Anomaly-based intrusion detection system using multi-objective grey wolf optimisation algorithm
The rapid development of information technology leads to increasing the number of devices connected to the Internet. Besides, the amount of network attacks also increased. Accordingly, there is an urgent demand to design a defence system proficient in discovering new kinds of attacks. One of the mos...
Uloženo v:
| Vydáno v: | Journal of ambient intelligence and humanized computing Ročník 11; číslo 9; s. 3735 - 3756 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 1868-5137, 1868-5145 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The rapid development of information technology leads to increasing the number of devices connected to the Internet. Besides, the amount of network attacks also increased. Accordingly, there is an urgent demand to design a defence system proficient in discovering new kinds of attacks. One of the most effective protection systems is intrusion detection system (IDS). The IDS is an intelligent system that monitors and inspects the network packets to identify the abnormal behavior. In addition, the network packets comprise many attributes and there are many attributes that are irrelevant and repetitive which degrade the performance of the IDS system and overwhelm the system resources. A feature selection technique helps to reduce the computation time and complexity by selecting the optimum subset of features. In this paper, an enhanced anomaly-based IDS model based on multi-objective grey wolf optimisation (GWO) algorithm was proposed. The GWO algorithm was employed as a feature selection mechanism to identify the most relevant features from the dataset that contribute to high classification accuracy. Furthermore, support vector machine was used to estimate the capability of selected features in predicting the attacks accurately. Moreover, 20% of NSL–KDD dataset was used to demonstrate effectiveness of the proposed approach through different attack scenarios. The experimental result revealed that the proposed approach obtains classification accuracy of (93.64%, 91.01%, 57.72%, 53.7%) for DoS, Probe, R2L, and U2R attack respectively. Finally, the proposed approach was compared with other existing approaches and achieves significant result. |
|---|---|
| AbstractList | The rapid development of information technology leads to increasing the number of devices connected to the Internet. Besides, the amount of network attacks also increased. Accordingly, there is an urgent demand to design a defence system proficient in discovering new kinds of attacks. One of the most effective protection systems is intrusion detection system (IDS). The IDS is an intelligent system that monitors and inspects the network packets to identify the abnormal behavior. In addition, the network packets comprise many attributes and there are many attributes that are irrelevant and repetitive which degrade the performance of the IDS system and overwhelm the system resources. A feature selection technique helps to reduce the computation time and complexity by selecting the optimum subset of features. In this paper, an enhanced anomaly-based IDS model based on multi-objective grey wolf optimisation (GWO) algorithm was proposed. The GWO algorithm was employed as a feature selection mechanism to identify the most relevant features from the dataset that contribute to high classification accuracy. Furthermore, support vector machine was used to estimate the capability of selected features in predicting the attacks accurately. Moreover, 20% of NSL–KDD dataset was used to demonstrate effectiveness of the proposed approach through different attack scenarios. The experimental result revealed that the proposed approach obtains classification accuracy of (93.64%, 91.01%, 57.72%, 53.7%) for DoS, Probe, R2L, and U2R attack respectively. Finally, the proposed approach was compared with other existing approaches and achieves significant result. |
| Author | Anbar, Mohammed Alqattan, Zakaria N. M. Alamiedy, Taief Alaa Alzubi, Qusay M. |
| Author_xml | – sequence: 1 givenname: Taief Alaa surname: Alamiedy fullname: Alamiedy, Taief Alaa organization: National Advanced IPv6 Centre of Excellence (NAv6), Universiti Sains Malaysia – sequence: 2 givenname: Mohammed orcidid: 0000-0002-7026-6408 surname: Anbar fullname: Anbar, Mohammed email: anbar@nav6.usm.my organization: National Advanced IPv6 Centre of Excellence (NAv6), Universiti Sains Malaysia – sequence: 3 givenname: Zakaria N. M. surname: Alqattan fullname: Alqattan, Zakaria N. M. organization: National Advanced IPv6 Centre of Excellence (NAv6), Universiti Sains Malaysia – sequence: 4 givenname: Qusay M. surname: Alzubi fullname: Alzubi, Qusay M. organization: National Advanced IPv6 Centre of Excellence (NAv6), Universiti Sains Malaysia |
| BookMark | eNp9kN9PwyAQx4mZiXPuH_Cpic8olJbC47L4K1niiz4T1kJlaWEC0_S_l65GEx9GAtxx97k7vpdgZp1VAFxjdIsRqu4CzmmZQ4R52iXlkJ2BOWaUwRIX5ezXJtUFWIawQ2kRTjDGcyBW1vWyG-BWBtVkxkZ_CMbZrFFR1XG0whCi6rP0bNusP3TRQLfdjcFPlbVeDdmX63Tm9tH0JsgjI7vWeRPf-ytwrmUX1PLnXoC3h_vX9RPcvDw-r1cbWBPMIyRSMl0WuECN3nKOOKKSs-TlVU5pVWmliWQ8HRIrlNclLSliFdK4qZluCrIAN1PdvXcfBxWi2LmDt6mlyDnmqQQmLGXlU1btXQheabH3ppd-EBiJUUsxaSmSluKopRgh9g-qTTx-M3pputMomdCQ-thW-b-pTlDf_kyMJA |
| CitedBy_id | crossref_primary_10_1007_s13748_021_00244_4 crossref_primary_10_3390_s22093400 crossref_primary_10_3390_math10060999 crossref_primary_10_3390_s23010550 crossref_primary_10_1007_s00521_023_09309_y crossref_primary_10_1007_s12652_022_04437_0 crossref_primary_10_1016_j_eswa_2022_117597 crossref_primary_10_1016_j_csi_2025_104074 crossref_primary_10_1016_j_iot_2024_101420 crossref_primary_10_1007_s11277_020_07981_0 crossref_primary_10_1007_s12652_022_04393_9 crossref_primary_10_1186_s13677_023_00574_9 crossref_primary_10_1007_s11416_022_00442_1 crossref_primary_10_1109_ACCESS_2023_3319814 crossref_primary_10_1038_s41598_023_42257_0 crossref_primary_10_1007_s13198_021_01530_z crossref_primary_10_1109_ACCESS_2024_3405628 crossref_primary_10_1166_jmihi_2021_3881 crossref_primary_10_32604_cmc_2023_037486 crossref_primary_10_1109_ACCESS_2024_3368633 crossref_primary_10_1007_s12652_020_02847_6 crossref_primary_10_1007_s11831_023_10059_2 crossref_primary_10_1080_23335777_2020_1811383 crossref_primary_10_1109_ACCESS_2023_3333000 crossref_primary_10_1007_s42452_024_06165_w crossref_primary_10_1109_ACCESS_2024_3386405 crossref_primary_10_1007_s00500_022_06798_2 crossref_primary_10_1007_s13369_022_07030_x crossref_primary_10_1016_j_jksuci_2023_101863 crossref_primary_10_3390_electronics9040692 crossref_primary_10_1007_s11042_021_10567_y crossref_primary_10_1016_j_jhydrol_2022_128995 crossref_primary_10_1007_s00521_022_07704_5 crossref_primary_10_1109_ACCESS_2021_3066630 crossref_primary_10_1007_s11277_022_10040_5 crossref_primary_10_1007_s00366_021_01369_9 crossref_primary_10_1007_s10586_024_04996_1 crossref_primary_10_1016_j_matpr_2021_01_765 crossref_primary_10_1007_s13198_022_01690_6 crossref_primary_10_1007_s11227_023_05145_y crossref_primary_10_1109_ACCESS_2022_3182333 crossref_primary_10_1016_j_iot_2025_101536 crossref_primary_10_1016_j_swevo_2025_101984 |
| Cites_doi | 10.1023/A:1022627411411 10.1080/0952813x.2019.1647558 10.1142/s0219622011004671 10.1007/978-981-13-6001-5_43 10.1016/j.neucom.2015.06.083 10.14257/ijsia.2015.9.4.24 10.1016/j.swevo.2018.02.021 10.17148/IJARCCE.2015.4696 10.5958/2249-7315.2017.00197.6 10.1371/journal.pone.0158738 10.1016/j.asoc.2015.04.007 10.1016/j.scient.2011.08.025 10.1016/j.engappai.2016.10.013 10.1109/TNNLS.2016.2634548 10.1016/j.jnca.2012.09.004 10.1016/j.advengsoft.2013.12.007 10.1109/iccv.2003.1238369 10.1007/s12652-018-1085-8 10.1007/s11634-016-0257-7 10.1007/978-3-319-99007-1_57 10.1109/tnsm.2019.2927886 10.1007/s00500-017-2635-2 10.1007/s10489-018-01408-x 10.1109/ICSCCN.2011.6024556 10.1007/978-3-319-13572-4_1 10.1002/cpe.4999 10.1109/ICMCS.2012.6320275 10.1007/s00521-019-04103-1 10.1109/IDAACS.2017.8095129 10.1155/2019/2653512 10.26438/ijcse/v7i5.757764 10.1109/CISDA.2009.5356528 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s12652-019-01569-8 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1868-5145 |
| EndPage | 3756 |
| ExternalDocumentID | 10_1007_s12652_019_01569_8 |
| GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA BSONS CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 QOS R89 R9I RLLFE ROL RSV S1Z S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 Z45 Z5O Z7R Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-3aa8f54140dfb990906a9840d2726677fef3a89f3aa1e02c56560870f1dc8fd43 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000495284200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1868-5137 |
| IngestDate | Wed Nov 05 03:08:01 EST 2025 Sat Nov 29 03:41:21 EST 2025 Tue Nov 18 21:22:42 EST 2025 Fri Feb 21 02:34:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Grey wolf algorithm Feature selection Intrusion detection system Classification Swarm intelligence Support vector machine Multi-objective optimisation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-3aa8f54140dfb990906a9840d2726677fef3a89f3aa1e02c56560870f1dc8fd43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7026-6408 |
| PQID | 2919677138 |
| PQPubID | 2043913 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2919677138 crossref_primary_10_1007_s12652_019_01569_8 crossref_citationtrail_10_1007_s12652_019_01569_8 springer_journals_10_1007_s12652_019_01569_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20200900 2020-09-00 20200901 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 9 year: 2020 text: 20200900 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Journal of ambient intelligence and humanized computing |
| PublicationTitleAbbrev | J Ambient Intell Human Comput |
| PublicationYear | 2020 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Emary, Zawbaa, Hassanien, Parv (CR13) 2017; 11 Alomari, Othman (CR3) 2012; 8 Özgür, Erdem (CR32) 2017; 5 Çavuşoğlu (CR5) 2019; 49 Garg, Kaur, Kumar (CR15) 2019; 16 CR19 Alamiedy, Anbar, Al-Ani (CR2) 2019; 843 CR18 CR38 CR37 Emary, Zawbaa (CR10) 2016; 11 CR36 Liao, Richard Lin, Lin, Tung (CR24) 2013; 36 CR35 CR34 Dhanabal, Shantharajah (CR9) 2015; 4 CR11 Gholipour Goodarzi, Jazayeri, Fateri (CR17) 2014; 5 Makhadmeh, Khader, Al-Betar, Naim (CR29) 2018 Rani, Xavier (CR33) 2015; 5 Lotfi Shahreza, Moazzami, Moshiri, Delavar (CR26) 2011; 18 Vithalpura, Diwanji (CR42) 2015; 3 Dastanpour, Ibrahim, Mashinchi (CR7) 2014; 11 Srivastava, Singh, Singh (CR39) 2019; 6 CR4 Negandhi, Trivedi, Mangrulkar (CR31) 2019 Zawbaa, Emary, Grosan, Snasel (CR46) 2018; 42 Liu, Rallo, Cohen (CR25) 2011; 10 Kumar, Prakash Sangwan (CR22) 2012; 1 CR27 Wolf, Shashua (CR43) 2005; 6 Xingzhu (CR44) 2015; 9 Velliangiri (CR41) 2019; 00 CR45 Ghanem, Jantan (CR16) 2016; 8 CR21 Lu, Gao, Li, Xiao (CR28) 2017; 57 Cortes (CR6) 1995; 20 Mirjalili (CR30) 2014; 69 CR40 Acharya, Singh (CR1) 2018; 22 Emary, Zawbaa, Hassanien (CR12) 2016; 172 Devi, Suganthe (CR8) 2017; 7 Emary, Zawbaa, Grosan (CR14) 2018; 29 Kumari, Swarnkar (CR23) 2011; 2 Kiran (CR20) 2015; 33 1569_CR11 V Kumar (1569_CR22) 2012; 1 WAHM Ghanem (1569_CR16) 2016; 8 S Mirjalili (1569_CR30) 2014; 69 1569_CR18 Ü Çavuşoğlu (1569_CR5) 2019; 49 1569_CR19 R Liu (1569_CR25) 2011; 10 1569_CR38 N Acharya (1569_CR1) 2018; 22 JS Vithalpura (1569_CR42) 2015; 3 1569_CR36 1569_CR37 B Kumari (1569_CR23) 2011; 2 1569_CR34 1569_CR35 TA Alamiedy (1569_CR2) 2019; 843 S Garg (1569_CR15) 2019; 16 HJ Liao (1569_CR24) 2013; 36 EMR Devi (1569_CR8) 2017; 7 MS Kiran (1569_CR20) 2015; 33 C Lu (1569_CR28) 2017; 57 HM Zawbaa (1569_CR46) 2018; 42 L Dhanabal (1569_CR9) 2015; 4 A Dastanpour (1569_CR7) 2014; 11 E Emary (1569_CR10) 2016; 11 MS Rani (1569_CR33) 2015; 5 1569_CR21 A Özgür (1569_CR32) 2017; 5 E Emary (1569_CR13) 2017; 11 B Gholipour Goodarzi (1569_CR17) 2014; 5 1569_CR40 E Emary (1569_CR12) 2016; 172 1569_CR27 L Wolf (1569_CR43) 2005; 6 O Alomari (1569_CR3) 2012; 8 1569_CR45 W Xingzhu (1569_CR44) 2015; 9 S Velliangiri (1569_CR41) 2019; 00 E Emary (1569_CR14) 2018; 29 P Negandhi (1569_CR31) 2019 1569_CR4 M Lotfi Shahreza (1569_CR26) 2011; 18 D Srivastava (1569_CR39) 2019; 6 C Cortes (1569_CR6) 1995; 20 SN Makhadmeh (1569_CR29) 2018 |
| References_xml | – ident: CR45 – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: CR6 article-title: Support|[ndash]|vector networks publication-title: Mach Learn doi: 10.1023/A:1022627411411 – ident: CR18 – volume: 6 start-page: 18 year: 2019 end-page: 24 ident: CR39 article-title: An intelligent gray wolf optimizer: a nature inspired technique in intrusion detection system (IDS) publication-title: J Adv Robot – volume: 00 start-page: 1 year: 2019 end-page: 16 ident: CR41 article-title: A hybrid BGWO with KPCA for intrusion detection publication-title: J Exp Theor Artif Intell doi: 10.1080/0952813x.2019.1647558 – ident: CR4 – volume: 10 start-page: 967 year: 2011 end-page: 987 ident: CR25 article-title: Unsupervised feature selection using incremental least squares publication-title: Int J Inf Technol Decis Mak doi: 10.1142/s0219622011004671 – start-page: 519 year: 2019 end-page: 531 ident: CR31 article-title: Intrusion detection system using random forest on the NSL–KDD dataset publication-title: Emerging research in computing. Information communication and applications doi: 10.1007/978-981-13-6001-5_43 – ident: CR37 – volume: 172 start-page: 371 year: 2016 end-page: 381 ident: CR12 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – volume: 9 start-page: 259 year: 2015 end-page: 270 ident: CR44 article-title: ACO and SVM selection feature weighting of network intrusion detection method publication-title: Int J Secur its Appl doi: 10.14257/ijsia.2015.9.4.24 – volume: 8 start-page: 1748 year: 2012 end-page: 1756 ident: CR3 article-title: Bees algorithm for feature selection in network anomaly detection β-Hill climbing for optimization problems view project feature selection on high-dimensional data view project publication-title: Artic J Appl Sci Res – volume: 11 start-page: 1 year: 2014 end-page: 13 ident: CR7 article-title: Using genetic algorithm to supporting artificial neural network for intrusion detection system publication-title: J Commun Comput – ident: CR35 – volume: 42 start-page: 29 year: 2018 end-page: 42 ident: CR46 article-title: Large-dimensionality small-instance set feature selection: a hybrid bio-inspired heuristic approach publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2018.02.021 – ident: CR40 – volume: 2 start-page: 1048 year: 2011 end-page: 1053 ident: CR23 article-title: Filter versus wrapper feature subset selection in large dimensionality microarray: a review publication-title: Int J Comput Sci Inf Technol – ident: CR27 – volume: 4 start-page: 446 year: 2015 end-page: 452 ident: CR9 article-title: A Study On NSL–KDD dataset for intrusion detection system based on classification algorithms publication-title: Int J Adv Res Comput Commun Eng doi: 10.17148/IJARCCE.2015.4696 – volume: 7 start-page: 671 year: 2017 ident: CR8 article-title: Feature selection in intrusion detection grey wolf optimizer publication-title: Asian J Res Soc Sci Humanit doi: 10.5958/2249-7315.2017.00197.6 – volume: 11 start-page: 1 year: 2016 end-page: 26 ident: CR10 article-title: Impact of chaos functions on modern swarm optimizers publication-title: PLoS One doi: 10.1371/journal.pone.0158738 – volume: 33 start-page: 15 year: 2015 end-page: 23 ident: CR20 article-title: The continuous artificial bee colony algorithm for binary optimization publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2015.04.007 – volume: 18 start-page: 1460 year: 2011 end-page: 1468 ident: CR26 article-title: Anomaly detection using a self-organizing map and particle swarm optimization publication-title: Sci Iran doi: 10.1016/j.scient.2011.08.025 – volume: 57 start-page: 61 year: 2017 end-page: 79 ident: CR28 article-title: A hybrid multi-objective grey wolf optimizer for dynamic scheduling in a real-world welding industry publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2016.10.013 – ident: CR21 – ident: CR19 – volume: 29 start-page: 681 year: 2018 end-page: 694 ident: CR14 article-title: Experienced gray wolf optimization through reinforcement learning and neural networks publication-title: IEEE Trans Neural Networks Learn Syst doi: 10.1109/TNNLS.2016.2634548 – volume: 5 start-page: 43 year: 2014 end-page: 52 ident: CR17 article-title: Intrusion detection system in computer network using hybrid algorithms (SVM and ABC) publication-title: J Adv Comput Res – volume: 36 start-page: 16 year: 2013 end-page: 24 ident: CR24 article-title: Intrusion detection system: a comprehensive review publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2012.09.004 – ident: CR38 – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR30 article-title: Grey wolf optimizer MATLAB code publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 6 start-page: 378 year: 2005 end-page: 384 ident: CR43 article-title: Feature selection for unsupervised and supervised inference: the emergence of sparsity in a weighted-based approach publication-title: J Mach Learn Res doi: 10.1109/iccv.2003.1238369 – ident: CR11 – year: 2018 ident: CR29 article-title: Multi-objective power scheduling problem in smart homes using grey wolf optimiser publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-018-1085-8 – volume: 11 start-page: 611 year: 2017 end-page: 627 ident: CR13 article-title: Multi-objective retinal vessel localization using flower pollination search algorithm with pattern search publication-title: Adv Data Anal Classif doi: 10.1007/s11634-016-0257-7 – volume: 3 start-page: 86 year: 2015 end-page: 92 ident: CR42 article-title: Analysis of fitness function in designing genetic algorithm based intrusion detection system publication-title: J Sci Res Dev – ident: CR34 – ident: CR36 – volume: 843 start-page: 605 year: 2019 end-page: 619 ident: CR2 article-title: Review on feature selection algorithms for anomaly-based intrusion detection system publication-title: Adv Intell Syst Comput doi: 10.1007/978-3-319-99007-1_57 – volume: 5 start-page: e2838v1 year: 2017 ident: CR32 article-title: The impact of using large training data set KDD99 on classification accuracy publication-title: PeerJ Prepr – volume: 16 start-page: 924 year: 2019 end-page: 935 ident: CR15 article-title: A hybrid deep learning-based model for anomaly detection in cloud datacenter networks publication-title: IEEE Trans Netw Serv Manag doi: 10.1109/tnsm.2019.2927886 – volume: 22 start-page: 4407 year: 2018 end-page: 4416 ident: CR1 article-title: An IWD-based feature selection method for intrusion detection system publication-title: Soft Comput doi: 10.1007/s00500-017-2635-2 – volume: 49 start-page: 2735 year: 2019 end-page: 2761 ident: CR5 article-title: A new hybrid approach for intrusion detection using machine learning methods publication-title: Appl Intell doi: 10.1007/s10489-018-01408-x – volume: 8 start-page: 70 year: 2016 end-page: 81 ident: CR16 article-title: Novel multi-objective artificial bee colony optimization for wrapper based feature selection in intruction detectoin publication-title: Int J Adv Soft Comput its Appl – volume: 5 start-page: 2001 year: 2015 end-page: 2007 ident: CR33 article-title: A hybrid intrusion detection system based on C5. 0 decision tree and one-class SVM [J] publication-title: Int J Curr Eng Technol – volume: 1 start-page: 2278 year: 2012 end-page: 7720 ident: CR22 article-title: Signature based intrusion detection system using SNORT publication-title: Int J Comput Appl Inf Technol I, Issue III – volume: 4 start-page: 446 year: 2015 ident: 1569_CR9 publication-title: Int J Adv Res Comput Commun Eng doi: 10.17148/IJARCCE.2015.4696 – volume: 11 start-page: 1 year: 2016 ident: 1569_CR10 publication-title: PLoS One doi: 10.1371/journal.pone.0158738 – ident: 1569_CR19 – volume: 42 start-page: 29 year: 2018 ident: 1569_CR46 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2018.02.021 – volume: 7 start-page: 671 year: 2017 ident: 1569_CR8 publication-title: Asian J Res Soc Sci Humanit doi: 10.5958/2249-7315.2017.00197.6 – volume: 36 start-page: 16 year: 2013 ident: 1569_CR24 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2012.09.004 – volume: 3 start-page: 86 year: 2015 ident: 1569_CR42 publication-title: J Sci Res Dev – volume: 16 start-page: 924 year: 2019 ident: 1569_CR15 publication-title: IEEE Trans Netw Serv Manag doi: 10.1109/tnsm.2019.2927886 – volume: 6 start-page: 378 year: 2005 ident: 1569_CR43 publication-title: J Mach Learn Res doi: 10.1109/iccv.2003.1238369 – volume: 9 start-page: 259 year: 2015 ident: 1569_CR44 publication-title: Int J Secur its Appl doi: 10.14257/ijsia.2015.9.4.24 – ident: 1569_CR21 doi: 10.1109/ICSCCN.2011.6024556 – volume: 49 start-page: 2735 year: 2019 ident: 1569_CR5 publication-title: Appl Intell doi: 10.1007/s10489-018-01408-x – ident: 1569_CR35 – volume: 22 start-page: 4407 year: 2018 ident: 1569_CR1 publication-title: Soft Comput doi: 10.1007/s00500-017-2635-2 – ident: 1569_CR11 doi: 10.1007/978-3-319-13572-4_1 – volume: 172 start-page: 371 year: 2016 ident: 1569_CR12 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – ident: 1569_CR34 doi: 10.1002/cpe.4999 – volume: 8 start-page: 1748 year: 2012 ident: 1569_CR3 publication-title: Artic J Appl Sci Res – volume: 20 start-page: 273 year: 1995 ident: 1569_CR6 publication-title: Mach Learn doi: 10.1023/A:1022627411411 – volume: 5 start-page: e2838v1 year: 2017 ident: 1569_CR32 publication-title: PeerJ Prepr – volume: 00 start-page: 1 year: 2019 ident: 1569_CR41 publication-title: J Exp Theor Artif Intell doi: 10.1080/0952813x.2019.1647558 – volume: 29 start-page: 681 year: 2018 ident: 1569_CR14 publication-title: IEEE Trans Neural Networks Learn Syst doi: 10.1109/TNNLS.2016.2634548 – volume: 10 start-page: 967 year: 2011 ident: 1569_CR25 publication-title: Int J Inf Technol Decis Mak doi: 10.1142/s0219622011004671 – volume: 57 start-page: 61 year: 2017 ident: 1569_CR28 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2016.10.013 – volume: 843 start-page: 605 year: 2019 ident: 1569_CR2 publication-title: Adv Intell Syst Comput doi: 10.1007/978-3-319-99007-1_57 – volume: 33 start-page: 15 year: 2015 ident: 1569_CR20 publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2015.04.007 – ident: 1569_CR40 doi: 10.1109/ICMCS.2012.6320275 – ident: 1569_CR4 doi: 10.1007/s00521-019-04103-1 – ident: 1569_CR45 doi: 10.1109/IDAACS.2017.8095129 – volume: 11 start-page: 611 year: 2017 ident: 1569_CR13 publication-title: Adv Data Anal Classif doi: 10.1007/s11634-016-0257-7 – ident: 1569_CR37 – volume: 2 start-page: 1048 year: 2011 ident: 1569_CR23 publication-title: Int J Comput Sci Inf Technol – volume: 1 start-page: 2278 year: 2012 ident: 1569_CR22 publication-title: Int J Comput Appl Inf Technol I, Issue III – year: 2018 ident: 1569_CR29 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-018-1085-8 – volume: 8 start-page: 70 year: 2016 ident: 1569_CR16 publication-title: Int J Adv Soft Comput its Appl – ident: 1569_CR18 doi: 10.1155/2019/2653512 – ident: 1569_CR36 – volume: 11 start-page: 1 year: 2014 ident: 1569_CR7 publication-title: J Commun Comput – volume: 69 start-page: 46 year: 2014 ident: 1569_CR30 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 5 start-page: 43 year: 2014 ident: 1569_CR17 publication-title: J Adv Comput Res – ident: 1569_CR38 doi: 10.26438/ijcse/v7i5.757764 – start-page: 519 volume-title: Emerging research in computing. Information communication and applications year: 2019 ident: 1569_CR31 doi: 10.1007/978-981-13-6001-5_43 – volume: 5 start-page: 2001 year: 2015 ident: 1569_CR33 publication-title: Int J Curr Eng Technol – volume: 6 start-page: 18 year: 2019 ident: 1569_CR39 publication-title: J Adv Robot – ident: 1569_CR27 doi: 10.1109/CISDA.2009.5356528 – volume: 18 start-page: 1460 year: 2011 ident: 1569_CR26 publication-title: Sci Iran doi: 10.1016/j.scient.2011.08.025 |
| SSID | ssj0000393111 |
| Score | 2.4008944 |
| Snippet | The rapid development of information technology leads to increasing the number of devices connected to the Internet. Besides, the amount of network attacks... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3735 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Classification Computational Intelligence Data encryption Datasets Engineering Feature selection Internet Intrusion detection systems Literature reviews Machine learning Methods Multiple objective analysis Network security Optimization Original Research Packets (communication) Performance degradation Robotics and Automation Sensors Support vector machines System effectiveness Taxonomy User Interfaces and Human Computer Interaction |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgMLDwIUAUCvLABhb5aGp7QghRMaCqA6CKJXKcuBSlSaEVqP-eO8dpBRJdWLIktqw8-85nv7tHyLkUKPwoJeskKmFt6SVMRl7GNI9U4vHMRFa-7fmB93piMJB9d-A2dbTK2iZaQ52WGs_IrwIJc4VDSCWuJ-8MVaPwdtVJaKyTDaySgNIN_ehlccaCeae-leDFovAs8kPu8maq7LmgEyEvAQlDUUcy8dM3LTecv-5Irevp7vx30Ltk22066U01S_bIWlbskxgi_7HK5wwdWUpHBaZfAEo0zWaWn1XQqswzRW78kFrqISuTt8pEUgjU5_SrzA0tweyMHS2IqnwII5i9jg_IU_fu8faeObkFpmEdzliolDCoCu6lJgEnJb2OkhD_pQEHL865yUyohISH8jMv0LgV9GC5Gz_VwqTt8JA0irLIjggNIUjURgdKh7ptTFuFKtEQOCUcr-V00CR-_aNj7WqRoyRGHi-rKCM4MYATW3Bi0SQXizaTqhLHyq9bNSKxW5XTeAlHk1zWmC5f_93b8ereTshWgGG4pZ61SAPwyk7Jpv6cjaYfZ3ZOfgMCcOd2 priority: 102 providerName: ProQuest |
