Parallel Algorithms for Successive Convolution

The development of modern computing architectures with ever-increasing amounts of parallelism has allowed for the solution of previously intractable problems across a variety of scientific disciplines. Despite these advances, multiscale computing problems continue to pose an incredible challenge to...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing Vol. 86; no. 1; p. 1
Main Authors: Christlieb, Andrew J., Guthrey, Pierson T., Sands, William A., Thavappiragasm, Mathialakan
Format: Journal Article
Language:English
Published: New York Springer US 01.01.2021
Springer Nature B.V
Subjects:
ISSN:0885-7474, 1573-7691
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The development of modern computing architectures with ever-increasing amounts of parallelism has allowed for the solution of previously intractable problems across a variety of scientific disciplines. Despite these advances, multiscale computing problems continue to pose an incredible challenge to modern architectures because they require resolving scales that often vary by orders of magnitude in both space and time. Such complications have led us to consider alternative discretizations for partial differential equations (PDEs) which use expansions involving integral operators to approximate spatial derivatives (Christlieb et al. in J Comput Phys 379:214–236, 2019; Christlieb et al. J Sci Comput 82:52(3):1–29, 2020; Christlieb et al. J Comput Phys 415:1–25, 2020). These constructions use explicit information within the integral terms, but treat boundary data implicitly, which contributes to the overall speed of the method. This approach is provably unconditionally stable for linear problems and stability has been demonstrated experimentally for nonlinear problems. Additionally, it is matrix-free in the sense that it is not necessary to invert linear systems and iteration is not required for nonlinear terms. Moreover, the scheme employs a fast summation algorithm that yields a method with a computational complexity of O ( N ) , where N is the number of mesh points along a coordinate direction. While much work has been done to explore the theory behind these methods, their practicality in large scale computing environments is a largely unexplored topic. In this work, we explore the performance of these methods by developing a domain decomposition algorithm suitable for distributed memory systems along with shared memory algorithms. As a first pass, we derive an artificial Courant–Friedrichs–Lewy condition that enforces a nearest-neighbor (N-N) communication pattern and briefly discuss possible generalizations. We also analyze several approaches for implementing the parallel algorithms by optimizing predominant loop structures and maximizing data reuse. Using a hybrid design that employs MPI and Kokkos (Edwards and Trott in J Parallel Distrib Comput 74:3202–3216, 2014) for the distributed and shared memory components of the algorithms, respectively, we show that our methods are efficient and can sustain an update rate > 1 × 10 8 DOF/node/s. We provide results that demonstrate the scalability and versatility of our algorithms using several different PDE test problems, including a nonlinear example, which employs an adaptive time-stepping rule.
AbstractList The development of modern computing architectures with ever-increasing amounts of parallelism has allowed for the solution of previously intractable problems across a variety of scientific disciplines. Despite these advances, multiscale computing problems continue to pose an incredible challenge to modern architectures because they require resolving scales that often vary by orders of magnitude in both space and time. Such complications have led us to consider alternative discretizations for partial differential equations (PDEs) which use expansions involving integral operators to approximate spatial derivatives (Christlieb et al. in J Comput Phys 379:214–236, 2019; Christlieb et al. J Sci Comput 82:52(3):1–29, 2020; Christlieb et al. J Comput Phys 415:1–25, 2020). These constructions use explicit information within the integral terms, but treat boundary data implicitly, which contributes to the overall speed of the method. This approach is provably unconditionally stable for linear problems and stability has been demonstrated experimentally for nonlinear problems. Additionally, it is matrix-free in the sense that it is not necessary to invert linear systems and iteration is not required for nonlinear terms. Moreover, the scheme employs a fast summation algorithm that yields a method with a computational complexity of O(N), where N is the number of mesh points along a coordinate direction. While much work has been done to explore the theory behind these methods, their practicality in large scale computing environments is a largely unexplored topic. In this work, we explore the performance of these methods by developing a domain decomposition algorithm suitable for distributed memory systems along with shared memory algorithms. As a first pass, we derive an artificial Courant–Friedrichs–Lewy condition that enforces a nearest-neighbor (N-N) communication pattern and briefly discuss possible generalizations. We also analyze several approaches for implementing the parallel algorithms by optimizing predominant loop structures and maximizing data reuse. Using a hybrid design that employs MPI and Kokkos (Edwards and Trott in J Parallel Distrib Comput 74:3202–3216, 2014) for the distributed and shared memory components of the algorithms, respectively, we show that our methods are efficient and can sustain an update rate >1×108 DOF/node/s. We provide results that demonstrate the scalability and versatility of our algorithms using several different PDE test problems, including a nonlinear example, which employs an adaptive time-stepping rule.
