Equilibrium dynamics of a circular restricted three-body problem with Kerr-like primaries
A pseudo-Newtonian planar circular restricted three-body problem with two Kerr-like primaries is considered. Using numerical methods, we explore the dynamical properties of the points of equilibrium of the system. In particular, we demonstrate how the two main parameters of the system affect the pro...
Uloženo v:
| Vydáno v: | Nonlinear dynamics Ročník 107; číslo 1; s. 433 - 456 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.01.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 0924-090X, 1573-269X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A pseudo-Newtonian planar circular restricted three-body problem with two Kerr-like primaries is considered. Using numerical methods, we explore the dynamical properties of the points of equilibrium of the system. In particular, we demonstrate how the two main parameters of the system affect the properties (position and type) of the libration points. For all the equilibria, we present their nature by classifying them not only as linearly stable and unstable but also as maxima, index-1, and index-2 saddles. We also reveal the networks of simple symmetric periodic orbits and their linear stability. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0924-090X 1573-269X |
| DOI: | 10.1007/s11071-021-07021-x |