| Title | Anomaly-based intrusion detection system using multi-objective grey wolf optimisation algorithm |
| URI | https://link.springer.com/article/10.1007/s12652-019-01569-8 https://www.proquest.com/docview/2919677138 |
| Volume | 11 |
| WOSCitedRecordID | wos000495284200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1868-5145 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: P5Z dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1868-5145 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: K7- dateStart: 20100301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1868-5145 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1868-5145 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000393111 issn: 1868-5137 databaseCode: RSV dateStart: 20100301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZg4wAH3ojBmHLgBpH6XJojoE1IoGkaME1cqjRtxtDWoq0C7d_j9LEBAiS45JI2quzEjuvP_gBOuaeJHzmnzUAE1OFGQLlrRFQyVwQGi5Sb0bf1b1mn4w0GvFsUhc1KtHuZksws9bLYzWq6Gkag8T1uk1NvFaro7jxN2NC76y_-rOhqUzMj3tWt4Klr2qyolvl-mc8eaXnN_JIZzRxOe-t_n7oNm8UFk1zkO2IHVqJ4FzY-tB3cAx9j_okYz6l2YSEZxbrwAvVDwijNkFkxyRs8E42KH5IMdEiT4Dk3jgRD9Dl5S8aKJGhwJgUgiIjxMJmO0qfJPjy0W_dX17QgWqAST2BKbSE8pfnAjVAF6J640RQcI7_QYui_GVORsoXHcRBmZFhSXwINPOjKDKWnQsc-gEqcxNEhEBvDQ6mkJaQtHaUcYYtAYsgUMJ2Qk1YNzFLYviy6kGsyjLG_7J-sheej8PxMeL5Xg7PFOy95D45fn66XOvSL8zjzLY6WhmFAjtPnpc6W0z-vdvS3x49hPU83ac3XoYL6i05gTb6mo9m0AdXLVqfba8DqDaM4dt3HRrZ33wEdCuVX |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VFgkufAgQCwV8oKdikTjJ2j4gVAFVq92ueiioN-M49lK0mxR2RdU_xW9kxkm6olJ766GXXJJYSuZ5xmO_mQfwVisSftSaD0tb8lwnJddF4rmThS0T6UMR5du-jeVkoo6P9eEa_O1rYYhW2fvE6KirxtEe-XuhESsSUyr18fQXJ9UoOl3tJTRaWIz8-RmmbIsP-5_RvltC7H45-rTHO1UB7hBuS55ZqwKJXydVKNEX62RoNaY5lZAYrKQMPmRWabzY1CfC0YonQVSHtHIqVHmG496BjTxTkubVSPKLPR2qc02j5C81oedFmsmuTqet1hPDgngQRFAqhpqr_2PhaoF76Uw2hrrdh7ftJz2CB92imu20s-AxrPn6CZidupnb2TmnQF2xk5rKSxCFrPLLyD-rWdvGmhH3f8oitZI35c82BLApgpydNbPAGnSr8472xOxsil-8_DF_Cl9v5JuewXrd1P45sAyTYBecsC5zeQi5zWzpMDEsJR07OjGAtDescV2vdZL8mJlVl2gCg0EwmAgGowawffHOadtp5NqnN3sEmM7rLMzK_AN412Nodfvq0V5cP9obuLd3dDA24_3J6CXcF7TlEGl2m7COtvOv4K77szxZ_H4d5wOD7zeNrX86MELY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RfTBb3E6NQ--abCfS_M41KE4xkAdewtp2szJ1o6tKPvvzaXdh6KC-NKXpKHcJXe53u9-h9A5C6DxI2OkGoqQeMwKCfOtmEjqi9CisfJN-7Z2gzabQafDWgtV_AbtPk1J5jUNwNKUZFfDSF3NC9-cqg-QAsD6-FVGgmW04gGQHuL1x_bsLwtUntqmCS_QwhPfdmlROfP9Mp-90_zK-SVLapxPfev_n72NNouLJ67lO2UHLcXJLtpYoCPcQ7yWpAPRnxBwbRHuJVCQofWGozgziK0E58TPGNDyXWzAiCQNX3OjiXXoPsHvaV_hVBuiQQEUwqLfTUe97GWwj57rt0_Xd6RowECkPpkZcYUIFPQJtyIVarfFrKpgOiKMHKr9OqUqVq4ImH4IO7YcCZdDSxsAZUcyUJHnHqBSkibxIcKuDhulko6QrvSU8oQrQqlDqZBCok46ZWRPBc9lwU4OTTL6fM6rDMLjWnjcCI8HZXQxe2eYc3P8Orsy1ScvzumYO0xbIKoDdT18OdXffPjn1Y7-Nv0MrbVu6rxx33w4RusOxOwGp1ZBJa3K-AStyresNx6dmu37AcRf7a4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomaly-based+intrusion+detection+system+using+multi-objective+grey+wolf+optimisation+algorithm&rft.jtitle=Journal+of+ambient+intelligence+and+humanized+computing&rft.au=Alamiedy%2C+Taief+Alaa&rft.au=Anbar%2C+Mohammed&rft.au=Alqattan%2C+Zakaria+N.+M.&rft.au=Alzubi%2C+Qusay+M.&rft.date=2020-09-01&rft.issn=1868-5137&rft.eissn=1868-5145&rft.volume=11&rft.issue=9&rft.spage=3735&rft.epage=3756&rft_id=info:doi/10.1007%2Fs12652-019-01569-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12652_019_01569_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-5137&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-5137&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-5137&client=summon |