Anomaly-based intrusion detection system using multi-objective grey wolf optimisation algorithm

The rapid development of information technology leads to increasing the number of devices connected to the Internet. Besides, the amount of network attacks also increased. Accordingly, there is an urgent demand to design a defence system proficient in discovering new kinds of attacks. One of the mos...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of ambient intelligence and humanized computing Ročník 11; číslo 9; s. 3735 - 3756
Hlavní autoři: Alamiedy, Taief Alaa, Anbar, Mohammed, Alqattan, Zakaria N. M., Alzubi, Qusay M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2020
Springer Nature B.V
Témata:
ISSN:1868-5137, 1868-5145
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The rapid development of information technology leads to increasing the number of devices connected to the Internet. Besides, the amount of network attacks also increased. Accordingly, there is an urgent demand to design a defence system proficient in discovering new kinds of attacks. One of the most effective protection systems is intrusion detection system (IDS). The IDS is an intelligent system that monitors and inspects the network packets to identify the abnormal behavior. In addition, the network packets comprise many attributes and there are many attributes that are irrelevant and repetitive which degrade the performance of the IDS system and overwhelm the system resources. A feature selection technique helps to reduce the computation time and complexity by selecting the optimum subset of features. In this paper, an enhanced anomaly-based IDS model based on multi-objective grey wolf optimisation (GWO) algorithm was proposed. The GWO algorithm was employed as a feature selection mechanism to identify the most relevant features from the dataset that contribute to high classification accuracy. Furthermore, support vector machine was used to estimate the capability of selected features in predicting the attacks accurately. Moreover, 20% of NSL–KDD dataset was used to demonstrate effectiveness of the proposed approach through different attack scenarios. The experimental result revealed that the proposed approach obtains classification accuracy of (93.64%, 91.01%, 57.72%, 53.7%) for DoS, Probe, R2L, and U2R attack respectively. Finally, the proposed approach was compared with other existing approaches and achieves significant result.
AbstractList The rapid development of information technology leads to increasing the number of devices connected to the Internet. Besides, the amount of network attacks also increased. Accordingly, there is an urgent demand to design a defence system proficient in discovering new kinds of attacks. One of the most effective protection systems is intrusion detection system (IDS). The IDS is an intelligent system that monitors and inspects the network packets to identify the abnormal behavior. In addition, the network packets comprise many attributes and there are many attributes that are irrelevant and repetitive which degrade the performance of the IDS system and overwhelm the system resources. A feature selection technique helps to reduce the computation time and complexity by selecting the optimum subset of features. In this paper, an enhanced anomaly-based IDS model based on multi-objective grey wolf optimisation (GWO) algorithm was proposed. The GWO algorithm was employed as a feature selection mechanism to identify the most relevant features from the dataset that contribute to high classification accuracy. Furthermore, support vector machine was used to estimate the capability of selected features in predicting the attacks accurately. Moreover, 20% of NSL–KDD dataset was used to demonstrate effectiveness of the proposed approach through different attack scenarios. The experimental result revealed that the proposed approach obtains classification accuracy of (93.64%, 91.01%, 57.72%, 53.7%) for DoS, Probe, R2L, and U2R attack respectively. Finally, the proposed approach was compared with other existing approaches and achieves significant result.
Author Anbar, Mohammed
Alqattan, Zakaria N. M.
Alamiedy, Taief Alaa
Alzubi, Qusay M.
Author_xml – sequence: 1
  givenname: Taief Alaa
  surname: Alamiedy
  fullname: Alamiedy, Taief Alaa
  organization: National Advanced IPv6 Centre of Excellence (NAv6), Universiti Sains Malaysia
– sequence: 2
  givenname: Mohammed
  orcidid: 0000-0002-7026-6408
  surname: Anbar
  fullname: Anbar, Mohammed
  email: anbar@nav6.usm.my
  organization: National Advanced IPv6 Centre of Excellence (NAv6), Universiti Sains Malaysia
– sequence: 3
  givenname: Zakaria N. M.
  surname: Alqattan
  fullname: Alqattan, Zakaria N. M.
  organization: National Advanced IPv6 Centre of Excellence (NAv6), Universiti Sains Malaysia
– sequence: 4
  givenname: Qusay M.
  surname: Alzubi
  fullname: Alzubi, Qusay M.
