi4iOiSPbgQaPVZZ_tySiBmJiQDaghXjbbx6oJArJA-Pm2tetGE7l42ct2m02_memknfk-gBPusqZEkyLh8RR5whOIyo0ZccxFENqMUzvRYhNht4sHAxKZA7fMlFXmMVEHaj5m6oz8yiHS-BQdXnA9-UBKNUrdrhoJjRJUFEuCkm6I_OeCdBdrUWTpSD6SabNnmmZM6xxpqt5kVZbl-gQtf25MRbb564JU7zudrf_-8TZsmozTuvkykSqsidEOVI1PZ9apIZ4-24XLKJkqaRU5ePgiZ5q9vmeWTGqt_lzLKsrAaLXGo4Wx1j147LQfWnfI6CkgJh1thlxqezQkTuA7CfapCHngehIiwh1930eClFDmM0y473NCHcJcnoRNThOGuZO6-1AejUfiACzbxQzL-JDgQEYBkhAlehU4oZ26IREY16CZL2bMDNm40rwYxgVNsgIglgDEGoB4WYPz728mX1QbK0fX81WPjdtlcbHkNbjIcSte_z3b4erZjmDDUbUs-uilDuXZdC6OYZ0tZm_ZtAGV23Y36jWgdB-ihjZB-ez1nz4BOQjeXA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDQle2AZMFMbIw5BA4C21k9h-QNM0mFp1VJMoUt-y-Ee3SaUtTTa2f4q_kbPrLAKJve1hz3EsK9_d54t9dx_AtmG6jWgqYhMzIolNLFG4MRMjjM14rI2KCy82wft9MRzK4yX4XdfCuLTKmhM9UZupdmfku1Si8bl2eNne7CdxqlHudrWW0FiYRc9e_8JftvJT9zPi-5bSwy-Dgw4JqgJEo7lVhKk4UVzSLKWFSJXlJmMJLlQa6m-9ZDaSSqdaSJOmRioqNTMFbxtVaGHoiOG8D2AlYYI7v-px0jT5FV6EGR03JRimJ6FIJ5TqybarhXZpYCyV5OrvjbCJbv-5kPX73OHqfftCa_AkRNTR_sIF1mHJTp7CeuCsMnoXGmu_fwY7x8XcScfg4PEprrw6-1FGGLRH3y68bCQSf3QwnVwGb3wO3-9k3RuwPJlO7AuIYia0QP4rRIYsJwvpRL0yyuMR49IK0YJ2DV6uQzN1p-kxzps20A7wHAHPPeD5VQs-3LwzW7QSuXX0Zo1yHmilzBuIW_CxtpPm8f9ne3n7bG_gUWfw9Sg_6vZ7r-AxdXk7_phpE5ar-YV9DQ_1ZXVezre8wUdwctf28we_7jgM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6IiuiDuqk4ndoHHxSN673Jo0yHoo7BVPZWmkt1MLvRdsOfb5J1F0UF8blJKOfe5pzvAzjmDrOkNikSLo-RK1yBqEzMiGMu_MBknJqRJpsImk3c6ZDW3BS_7nafXEmOZxoUSlOS1wY8rs0NvhFLTRarpirHI0hWkUuuaqRX3-vt5xnsLta0yNKVPCQLZ7cYm_n-jM-paVZvfrki1ZmnsfH_d96E9aLqNC7HZlKCBZGUYe1hCtmalaFUeHlmnBRQ1KdbcNGKUkW2Irf2XvppN399ywxZ5hrtoSZalKHSqPeTUWG_2_DUuH6s36CCYQEx6Xo5cqjp0oDYvmdH2KMi4L7jSqURbusbQOLHhDKPYcI9jxNqE-bwKLA4jRjmduzswGLST8QuGKaDGZYRI8K-jAskIooGy7cDM3YCIjCugDURbsgK-HHFgtELZ8DJSkChFFCoBRS-V-BsumcwBt_4dXV1orOwcMQstImMWQpF0a_A-URHs8c_n7b3t-VHsNK6aoT3t827fVi1VeOL_k9ThcU8HYoDWGajvJulh9o-PwDYouHW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Algorithms+for+Successive+Convolution&rft.jtitle=Journal+of+scientific+computing&rft.au=Christlieb%2C+Andrew+J&rft.au=Guthrey%2C+Pierson+T&rft.au=Sands%2C+William+A&rft.au=Thavappiragasm%2C+Mathialakan&rft.date=2021-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=86&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1007%2Fs10915-020-01359-x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |