Anomaly-based intrusion detection system using multi-objective grey wolf optimisation algorithm

The rapid development of information technology leads to increasing the number of devices connected to the Internet. Besides, the amount of network attacks also increased. Accordingly, there is an urgent demand to design a defence system proficient in discovering new kinds of attacks. One of the mos...

Full description

Saved in:
Bibliographic Details
Published in:Journal of ambient intelligence and humanized computing Vol. 11; no. 9; pp. 3735 - 3756
Main Authors: Alamiedy, Taief Alaa, Anbar, Mohammed, Alqattan, Zakaria N. M., Alzubi, Qusay M.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2020
Springer Nature B.V
Subjects:
ISSN:1868-5137, 1868-5145
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rapid development of information technology leads to increasing the number of devices connected to the Internet. Besides, the amount of network attacks also increased. Accordingly, there is an urgent demand to design a defence system proficient in discovering new kinds of attacks. One of the most effective protection systems is intrusion detection system (IDS). The IDS is an intelligent system that monitors and inspects the network packets to identify the abnormal behavior. In addition, the network packets comprise many attributes and there are many attributes that are irrelevant and repetitive which degrade the performance of the IDS system and overwhelm the system resources. A feature selection technique helps to reduce the computation time and complexity by selecting the optimum subset of features. In this paper, an enhanced anomaly-based IDS model based on multi-objective grey wolf optimisation (GWO) algorithm was proposed. The GWO algorithm was employed as a feature selection mechanism to identify the most relevant features from the dataset that contribute to high classification accuracy. Furthermore, support vector machine was used to estimate the capability of selected features in predicting the attacks accurately. Moreover, 20% of NSL–KDD dataset was used to demonstrate effectiveness of the proposed approach through different attack scenarios. The experimental result revealed that the proposed approach obtains classification accuracy of (93.64%, 91.01%, 57.72%, 53.7%) for DoS, Probe, R2L, and U2R attack respectively. Finally, the proposed approach was compared with other existing approaches and achieves significant result.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1868-5137
1868-5145
DOI:10.1007/s12652-019-01569-8