The development of modern computing architectures with ever-increasing amounts of parallelism has allowed for the solution of previously intractable problems across a variety of scientific disciplines. Despite these advances, multiscale computing problems continue to pose an incredible challenge to modern architectures because they require resolving scales that often vary by orders of magnitude in both space and time. Such complications have led us to consider alternative discretizations for partial differential equations (PDEs) which use expansions involving integral operators to approximate spatial derivatives (Christlieb et al. in J Comput Phys 379:214–236, 2019; Christlieb et al. J Sci Comput 82:52(3):1–29, 2020; Christlieb et al. J Comput Phys 415:1–25, 2020). These constructions use explicit information within the integral terms, but treat boundary data implicitly, which contributes to the overall speed of the method. This approach is provably unconditionally stable for linear problems and stability has been demonstrated experimentally for nonlinear problems. Additionally, it is matrix-free in the sense that it is not necessary to invert linear systems and iteration is not required for nonlinear terms. Moreover, the scheme employs a fast summation algorithm that yields a method with a computational complexity of O ( N ) , where N is the number of mesh points along a coordinate direction. While much work has been done to explore the theory behind these methods, their practicality in large scale computing environments is a largely unexplored topic. In this work, we explore the performance of these methods by developing a domain decomposition algorithm suitable for distributed memory systems along with shared memory algorithms. As a first pass, we derive an artificial Courant–Friedrichs–Lewy condition that enforces a nearest-neighbor (N-N) communication pattern and briefly discuss possible generalizations. We also analyze several approaches for implementing the parallel algorithms by optimizing predominant loop structures and maximizing data reuse. Using a hybrid design that employs MPI and Kokkos (Edwards and Trott in J Parallel Distrib Comput 74:3202–3216, 2014) for the distributed and shared memory components of the algorithms, respectively, we show that our methods are efficient and can sustain an update rate > 1 × 10 8 DOF/node/s. We provide results that demonstrate the scalability and versatility of our algorithms using several different PDE test problems, including a nonlinear example, which employs an adaptive time-stepping rule.
ArticleNumber 1
Author Sands, William A.
Guthrey, Pierson T.
Christlieb, Andrew J.
Thavappiragasm, Mathialakan
Author_xml – sequence: 1
  givenname: Andrew J.
  surname: Christlieb
  fullname: Christlieb, Andrew J.
  organization: Department of Computational Mathematics, Science and Engineering, Michigan State University
– sequence: 2
  givenname: Pierson T.
  surname: Guthrey
  fullname: Guthrey, Pierson T.
  organization: Department of Computational Mathematics, Science and Engineering, Michigan State University, Lawrence Livermore National Laboratory
– sequence: 3
  givenname: William A.
  orcidid: 0000-0003-3643-4751
  surname: Sands
  fullname: Sands, William A.
  email: sandswi3@msu.edu
  organization: Department of Computational Mathematics, Science and Engineering, Michigan State University
– sequence: 4
  givenname: Mathialakan
  surname: Thavappiragasm
  fullname: Thavappiragasm, Mathialakan
  organization: Department of Computational Mathematics, Science and Engineering, Michigan State University, Oak Ridge National Laboratory
BookMark eNp9kE1LAzEQhoNUsK3-AU8Fz6n52Gwyx1L8goKCeg7ZJFu3bDc12S3137t1BcFDT3N5n3lnngkaNaHxCF1TMqeEyNtECVCBCSOYUC4AH87QmArJscyBjtCYKCWwzGR2gSYpbQghoICN0fzFRFPXvp4t6nWIVfuxTbMyxNlrZ61Pqdr72TI0-1B3bRWaS3Remjr5q985Re_3d2_LR7x6fnhaLlbYcgot5gXJCgksF8woUXjpcp5lrgTHiGAgIC-hsMIqcEI4KBhY7oykrjBWOVbyKboZ9u5i-Ox8avUmdLHpKzUDqjgVJM_7FBtSNoaUoi_1LlZbE780JfroRQ9edO9F_3jRhx5S_yBbteb4XBtNVZ9G-YCmvqdZ-_h31QnqG5KxeaM
CitedBy_id crossref_primary_10_1007_s10915_024_02634_x
crossref_primary_10_1007_s10915_025_02824_1
crossref_primary_10_1103_PhysRevD_111_104072
crossref_primary_10_1080_10556788_2023_2189711
Cites_doi 10.1137/0103004
10.1017/jfm.2020.228
10.1016/j.jcp.2011.04.023
10.1016/j.jcp.2018.07.037
10.1016/j.jcp.2003.08.011
10.1137/15M1035094
10.1007/s007910050013
10.1137/0907058
10.1016/j.jcp.2009.11.020
10.1016/j.camwa.2011.02.024
10.1137/070679065
10.1137/0103003
10.1137/19M1251953
10.1002/(SICI)1098-2426(200001)16:1<30::AID-NUM3>3.0.CO;2-V
10.1016/j.jcp.2016.09.048
10.1016/j.jcp.2006.03.021
10.1016/j.jcp.2020.109543
10.1137/S003614450036757X
10.1137/130932685
10.1016/j.jcp.2018.11.037
10.1016/j.jpdc.2014.07.003
10.3847/0067-0049/225/2/22
10.1007/BF01386295
10.1137/16M1104123
10.1002/nme.1910
10.1090/S0025-5718-2014-02834-2
10.1007/s10915-016-0328-0
10.2172/1169830
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10915-020-01359-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
ExternalDocumentID 10_1007_s10915_020_01359_x
GrantInformation_xml – fundername: National Science Foundation
  grantid: DMS 1912183
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Air Force Office of Scientific Research
  grantid: FA9550-19-1-0281; FA9550-17-1-0394
  funderid: http://dx.doi.org/10.13039/100000181
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-3b04b792652a85be7d6344df9d20529596f9bc5c89d55d9b29c3da71dbac8d2f3
IEDL.DBID P5Z
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596770400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7474
IngestDate Wed Nov 05 04:18:07 EST 2025
Sat Nov 29 01:56:27 EST 2025
Tue Nov 18 22:40:00 EST 2025
Fri Feb 21 02:36:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Integral solution
Numerical analysis
High-performance computing
Domain decomposition
Method-of-lines-transpose
Fast algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-3b04b792652a85be7d6344df9d20529596f9bc5c89d55d9b29c3da71dbac8d2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3643-4751
PQID 2918315066
PQPubID 2043771
ParticipantIDs proquest_journals_2918315066
crossref_primary_10_1007_s10915_020_01359_x
crossref_citationtrail_10_1007_s10915_020_01359_x
springer_journals_10_1007_s10915_020_01359_x
PublicationCentury 2000
PublicationDate 20210100
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 1
  year: 2021
  text: 20210100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Biros, Ying, Zorin (CR14) 2004; 193
Schemann, Bornemann (CR12) 1998; 1
Anderson, Bruno, Lyon (CR27) 2020; 42
Cheng, Christlieb, Guo, Ong (CR8) 2017; 71
Christlieb, Guo, Jiang, Yang (CR2) 2020; 82:52