  organization: National Advanced IPv6 Centre of Excellence (NAv6), Universiti Sains Malaysia
BookMark eNp9kN9PwyAQx4mZiXPuH_Cpic8olJbC47L4K1niiz4T1kJlaWEC0_S_l65GEx9GAtxx97k7vpdgZp1VAFxjdIsRqu4CzmmZQ4R52iXlkJ2BOWaUwRIX5ezXJtUFWIawQ2kRTjDGcyBW1vWyG-BWBtVkxkZ_CMbZrFFR1XG0whCi6rP0bNusP3TRQLfdjcFPlbVeDdmX63Tm9tH0JsgjI7vWeRPf-ytwrmUX1PLnXoC3h_vX9RPcvDw-r1cbWBPMIyRSMl0WuECN3nKOOKKSs-TlVU5pVWmliWQ8HRIrlNclLSliFdK4qZluCrIAN1PdvXcfBxWi2LmDt6mlyDnmqQQmLGXlU1btXQheabH3ppd-EBiJUUsxaSmSluKopRgh9g-qTTx-M3pputMomdCQ-thW-b-pTlDf_kyMJA
CitedBy_id crossref_primary_10_1007_s13748_021_00244_4
crossref_primary_10_3390_s22093400
crossref_primary_10_3390_math10060999
crossref_primary_10_3390_s23010550
crossref_primary_10_1007_s00521_023_09309_y
crossref_primary_10_1007_s12652_022_04437_0
crossref_primary_10_1016_j_eswa_2022_117597
crossref_primary_10_1016_j_csi_2025_104074
crossref_primary_10_1016_j_iot_2024_101420
crossref_primary_10_1007_s11277_020_07981_0
crossref_primary_10_1007_s12652_022_04393_9
crossref_primary_10_1186_s13677_023_00574_9
crossref_primary_10_1007_s11416_022_00442_1
crossref_primary_10_1109_ACCESS_2023_3319814
crossref_primary_10_1038_s41598_023_42257_0
crossref_primary_10_1007_s13198_021_01530_z
crossref_primary_10_1109_ACCESS_2024_3405628
crossref_primary_10_1166_jmihi_2021_3881
crossref_primary_10_32604_cmc_2023_037486
crossref_primary_10_1109_ACCESS_2024_3368633
crossref_primary_10_1007_s12652_020_02847_6
crossref_primary_10_1007_s11831_023_10059_2
crossref_primary_10_1080_23335777_2020_1811383
crossref_primary_10_1109_ACCESS_2023_3333000
crossref_primary_10_1007_s42452_024_06165_w
crossref_primary_10_1109_ACCESS_2024_3386405
crossref_primary_10_1007_s00500_022_06798_2
crossref_primary_10_1007_s13369_022_07030_x
crossref_primary_10_1016_j_jksuci_2023_101863
crossref_primary_10_3390_electronics9040692
crossref_primary_10_1007_s11042_021_10567_y
crossref_primary_10_1016_j_jhydrol_2022_128995
crossref_primary_10_1007_s00521_022_07704_5
crossref_primary_10_1109_ACCESS_2021_3066630
crossref_primary_10_1007_s11277_022_10040_5
crossref_primary_10_1007_s00366_021_01369_9
crossref_primary_10_1007_s10586_024_04996_1
crossref_primary_10_1016_j_matpr_2021_01_765
crossref_primary_10_1007_s13198_022_01690_6
crossref_primary_10_1007_s11227_023_05145_y
crossref_primary_10_1109_ACCESS_2022_3182333
crossref_primary_10_1016_j_iot_2025_101536
crossref_primary_10_1016_j_swevo_2025_101984
Cites_doi 10.1023/A:1022627411411
10.1080/0952813x.2019.1647558
10.1142/s0219622011004671
10.1007/978-981-13-6001-5_43
10.1016/j.neucom.2015.06.083
10.14257/ijsia.2015.9.4.24
10.1016/j.swevo.2018.02.021
10.17148/IJARCCE.2015.4696
10.5958/2249-7315.2017.00197.6
10.1371/journal.pone.0158738
10.1016/j.asoc.2015.04.007
10.1016/j.scient.2011.08.025
10.1016/j.engappai.2016.10.013
10.1109/TNNLS.2016.2634548
10.1016/j.jnca.2012.09.004
10.1016/j.advengsoft.2013.12.007
10.1109/iccv.2003.1238369
10.1007/s12652-018-1085-8
10.1007/s11634-016-0257-7
10.1007/978-3-319-99007-1_57
10.1109/tnsm.2019.2927886
10.1007/s00500-017-2635-2
10.1007/s10489-018-01408-x
10.1109/ICSCCN.2011.6024556
10.1007/978-3-319-13572-4_1
10.1002/cpe.4999
10.1109/ICMCS.2012.6320275
10.1007/s00521-019-04103-1
10.1109/IDAACS.2017.8095129
10.1155/2019/2653512
10.26438/ijcse/v7i5.757764
10.1109/CISDA.2009.5356528
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s12652-019-01569-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1868-5145
EndPage 3756