CR13
Douglas (CR24) 1962; 3
CR32
Wang, Lei, Li, Huang, Yao (CR18) 2007; 70
Bruno, Lyon (CR21) 2010; 229
CR31
Kropinski, Quaife (CR16) 2011; 61
Albin, Bruno (CR26) 2011; 230
Causley, Cho, Christlieb, Seal (CR6) 2016; 54
Ying, Biros, Zorin (CR19) 2006; 219
Peaceman, Rachford (CR25) 1955; 3
Causley, Christlieb, Ong, Van Groningen (CR5) 2014; 83
Quaife, Moore (CR17) 2018; 375
Causley, Christlieb (CR28) 2014; 52
Bruno, Lyon (CR22) 2010; 229
Christlieb, Guo, Jiang (CR9) 2016; 327
Douglas (CR23) 1955; 3
CR29
Salazar, Raydan, Campo (CR11) 2000; 16
Chiu, Moore, Quaife (CR15) 2020; 893
Saad, Schultzn (CR20) 1986; 7
Christlieb, Sands, Yang (CR3) 2020; 415
Christlieb, Guo, Jiang (CR1) 2019; 379
Causley, Cho, Christlieb (CR7) 2017; 39
Gottlieb, Shu, Tadmor (CR10) 2001; 43
White, Stone, Gammie (CR33) 2016; 225
Edwards, Trott, Sunderland (CR4) 2014; 74
Shu (CR30) 2009; 51
S-H Chiu (1359_CR15) 2020; 893
A Salazar (1359_CR11) 2000; 16
C-W Shu (1359_CR30) 2009; 51
S Gottlieb (1359_CR10) 2001; 43
A Christlieb (1359_CR3) 2020; 415
OP Bruno (1359_CR22) 2010; 229
MF Causley (1359_CR28) 2014; 52
H Wang (1359_CR18) 2007; 70
MCA Kropinski (1359_CR16) 2011; 61
N Albin (1359_CR26) 2011; 230
M Causley (1359_CR5) 2014; 83
1359_CR13
HC Edwards (1359_CR4) 2014; 74
G Biros (1359_CR14) 2004; 193
DW Peaceman (1359_CR25) 1955; 3
1359_CR31
1359_CR32
MF Causley (1359_CR6) 2016; 54
A Christlieb (1359_CR1) 2019; 379
Y Cheng (1359_CR8) 2017; 71
M Schemann (1359_CR12) 1998; 1
CJ White (1359_CR33) 2016; 225
Y Saad (1359_CR20) 1986; 7
J Douglas Jr (1359_CR23) 1955; 3
TG Anderson (1359_CR27) 2020; 42
1359_CR29
BD Quaife (1359_CR17) 2018; 375
M Causley (1359_CR7) 2017; 39
L Ying (1359_CR19) 2006; 219
J Douglas Jr (1359_CR24) 1962; 3
A Christlieb (1359_CR9) 2016; 327
OP Bruno (1359_CR21) 2010; 229
A Christlieb (1359_CR2) 2020; 82:52
References_xml – volume: 3
  start-page: 42
  year: 1955
  end-page: 65
  ident: CR23
  article-title: On the numerical integration of by implicit methods
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0103004
– volume: 893
  start-page: A3
  year: 2020
  ident: CR15
  article-title: Viscous transport in eroding porous media
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2020.228
– volume: 230
  start-page: 6248
  year: 2011
  end-page: 6270
  ident: CR26
  article-title: A spectral fc solver for the compressible navier-stokes equations in general domains i: Explicit time-stepping
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.04.023
– volume: 375
  start-page: 1
  year: 2018
  end-page: 21
  ident: CR17
  article-title: A boundary-integral framework to simulate viscous erosion of a porous medium
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.07.037
– volume: 193
  start-page: 317
  year: 2004
  end-page: 348
  ident: CR14
  article-title: A fast solver for the stokes equations with distributed forces in complex geometries
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.08.011
– volume: 54
  start-page: 1635
  issue: 3
  year: 2016
  end-page: 1652
  ident: CR6
  article-title: Method of lines transpose: high order l-stable O(N) schemes for parabolic equations using successive convolution
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/15M1035094
– volume: 1
  start-page: 137
  issue: 3
  year: 1998
  end-page: 144
  ident: CR12
  article-title: An adaptive rothe method for the wave equation
  publication-title: Comput. Vis. Sci.