ExternalDocumentID 10_1007_s12652_019_01569_8
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
QOS
R89
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-3aa8f54140dfb990906a9840d2726677fef3a89f3aa1e02c56560870f1dc8fd43
IEDL.DBID RSV
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000495284200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1868-5137
IngestDate Wed Nov 05 03:08:01 EST 2025
Sat Nov 29 03:41:21 EST 2025
Tue Nov 18 21:22:42 EST 2025
Fri Feb 21 02:34:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Grey wolf algorithm
Feature selection
Intrusion detection system
Classification
Swarm intelligence
Support vector machine
Multi-objective optimisation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-3aa8f54140dfb990906a9840d2726677fef3a89f3aa1e02c56560870f1dc8fd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7026-6408
PQID 2919677138
PQPubID 2043913
PageCount 22
ParticipantIDs proquest_journals_2919677138
crossref_primary_10_1007_s12652_019_01569_8
crossref_citationtrail_10_1007_s12652_019_01569_8
springer_journals_10_1007_s12652_019_01569_8
PublicationCentury 2000
PublicationDate 20200900
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 9
  year: 2020
  text: 20200900
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of ambient intelligence and humanized computing
PublicationTitleAbbrev J Ambient Intell Human Comput
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Emary, Zawbaa, Hassanien, Parv (CR13) 2017; 11
Alomari, Othman (CR3) 2012; 8
Özgür, Erdem (CR32) 2017; 5
Çavuşoğlu (CR5) 2019; 49
Garg, Kaur, Kumar (CR15) 2019; 16
CR19
Alamiedy, Anbar, Al-Ani (CR2) 2019; 843
CR18
CR38
CR37
Emary, Zawbaa (CR10) 2016; 11
CR36
Liao, Richard Lin, Lin, Tung (CR24) 2013; 36
CR35
CR34
Dhanabal, Shantharajah (CR9) 2015; 4
CR11
Gholipour Goodarzi, Jazayeri, Fateri (CR17) 2014; 5
Makhadmeh, Khader, Al-Betar, Naim (CR29) 2018
Rani, Xavier (CR33) 2015; 5
Lotfi Shahreza, Moazzami, Moshiri, Delavar (CR26) 2011; 18
Vithalpura, Diwanji (CR42) 2015; 3
Dastanpour, Ibrahim, Mashinchi (CR7) 2014; 11
Srivastava, Singh, Singh (CR39) 2019; 6
CR4
Negandhi, Trivedi, Mangrulkar (CR31) 2019
Zawbaa, Emary, Grosan, Snasel (CR46) 2018; 42
Liu, Rallo, Cohen (CR25) 2011; 10
Kumar, Prakash Sangwan (CR22) 2012; 1
CR27
Wolf, Shashua (CR43) 2005; 6
Xingzhu (CR44) 2015; 9
Velliangiri (CR41) 2019; 00
CR45
Ghanem, Jantan (CR16) 2016; 8
CR21
Lu, Gao, Li, Xiao (CR28) 2017; 57
Cortes (CR6) 1995; 20
Mirjalili (CR30) 2014; 69
CR40
Acharya, Singh (CR1) 2018; 22
Emary, Zawbaa, Hassanien (CR12) 2016; 172
Devi, Suganthe (CR8) 2017; 7
Emary, Zawbaa, Grosan (CR14) 2018; 29
Kumari, Swarnkar (CR23) 2011; 2
Kiran (CR20) 2015; 33
1569_CR11
V Kumar (1569_CR22) 2012; 1
WAHM Ghanem (1569_CR16) 2016; 8
S Mirjalili (1569_CR30) 2014; 69
1569_CR18
Ü Çavuşoğlu (1569_CR5) 2019; 49
1569_CR19
R Liu (1569_CR25) 2011; 10
1569_CR38
N Acharya (1569_CR1) 2018; 22
JS Vithalpura (1569_CR42) 2015; 3
1569_CR36
1569_CR37
B Kumari (1569_CR23) 2011; 2
1569_CR34
1569_CR35
TA Alamiedy (1569_CR2) 2019; 843
S Garg (1569_CR15) 2019; 16
HJ Liao (1569_CR24) 2013; 36
EMR Devi (1569_CR8) 2017; 7
MS Kiran (1569_CR20) 2015; 33
C Lu (1569_CR28) 2017; 57
HM Zawbaa (1569_CR46) 2018; 42
L Dhanabal (1569_CR9) 2015; 4
A Dastanpour (1569_CR7) 2014; 11
E Emary (1569_CR10) 2016; 11
MS Rani (1569_CR33) 2015; 5
1569_CR21
A Özgür (1569_CR32) 2017; 5
E Emary (1569_CR13) 2017; 11
B Gholipour Goodarzi (1569_CR17) 2014; 5
1569_CR40
E Emary (1569_CR12) 2016; 172
1569_CR27
L Wolf (1569_CR43) 2005; 6
O Alomari (1569_CR3) 2012; 8
1569_CR45
W Xingzhu (1569_CR44) 2015; 9
S Velliangiri (1569_CR41) 2019; 00
E Emary (1569_CR14) 2018; 29
P Negandhi (1569_CR31) 2019
1569_CR4
M Lotfi Shahreza (1569_CR26) 2011; 18
D Srivastava (1569_CR39) 2019; 6
C Cortes (1569_CR6) 1995; 20
SN Makhadmeh (1569_CR29) 2018
References_xml – ident: CR45
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: CR6
  article-title: Support|[ndash]|vector networks
  publication-title: Mach Learn
  doi: 10.1023/A:1022627411411
– ident: CR18
– volume: 6
  start-page: 18
  year: 2019
  end-page: 24
  ident: CR39
  article-title: An intelligent gray wolf optimizer: a nature inspired technique in intrusion detection system (IDS)
  publication-title: J Adv Robot
– volume: 00
  start-page: 1
  year: 2019
  end-page: 16
  ident: CR41
  article-title: A hybrid BGWO with KPCA for intrusion detection
  publication-title: J Exp Theor Artif Intell
  doi: 10.1080/0952813x.2019.1647558
– ident: CR4
– volume: 10
  start-page: 967
  year: 2011
  end-page: 987
  ident: CR25
  article-title: Unsupervised feature selection using incremental least squares
  publication-title: Int J Inf Technol Decis Mak
  doi: 10.1142/s0219622011004671
– start-page: 519
  year: 2019
  end-page: 531
  ident: CR31
  article-title: Intrusion detection system using random forest on the NSL–KDD dataset
  publication-title: Emerging research in computing. Information communication and applications
  doi: 10.1007/978-981-13-6001-5_43
– ident: CR37
– volume: 172
  start-page: 371
  year: 2016
  end-page: 381
  ident: CR12
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 9
  start-page: 259
  year: 2015
  end-page: 270
  ident: CR44
  article-title: ACO and SVM selection feature weighting of network intrusion detection method
  publication-title: Int J Secur its Appl
  doi: 10.14257/ijsia.2015.9.4.24
– volume: 8
  start-page: 1748
  year: 2012
  end-page: 1756
  ident: CR3
  article-title: Bees algorithm for feature selection in network anomaly detection β-Hill climbing for optimization problems view project feature selection on high-dimensional data view project
  publication-title: Artic J Appl Sci Res
– volume: 11
  start-page: 1
  year: 2014
  end-page: 13
  ident: CR7
  article-title: Using genetic algorithm to supporting artificial neural network for intrusion detection system
  publication-title: J Commun Comput
– ident: CR35
– volume: 42
  start-page: 29
  year: 2018
  end-page: 42
  ident: CR46
  article-title: Large-dimensionality small-instance set feature selection: a hybrid bio-inspired heuristic approach
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2018.02.021
– ident: CR40
– volume: 2
  start-page: 1048
  year: 2011
  end-page: 1053
  ident: CR23
  article-title: Filter versus wrapper feature subset selection in large dimensionality microarray: a review
  publication-title: Int J Comput Sci Inf Technol
– ident: CR27
– volume: 4
  start-page: 446
  year: 2015
  end-page: 452
  ident: CR9
  article-title: A Study On NSL–KDD dataset for intrusion detection system based on classification algorithms
  publication-title: Int J Adv Res Comput Commun Eng
  doi: 10.17148/IJARCCE.2015.4696
– volume: 7
  start-page: 671
  year: 2017
  ident: CR8
  article-title: Feature selection in intrusion detection grey wolf optimizer
  publication-title: Asian J Res Soc Sci Humanit
  doi: 10.5958/2249-7315.2017.00197.6
– volume: 11
  start-page: 1