  doi: 10.1007/s007910050013
– volume: 7
  start-page: 856
  year: 1986
  end-page: 869
  ident: CR20
  article-title: Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0907058
– volume: 229
  start-page: 2009
  year: 2010
  end-page: 2033
  ident: CR21
  article-title: High-order unconditionally stable fc-ad solvers for general smooth domains i. basic elements
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.11.020
– volume: 61
  start-page: 2436
  year: 2011
  end-page: 2446
  ident: CR16
  article-title: Fast integral equation methods for rothe’s method applied to the isotropic heat equation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.02.024
– ident: CR29
– volume: 51
  start-page: 82
  issue: 1
  year: 2009
  end-page: 126
  ident: CR30
  article-title: High order weighted essentially nonoscillatory schemes for convection dominated problems
  publication-title: SIAM Rev.
  doi: 10.1137/070679065
– volume: 3
  start-page: 28
  year: 1955
  end-page: 41
  ident: CR25
  article-title: The numerical solution of parabolic and elliptic differential equations
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0103003
– volume: 42
  start-page: 1348
  year: 2020
  end-page: 1379
  ident: CR27
  article-title: High-order, dispersionless “fast-hybrid” wave equation solver . part i: sampling cost via incident-field windowing and recentering
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/19M1251953
– volume: 16
  start-page: 30
  issue: 1
  year: 2000
  end-page: 41
  ident: CR11
  article-title: Theoretical analysis of the exponential transversal method of lines for the diffusion equation
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/(SICI)1098-2426(200001)16:1<30::AID-NUM3>3.0.CO;2-V
– volume: 327
  start-page: 337
  year: 2016
  end-page: 367
  ident: CR9
  article-title: A weno-based method of lines transpose approach for vlasov simulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.09.048
– volume: 219
  start-page: 247
  year: 2006
  end-page: 275
  ident: CR19
  article-title: A high-order 3d boundary integral equation solver for elliptic pdes in smooth domains
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.03.021
– volume: 415
  start-page: 1
  year: 2020
  end-page: 25
  ident: CR3
  article-title: A kernel-based explicit unconditionally stable scheme for hamilton-jacobi equations on nonuniform meshes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109543
– volume: 43
  start-page: 89
  issue: 1
  year: 2001
  end-page: 112
  ident: CR10
  article-title: Strong stability-preserving high-order time discretization methods
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450036757X
– volume: 82:52
  start-page: 1
  issue: 3
  year: 2020
  end-page: 29
  ident: CR2
  article-title: Kernel based high order "explicit" unconditionally-stable scheme for nonlinear degenerate advection-diffusion equations
  publication-title: J. Sci. Comput.
– volume: 52
  start-page: 220
  issue: 1
  year: 2014
  end-page: 235
  ident: CR28
  article-title: Higher order a-stable schemes for the wave equation using a successive convolution approach
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/130932685
– volume: 379
  start-page: 214
  year: 2019
  end-page: 236
  ident: CR1
  article-title: A kernel-based high order “explicit” unconditionally stable scheme for time dependent Hamilton–Jacobi equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.11.037
– volume: 74
  start-page: 3202
  year: 2014
  end-page: 3216
  ident: CR4
  article-title: Kokkos: enabling manycore performance portability through polymorphic memory access patterns
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2014.07.003
– ident: CR31
– ident: CR13
– ident: CR32
– volume: 225
  start-page: 2
  year: 2016
  ident: CR33
  article-title: An extension of the athena++ code framework for grmhd based on advanced riemann solvers and staggered-mesh constrained transport
  publication-title: Astrophys. J. Suppl.
  doi: 10.3847/0067-0049/225/2/22
– volume: 229
  start-page: 3358
  year: 2010
  end-page: 3381
  ident: CR22
  article-title: High-order unconditionally stable fc-ad solvers for general smooth domains ii. elliptic, parabolic and hyperbolic pdes. theoretical considerations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.11.020
– volume: 3
  start-page: 41
  year: 1962
  end-page: 63
  ident: CR24
  article-title: Alternating direction methods for three space variables
  publication-title: Numer. Math.
  doi: 10.1007/BF01386295
– volume: 39
  start-page: B968
  issue: 5
  year: 2017
  end-page: B992
  ident: CR7
  article-title: Method of lines transpose: energy gradient flows using direct operator inversion for phase-field models
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/16M1104123
– volume: 70
  start-page: 812
  year: 2007
  end-page: 839
  ident: CR18
  article-title: A parallel fast multipole accelerated integral equation scheme for 3d stokes equations
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.1910
– volume: 83
  start-page: 2763
  issue: 290
  year: 2014
  end-page: 2786
  ident: CR5
  article-title: Method of lines transpose: an implicit solution to the wave equation
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-2014-02834-2
– volume: 71
  start-page: 959
  issue: 3
  year: 2017
  end-page: 993
  ident: CR8
  article-title: An asymptotic preserving maxwell solver resulting in the darwin limit of electrodynamics
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-016-0328-0
– volume: 219
  start-page: 247
  year: 2006
  ident: 1359_CR19
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.03.021
– volume: 3
  start-page: 42
  year: 1955
  ident: 1359_CR23
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0103004
– ident: 1359_CR13
– ident: 1359_CR32
– volume: 379
  start-page: 214
  year: 2019
  ident: 1359_CR1
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.11.037
– volume: 82:52
  start-page: 1
  issue: 3
  year: 2020
  ident: 1359_CR2
  publication-title: J. Sci. Comput.
– volume: 61
  start-page: 2436
  year: 2011
  ident: 1359_CR16
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.02.024
– volume: 39
  start-page: B968
  issue: 5
  year: 2017
  ident: 1359_CR7
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/16M1104123
– volume: 375
  start-page: 1
  year: 2018
  ident: 1359_CR17
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.07.037
– volume: 230
  start-page: 6248
  year: 2011
  ident: 1359_CR26
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.04.023
– volume: 51
  start-page: 82
  issue: 1
  year: 2009
  ident: 1359_CR30
  publication-title: SIAM Rev.
  doi: 10.1137/070679065
– volume: 43
  start-page: 89
  issue: 1
  year: 2001
  ident: 1359_CR10
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450036757X
– volume: 229
  start-page: 2009
  year: 2010
  ident: 1359_CR21
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.11.020
– volume: 83
  start-page: 2763
  issue: 290
  year: 2014
  ident: 1359_CR5
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-2014-02834-2
– volume: 54
  start-page: 1635
  issue: 3
  year: 2016
  ident: 1359_CR6
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/15M1035094
– volume: 70
  start-page: 812
  year: 2007
  ident: 1359_CR18
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.1910
– ident: 1359_CR31
  doi: 10.2172/1169830
– volume: 193
  start-page: 317
  year: 2004
  ident: 1359_CR14
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.08.011
– volume: 229
  start-page: 3358
  year: 2010
  ident: 1359_CR22
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.11.020
– volume: 74
  start-page: 3202
  year: 2014
  ident: 1359_CR4
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2014.07.003
– volume: 893
  start-page: A3
  year: 2020
  ident: 1359_CR15
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2020.228
– volume: 52
  start-page: 220
  issue: 1
  year: 2014
  ident: 1359_CR28
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/130932685
– ident: 1359_CR29
– volume: 327
  start-page: 337
  year: 2016
  ident: 1359_CR9
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.09.048
– volume: 16
  start-page: 30
  issue: 1
  year: 2000
  ident: 1359_CR11
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/(SICI)1098-2426(200001)16:1<30::AID-NUM3>3.0.CO;2-V
– volume: 7
  start-page: 856
  year: 1986
  ident: 1359_CR20
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0907058
– volume: 42
  start-page: 1348
  year: 2020
  ident: 1359_CR27
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/19M1251953
– volume: 225
  start-page: 2
  year: 2016
  ident: 1359_CR33
  publication-title: Astrophys. J. Suppl.