  year: 2016
  end-page: 26
  ident: CR10
  article-title: Impact of chaos functions on modern swarm optimizers
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0158738
– volume: 33
  start-page: 15
  year: 2015
  end-page: 23
  ident: CR20
  article-title: The continuous artificial bee colony algorithm for binary optimization
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2015.04.007
– volume: 18
  start-page: 1460
  year: 2011
  end-page: 1468
  ident: CR26
  article-title: Anomaly detection using a self-organizing map and particle swarm optimization
  publication-title: Sci Iran
  doi: 10.1016/j.scient.2011.08.025
– volume: 57
  start-page: 61
  year: 2017
  end-page: 79
  ident: CR28
  article-title: A hybrid multi-objective grey wolf optimizer for dynamic scheduling in a real-world welding industry
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2016.10.013
– ident: CR21
– ident: CR19
– volume: 29
  start-page: 681
  year: 2018
  end-page: 694
  ident: CR14
  article-title: Experienced gray wolf optimization through reinforcement learning and neural networks
  publication-title: IEEE Trans Neural Networks Learn Syst
  doi: 10.1109/TNNLS.2016.2634548
– volume: 5
  start-page: 43
  year: 2014
  end-page: 52
  ident: CR17
  article-title: Intrusion detection system in computer network using hybrid algorithms (SVM and ABC)
  publication-title: J Adv Comput Res
– volume: 36
  start-page: 16
  year: 2013
  end-page: 24
  ident: CR24
  article-title: Intrusion detection system: a comprehensive review
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2012.09.004
– ident: CR38
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: CR30
  article-title: Grey wolf optimizer MATLAB code
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 6
  start-page: 378
  year: 2005
  end-page: 384
  ident: CR43
  article-title: Feature selection for unsupervised and supervised inference: the emergence of sparsity in a weighted-based approach
  publication-title: J Mach Learn Res
  doi: 10.1109/iccv.2003.1238369
– ident: CR11
– year: 2018
  ident: CR29
  article-title: Multi-objective power scheduling problem in smart homes using grey wolf optimiser
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-018-1085-8
– volume: 11
  start-page: 611
  year: 2017
  end-page: 627
  ident: CR13
  article-title: Multi-objective retinal vessel localization using flower pollination search algorithm with pattern search
  publication-title: Adv Data Anal Classif
  doi: 10.1007/s11634-016-0257-7
– volume: 3
  start-page: 86
  year: 2015
  end-page: 92
  ident: CR42
  article-title: Analysis of fitness function in designing genetic algorithm based intrusion detection system
  publication-title: J Sci Res Dev
– ident: CR34
– ident: CR36
– volume: 843
  start-page: 605
  year: 2019
  end-page: 619
  ident: CR2
  article-title: Review on feature selection algorithms for anomaly-based intrusion detection system
  publication-title: Adv Intell Syst Comput
  doi: 10.1007/978-3-319-99007-1_57
– volume: 5
  start-page: e2838v1
  year: 2017
  ident: CR32
  article-title: The impact of using large training data set KDD99 on classification accuracy
  publication-title: PeerJ Prepr
– volume: 16
  start-page: 924
  year: 2019
  end-page: 935
  ident: CR15
  article-title: A hybrid deep learning-based model for anomaly detection in cloud datacenter networks
  publication-title: IEEE Trans Netw Serv Manag
  doi: 10.1109/tnsm.2019.2927886
– volume: 22
  start-page: 4407
  year: 2018
  end-page: 4416
  ident: CR1
  article-title: An IWD-based feature selection method for intrusion detection system
  publication-title: Soft Comput
  doi: 10.1007/s00500-017-2635-2
– volume: 49
  start-page: 2735
  year: 2019
  end-page: 2761
  ident: CR5
  article-title: A new hybrid approach for intrusion detection using machine learning methods
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-01408-x
– volume: 8
  start-page: 70
  year: 2016
  end-page: 81
  ident: CR16
  article-title: Novel multi-objective artificial bee colony optimization for wrapper based feature selection in intruction detectoin
  publication-title: Int J Adv Soft Comput its Appl
– volume: 5
  start-page: 2001
  year: 2015
  end-page: 2007
  ident: CR33
  article-title: A hybrid intrusion detection system based on C5. 0 decision tree and one-class SVM [J]
  publication-title: Int J Curr Eng Technol
– volume: 1
  start-page: 2278
  year: 2012
  end-page: 7720
  ident: CR22
  article-title: Signature based intrusion detection system using SNORT
  publication-title: Int J Comput Appl Inf Technol I, Issue III
– volume: 4
  start-page: 446
  year: 2015
  ident: 1569_CR9
  publication-title: Int J Adv Res Comput Commun Eng
  doi: 10.17148/IJARCCE.2015.4696
– volume: 11
  start-page: 1
  year: 2016
  ident: 1569_CR10
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0158738
– ident: 1569_CR19
– volume: 42
  start-page: 29
  year: 2018
  ident: 1569_CR46
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2018.02.021
– volume: 7
  start-page: 671
  year: 2017
  ident: 1569_CR8
  publication-title: Asian J Res Soc Sci Humanit
  doi: 10.5958/2249-7315.2017.00197.6
– volume: 36
  start-page: 16
  year: 2013
  ident: 1569_CR24
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2012.09.004
– volume: 3
  start-page: 86
  year: 2015
  ident: 1569_CR42
  publication-title: J Sci Res Dev
– volume: 16
  start-page: 924
  year: 2019
  ident: 1569_CR15
  publication-title: IEEE Trans Netw Serv Manag
  doi: 10.1109/tnsm.2019.2927886
– volume: 6
  start-page: 378
  year: 2005
  ident: 1569_CR43
  publication-title: J Mach Learn Res
  doi: 10.1109/iccv.2003.1238369
– volume: 9
  start-page: 259
  year: 2015
  ident: 1569_CR44
  publication-title: Int J Secur its Appl
  doi: 10.14257/ijsia.2015.9.4.24
– ident: 1569_CR21
  doi: 10.1109/ICSCCN.2011.6024556
– volume: 49
  start-page: 2735
  year: 2019
  ident: 1569_CR5
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-01408-x
– ident: 1569_CR35
– volume: 22
  start-page: 4407
  year: 2018
  ident: 1569_CR1
  publication-title: Soft Comput
  doi: 10.1007/s00500-017-2635-2
– ident: 1569_CR11
  doi: 10.1007/978-3-319-13572-4_1
– volume: 172
  start-page: 371
  year: 2016
  ident: 1569_CR12
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– ident: 1569_CR34
  doi: 10.1002/cpe.4999
– volume: 8
  start-page: 1748
  year: 2012
  ident: 1569_CR3
  publication-title: Artic J Appl Sci Res
– volume: 20
  start-page: 273
  year: 1995
  ident: 1569_CR6
  publication-title: Mach Learn
  doi: 10.1023/A:1022627411411
– volume: 5
  start-page: e2838v1
  year: 2017
  ident: 1569_CR32
  publication-title: PeerJ Prepr
– volume: 00
  start-page: 1
  year: 2019
  ident: 1569_CR41
  publication-title: J Exp Theor Artif Intell
  doi: 10.1080/0952813x.2019.1647558
– volume: 29
  start-page: 681
  year: 2018
  ident: 1569_CR14
  publication-title: IEEE Trans Neural Networks Learn Syst
  doi: 10.1109/TNNLS.2016.2634548
– volume: 10
  start-page: 967
  year: 2011
  ident: 1569_CR25
  publication-title: Int J Inf Technol Decis Mak
  doi: 10.1142/s0219622011004671
– volume: 57
  start-page: 61
  year: 2017
  ident: 1569_CR28
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2016.10.013
– volume: 843
  start-page: 605
  year: 2019
  ident: 1569_CR2
  publication-title: Adv Intell Syst Comput
  doi: 10.1007/978-3-319-99007-1_57
– volume: 33
  start-page: 15
  year: 2015
  ident: 1569_CR20
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2015.04.007
– ident: 1569_CR40
  doi: 10.1109/ICMCS.2012.6320275
– ident: 1569_CR4
  doi: 10.1007/s00521-019-04103-1
– ident: 1569_CR45
  doi: 10.1109/IDAACS.2017.8095129
– volume: 11
  start-page: 611
  year: 2017
  ident: 1569_CR13
  publication-title: Adv Data Anal Classif
  doi: 10.1007/s11634-016-0257-7
– ident: 1569_CR37
– volume: 2
  start-page: 1048
  year: 2011
  ident: 1569_CR23
  publication-title: Int J Comput Sci Inf Technol
– volume: 1
  start-page: 2278
  year: 2012
  ident: 1569_CR22
  publication-title: Int J Comput Appl Inf Technol I, Issue III
– year: 2018
  ident: 1569_CR29
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-018-1085-8
– volume: 8
  start-page: 70
  year: 2016
  ident: 1569_CR16
  publication-title: Int J Adv Soft Comput its Appl
– ident: 1569_CR18
  doi: 10.1155/2019/2653512
– ident: 1569_CR36
– volume: 11
  start-page: 1
  year: 2014
  ident: 1569_CR7
  publication-title: J Commun Comput
– volume: 69
  start-page: 46
  year: 2014
  ident: 1569_CR30
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 5
  start-page: 43
  year: 2014
  ident: 1569_CR17
  publication-title: J Adv Comput Res
– ident: 1569_CR38
  doi: 10.26438/ijcse/v7i5.757764
– start-page: 519
  volume-title: Emerging research in computing. Information communication and applications
  year: 2019
  ident: 1569_CR31
  doi: 10.1007/978-981-13-6001-5_43
– volume: 5
  start-page: 2001
  year: 2015
  ident: 1569_CR33
  publication-title: Int J Curr Eng Technol
– volume: 6
  start-page: 18
  year: 2019
  ident: 1569_CR39
  publication-title: J Adv Robot
– ident: 1569_CR27
  doi: 10.1109/CISDA.2009.5356528
– volume: 18
  start-page: 1460
  year: 2011
  ident: 1569_CR26
  publication-title: Sci Iran
  doi: 10.1016/j.scient.2011.08.025
SSID ssj0000393111
Score 2.4008944
Snippet The rapid development of information technology leads to increasing the number of devices connected to the Internet. Besides, the amount of network attacks...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3735
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Classification
Computational Intelligence
Data encryption
Datasets
Engineering
Feature selection
Internet
Intrusion detection systems
Literature reviews
Machine learning
Methods
Multiple objective analysis
Network security
Optimization
Original Research
Packets (communication)
Performance degradation
Robotics and Automation
Sensors
Support vector machines
System effectiveness
Taxonomy
User Interfaces and Human Computer Interaction
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgMLDwIUAUCvLABhb5aGp7QghRMaCqA6CKJXKcuBSlSaEVqP-eO8dpBRJdWLIktqw8-85nv7tHyLkUKPwoJeskKmFt6SVMRl7GNI9U4vHMRFa-7fmB93piMJB9d-A2dbTK2iZaQ52WGs_IrwIJc4VDSCWuJ-8MVaPwdtVJaKyTDaySgNIN_ehlccaCeae-leDFovAs8kPu8maq7LmgEyEvAQlDUUcy8dM3LTecv-5Irevp7vx30Ltk22066U01S_bIWlbskxgi_7HK5wwdWUpHBaZfAEo0zWaWn1XQqswzRW78kFrqISuTt8pEUgjU5_SrzA0tweyMHS2IqnwII5i9jg_IU_fu8faeObkFpmEdzliolDCoCu6lJgEnJb2OkhD_pQEHL865yUyohISH8jMv0LgV9GC5Gz_VwqTt8JA0irLIjggNIUjURgdKh7ptTFuFKtEQOCUcr-V00CR-_aNj7WqRoyRGHi-rKCM4MYATW3Bi0SQXizaTqhLHyq9bNSKxW5XTeAlHk1zWmC5f_93b8ereTshWgGG4pZ61SAPwyk7Jpv6cjaYfZ3ZOfgMCcOd2
  priority: 102
  providerName: ProQuest
Title Anomaly-based intrusion detection system using multi-objective grey wolf optimisation algorithm
URI https://link.springer.com/article/10.1007/s12652-019-01569-8
https://www.proquest.com/docview/2919677138
Volume 11
WOSCitedRecordID wos000495284200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: P5Z
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: K7-
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: RSV
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZg4wAH3ojBmHLgBpH6XJojoE1IoGkaME1cqjRtxtDWoq0C7d_j9LEBAiS45JI2quzEjuvP_gBOuaeJHzmnzUAE1OFGQLlrRFQyVwQGi5Sb0bf1b1mn4w0GvFsUhc1KtHuZksws9bLYzWq6Gkag8T1uk1NvFaro7jxN2NC76y_-rOhqUzMj3tWt4Klr2qyolvl-mc8eaXnN_JIZzRxOe-t_n7oNm8UFk1zkO2IHVqJ4FzY-tB3cAx9j_okYz6l2YSEZxbrwAvVDwijNkFkxyRs8E42KH5IMdEiT4Dk3jgRD9Dl5S8aKJGhwJgUgiIjxMJmO0qfJPjy0W_dX17QgWqAST2BKbSE8pfnAjVAF6J640RQcI7_QYui_GVORsoXHcRBmZFhSXwINPOjKDKWnQsc-gEqcxNEhEBvDQ6mkJaQtHaUcYYtAYsgUMJ2Qk1YNzFLYviy6kGsyjLG_7J-sheej8PxMeL5Xg7PFOy95D45fn66XOvSL8zjzLY6WhmFAjtPnpc6W0z-vdvS3x49hPU83ac3XoYL6i05gTb6mo9m0AdXLVqfba8DqDaM4dt3HRrZ33wEdCuVX
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VFgkufAgQCwV8oKdikTjJ2j4gVAFVq92ueiioN-M49lK0mxR2RdU_xW9kxkm6olJ766GXXJJYSuZ5xmO_mQfwVisSftSaD0tb8lwnJddF4rmThS0T6UMR5du-jeVkoo6P9eEa_O1rYYhW2fvE6KirxtEe-XuhESsSUyr18fQXJ9UoOl3tJTRaWIz8-RmmbIsP-5_RvltC7H45-rTHO1UB7hBuS55ZqwKJXydVKNEX62RoNaY5lZAYrKQMPmRWabzY1CfC0YonQVSHtHIqVHmG496BjTxTkubVSPKLPR2qc02j5C81oedFmsmuTqet1hPDgngQRFAqhpqr_2PhaoF76Uw2hrrdh7ftJz2CB92imu20s-AxrPn6CZidupnb2TmnQF2xk5rKSxCFrPLLyD-rWdvGmhH3f8oitZI35c82BLApgpydNbPAGnSr8472xOxsil-8_DF_Cl9v5JuewXrd1P45sAyTYBecsC5zeQi5zWzpMDEsJR07OjGAtDescV2vdZL8mJlVl2gCg0EwmAgGowawffHOadtp5NqnN3sEmM7rLMzK_AN412Nodfvq0V5cP9obuLd3dDA24_3J6CXcF7TlEGl2m7COtvOv4K77szxZ_H4d5wOD7zeNrX86MELY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RfTBb3E6NQ--abCfS_M41KE4xkAdewtp2szJ1o6tKPvvzaXdh6KC-NKXpKHcJXe53u9-h9A5C6DxI2OkGoqQeMwKCfOtmEjqi9CisfJN-7Z2gzabQafDWgtV_AbtPk1J5jUNwNKUZFfDSF3NC9-cqg-QAsD6-FVGgmW04gGQHuL1x_bsLwtUntqmCS_QwhPfdmlROfP9Mp-90_zK-SVLapxPfev_n72NNouLJ67lO2UHLcXJLtpYoCPcQ7yWpAPRnxBwbRHuJVCQofWGozgziK0E58TPGNDyXWzAiCQNX3OjiXXoPsHvaV_hVBuiQQEUwqLfTUe97GWwj57rt0_Xd6RowECkPpkZcYUIFPQJtyIVarfFrKpgOiKMHKr9OqUqVq4ImH4IO7YcCZdDSxsAZUcyUJHnHqBSkibxIcKuDhulko6QrvSU8oQrQqlDqZBCok46ZWRPBc9lwU4OTTL6fM6rDMLjWnjcCI8HZXQxe2eYc3P8Orsy1ScvzumYO0xbIKoDdT18OdXffPjn1Y7-Nv0MrbVu6rxx33w4RusOxOwGp1ZBJa3K-AStyresNx6dmu37AcRf7a4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly-based+intrusion+detection+system+using+multi-objective+grey+wolf+optimisation+algorithm&rft.jtitle=Journal+of+ambient+intelligence+and+humanized+computing&rft.au=Alamiedy%2C+Taief+Alaa&rft.au=Anbar%2C+Mohammed&rft.au=Alqattan%2C+Zakaria+N.+M.&rft.au=Alzubi%2C+Qusay+M.&rft.date=2020-09-01&rft.issn=1868-5137&rft.eissn=1868-5145&rft.volume=11&rft.issue=9&rft.spage=3735&rft.epage=3756&rft_id=info:doi/10.1007%2Fs12652-019-01569-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12652_019_01569_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-5137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-5137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-5137&client=summon