  doi: 10.3847/0067-0049/225/2/22
– volume: 415
  start-page: 1
  year: 2020
  ident: 1359_CR3
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109543
– volume: 3
  start-page: 28
  year: 1955
  ident: 1359_CR25
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0103003
– volume: 1
  start-page: 137
  issue: 3
  year: 1998
  ident: 1359_CR12
  publication-title: Comput. Vis. Sci.
  doi: 10.1007/s007910050013
– volume: 71
  start-page: 959
  issue: 3
  year: 2017
  ident: 1359_CR8
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-016-0328-0
– volume: 3
  start-page: 41
  year: 1962
  ident: 1359_CR24
  publication-title: Numer. Math.
  doi: 10.1007/BF01386295
SSID ssj0009892
Score 2.2934735
Snippet The development of modern computing architectures with ever-increasing amounts of parallelism has allowed for the solution of previously intractable problems...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Approximation
Boundary conditions
Computation
Computational Mathematics and Numerical Analysis
Decomposition
Distributed memory
Domain decomposition methods
Integral equations
Iterative methods
Linear systems
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Methods
Operators (mathematics)
Optimization
Partial differential equations
Theoretical
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA4yPehB3VScTunBg6KRNulHcpTh8OIYTmW30nxUB7OTthv-fJMsXVVU0HOTEN5v-uZ9HgBOBOae0iaD0hcp9KUvIVOJGQoiZBi5XDA3MWQTUb9PRiM6sENhRfXavWpJmkj9YdiNenqaWD-kwgGFqnJcVemOaMKGu-FjDbVLDBWycp8AqmLZt6My35_xOR3VNeaXtqjJNr2t_91zG2za6tK5WphDE6zIrAU2bpfQrEULNK03F86phZw-2wGXgyTXpCpq6-Rpmo_L55fCUeWsM5wZQkUVEp3uNJtbO90FD73r--4NtEwKkCsXKyFmrs8iisIAJSRgMhIh9pVyqECm00fDlDIecEJFEAjKEOVYJJEnWMKJQCneA41smsl94LiYcKIiQ0JC5f80oZruKkSRm-KISkLawKsEGnMLM67ZLiZxDZCsBRQrAcVGQPFbG5wv97wuQDZ-Xd2p9BRbhytiRFVs0miJYRtcVHqpP_982sHflh-CdaRftZifMB3QKPOZPAJrfF6Oi_zYGOI74DXWDg
  priority: 102
  providerName: Springer Nature
Title Parallel Algorithms for Successive Convolution
URI https://link.springer.com/article/10.1007/s10915-020-01359-x
https://www.proquest.com/docview/2918315066
Volume 86
WOSCitedRecordID wos000596770400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4IePCi4iOiSPbgQaPVZZ_tySiBmJiQDaghXjbbx6oJArJA-Pm2tetGE7l42ct2m02_memknfk-gBPusqZEkyLh8RR5whOIyo0ZccxFENqMUzvRYhNht4sHAxKZA7fMlFXmMVEHaj5m6oz8yiHS-BQdXnA9-UBKNUrdrhoJjRJUFEuCkm6I_OeCdBdrUWTpSD6SabNnmmZM6xxpqt5kVZbl-gQtf25MRbb564JU7zudrf_-8TZsmozTuvkykSqsidEOVI1PZ9apIZ4-24XLKJkqaRU5ePgiZ5q9vmeWTGqt_lzLKsrAaLXGo4Wx1j147LQfWnfI6CkgJh1thlxqezQkTuA7CfapCHngehIiwh1930eClFDmM0y473NCHcJcnoRNThOGuZO6-1AejUfiACzbxQzL-JDgQEYBkhAlehU4oZ26IREY16CZL2bMDNm40rwYxgVNsgIglgDEGoB4WYPz728mX1QbK0fX81WPjdtlcbHkNbjIcSte_z3b4erZjmDDUbUs-uilDuXZdC6OYZ0tZm_ZtAGV23Y36jWgdB-ihjZB-ez1nz4BOQjeXA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDQle2AZMFMbIw5BA4C21k9h-QNM0mFp1VJMoUt-y-Ee3SaUtTTa2f4q_kbPrLAKJve1hz3EsK9_d54t9dx_AtmG6jWgqYhMzIolNLFG4MRMjjM14rI2KCy82wft9MRzK4yX4XdfCuLTKmhM9UZupdmfku1Si8bl2eNne7CdxqlHudrWW0FiYRc9e_8JftvJT9zPi-5bSwy-Dgw4JqgJEo7lVhKk4UVzSLKWFSJXlJmMJLlQa6m-9ZDaSSqdaSJOmRioqNTMFbxtVaGHoiOG8D2AlYYI7v-px0jT5FV6EGR03JRimJ6FIJ5TqybarhXZpYCyV5OrvjbCJbv-5kPX73OHqfftCa_AkRNTR_sIF1mHJTp7CeuCsMnoXGmu_fwY7x8XcScfg4PEprrw6-1FGGLRH3y68bCQSf3QwnVwGb3wO3-9k3RuwPJlO7AuIYia0QP4rRIYsJwvpRL0yyuMR49IK0YJ2DV6uQzN1p-kxzps20A7wHAHPPeD5VQs-3LwzW7QSuXX0Zo1yHmilzBuIW_CxtpPm8f9ne3n7bG_gUWfw9Sg_6vZ7r-AxdXk7_phpE5ar-YV9DQ_1ZXVezre8wUdwctf28we_7jgM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6IiuiDuqk4ndoHHxSN673Jo0yHoo7BVPZWmkt1MLvRdsOfb5J1F0UF8blJKOfe5pzvAzjmDrOkNikSLo-RK1yBqEzMiGMu_MBknJqRJpsImk3c6ZDW3BS_7nafXEmOZxoUSlOS1wY8rs0NvhFLTRarpirHI0hWkUuuaqRX3-vt5xnsLta0yNKVPCQLZ7cYm_n-jM-paVZvfrki1ZmnsfH_d96E9aLqNC7HZlKCBZGUYe1hCtmalaFUeHlmnBRQ1KdbcNGKUkW2Irf2XvppN399ywxZ5hrtoSZalKHSqPeTUWG_2_DUuH6s36CCYQEx6Xo5cqjp0oDYvmdH2KMi4L7jSqURbusbQOLHhDKPYcI9jxNqE-bwKLA4jRjmduzswGLST8QuGKaDGZYRI8K-jAskIooGy7cDM3YCIjCugDURbsgK-HHFgtELZ8DJSkChFFCoBRS-V-BsumcwBt_4dXV1orOwcMQstImMWQpF0a_A-URHs8c_n7b3t-VHsNK6aoT3t827fVi1VeOL_k9ThcU8HYoDWGajvJulh9o-PwDYouHW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Algorithms+for+Successive+Convolution&rft.jtitle=Journal+of+scientific+computing&rft.au=Christlieb%2C+Andrew+J&rft.au=Guthrey%2C+Pierson+T&rft.au=Sands%2C+William+A&rft.au=Thavappiragasm%2C+Mathialakan&rft.date=2021-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=86&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1007%2Fs10915-020-01359-x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon