Sardine Optimization Algorithm with Agile Locality and Globality Strategies for Real Optimization Problems

How to steadily find satisfactory solutions for high-dimensional multimodal and composition optimization problems is still a challenging issue. To fight against this pain-point problem, we propose sardine optimization algorithm (SOA) with agile locality and globality strategies for real optimization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal for science and engineering (2011) Jg. 48; H. 8; S. 9787 - 9825
Hauptverfasser: Zhang, HongGuang, Tang, MengZhen, Liu, YuanAn, Li, Xiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2023
Springer Nature B.V
Schlagworte:
ISSN:2193-567X, 1319-8025, 2191-4281
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract How to steadily find satisfactory solutions for high-dimensional multimodal and composition optimization problems is still a challenging issue. To fight against this pain-point problem, we propose sardine optimization algorithm (SOA) with agile locality and globality strategies for real optimization problems. Inspired by the survival philosophy of sardines, SOA simulates the transformation, migration, reproduction, elimination, and spread of sardines. As a varied-population-size optimization algorithm, the features of SOA are summarized as two key points. (i) Agile locality and globality strategies use adjacent and corresponding period ratios to control the local and global search behaviors. To our best knowledge, these strategies are a new technical road to balance exploration and exploitation efforts. (ii) Besides, SOA uses unique search operators based on the center movement of sardine schools. Specifically, when the center of one sardine school moves in these search operators, all sardines in this school also move in the same direction. This mobility style is different from most meta-heuristic algorithms, as far as we know. We used all unconstrained optimization problems in the CEC2013 test suite and six real-world constrained optimization problems as our benchmarks. SOA outperforms eight algorithms (like the two winning algorithms of CEC2013 and CEC2014), especially for high-dimension multimodal and composition optimization problems. For instance, Wilcoxon results between SOA and the two winning algorithms of CEC2013 and CEC2014 for 90-dimensional unconstrained optimization problems of the CEC2013 test suite are 16:10 and 18:8. The coding of SOA can be downloaded from “ https://github.com/1654402787/SOA ” (unzip password: soasoasoa1357).
AbstractList How to steadily find satisfactory solutions for high-dimensional multimodal and composition optimization problems is still a challenging issue. To fight against this pain-point problem, we propose sardine optimization algorithm (SOA) with agile locality and globality strategies for real optimization problems. Inspired by the survival philosophy of sardines, SOA simulates the transformation, migration, reproduction, elimination, and spread of sardines. As a varied-population-size optimization algorithm, the features of SOA are summarized as two key points. (i) Agile locality and globality strategies use adjacent and corresponding period ratios to control the local and global search behaviors. To our best knowledge, these strategies are a new technical road to balance exploration and exploitation efforts. (ii) Besides, SOA uses unique search operators based on the center movement of sardine schools. Specifically, when the center of one sardine school moves in these search operators, all sardines in this school also move in the same direction. This mobility style is different from most meta-heuristic algorithms, as far as we know. We used all unconstrained optimization problems in the CEC2013 test suite and six real-world constrained optimization problems as our benchmarks. SOA outperforms eight algorithms (like the two winning algorithms of CEC2013 and CEC2014), especially for high-dimension multimodal and composition optimization problems. For instance, Wilcoxon results between SOA and the two winning algorithms of CEC2013 and CEC2014 for 90-dimensional unconstrained optimization problems of the CEC2013 test suite are 16:10 and 18:8. The coding of SOA can be downloaded from “https://github.com/1654402787/SOA” (unzip password: soasoasoa1357).
How to steadily find satisfactory solutions for high-dimensional multimodal and composition optimization problems is still a challenging issue. To fight against this pain-point problem, we propose sardine optimization algorithm (SOA) with agile locality and globality strategies for real optimization problems. Inspired by the survival philosophy of sardines, SOA simulates the transformation, migration, reproduction, elimination, and spread of sardines. As a varied-population-size optimization algorithm, the features of SOA are summarized as two key points. (i) Agile locality and globality strategies use adjacent and corresponding period ratios to control the local and global search behaviors. To our best knowledge, these strategies are a new technical road to balance exploration and exploitation efforts. (ii) Besides, SOA uses unique search operators based on the center movement of sardine schools. Specifically, when the center of one sardine school moves in these search operators, all sardines in this school also move in the same direction. This mobility style is different from most meta-heuristic algorithms, as far as we know. We used all unconstrained optimization problems in the CEC2013 test suite and six real-world constrained optimization problems as our benchmarks. SOA outperforms eight algorithms (like the two winning algorithms of CEC2013 and CEC2014), especially for high-dimension multimodal and composition optimization problems. For instance, Wilcoxon results between SOA and the two winning algorithms of CEC2013 and CEC2014 for 90-dimensional unconstrained optimization problems of the CEC2013 test suite are 16:10 and 18:8. The coding of SOA can be downloaded from “ https://github.com/1654402787/SOA ” (unzip password: soasoasoa1357).
Author Li, Xiang
Zhang, HongGuang
Liu, YuanAn
Tang, MengZhen
Author_xml – sequence: 1
  givenname: HongGuang
  surname: Zhang
  fullname: Zhang, HongGuang
  email: hongguang-zhang@bupt.edu.cn
  organization: School of Electronic Engineering, Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications
– sequence: 2
  givenname: MengZhen
  surname: Tang
  fullname: Tang, MengZhen
  organization: School of Electronic Engineering, Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications
– sequence: 3
  givenname: YuanAn
  surname: Liu
  fullname: Liu, YuanAn
  organization: School of Electronic Engineering, Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications
– sequence: 4
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
  organization: School of Electronic Engineering, Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications
BookMark eNp9kMtKAzEUhoNUsNa-gKuA69Fc5pIsS9EqFCpWwV1IMpkxZTqpSYqMT-_YEUQX3SQ5cL7zn3znYNS61gBwidE1Rqi4CZjSnCeIkAQVNENJdwLGBHOcpITh0eFNkywvXs_ANASrUMoozzCmY7BZS1_a1sDVLtqt_ZTRuhbOmtp5G9-28KM_4ay2jYFLp2VjYwdlW8JF49RQraOX0dTWBFg5D5-MbP4Oe_RONWYbLsBpJZtgpj_3BLzc3T7P75PlavEwny0TTTGPCWU604prXPG0KHMltcayyHJKGZIZN5ohhXJFGctTXipaVSXDxPA0xVhyyekEXA1zd969702IYuP2vu0jBWEpRUXBMem7yNClvQvBm0rsvN1K3wmMxLdWMWgVvVZx0Cq6HmL_IG3j4Ze9BNscR-mAhj6nrY3_3eoI9QUgCJCu
CitedBy_id crossref_primary_10_1002_aic_18717
crossref_primary_10_3390_electronics12051153
crossref_primary_10_1088_2632_2153_ad55a5
crossref_primary_10_1016_j_epsr_2025_112047
Cites_doi 10.1109/4235.585893
10.1016/j.tcs.2005.05.020
10.1109/CEC.2014.6900380
10.1007/s12293-012-0075-1
10.1016/j.ins.2011.08.006
10.1109/TEVC.2005.857610
10.2989/1814232X.2010.519451
10.1007/978-3-642-04944-6_14
10.1109/ICNN.1995.488968
10.1016/j.advengsoft.2016.01.008
10.1016/j.eswa.2022.116924
10.3390/math10111894
10.1016/j.swevo.2021.100888
10.1162/106365603321828970
10.1103/PhysRevE.49.4677
10.2989/18142320309504009
10.1016/j.future.2019.07.015
10.1016/j.knosys.2018.11.024
10.1007/s13369-021-06446-1
10.1016/j.advengsoft.2013.12.007
10.1007/s12293-013-0128-0
10.1007/978-94-015-7744-1_2
10.1109/CEC.2013.6557796
10.1016/S1054-3139(03)00141-3
10.1016/j.future.2020.03.055
10.2331/suisan.51.41
10.1007/s13369-021-06208-z
10.1139/f89-251
10.3354/meps08252
10.1016/S0378-4371(01)00057-7
10.1016/j.compstruc.2012.09.003
10.1007/s10845-015-1177-7
10.1109/NABIC.2009.5393690
10.1016/S0045-7825(99)00389-8
10.1007/s10489-017-1015-z
10.1007/s00707-009-0270-4
10.5735/086.045.0505
10.1007/s10745-006-9083-4
10.1016/j.asoc.2019.106039
10.1007/s00202-018-0688-6
10.1163/156853988X00584
10.1023/A:1008202821328
10.1016/j.advengsoft.2015.01.010
10.2989/1814232X.2010.501591
10.1109/4235.771163
10.1016/j.ins.2009.03.004
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s13369-022-07350-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 9825
ExternalDocumentID 10_1007_s13369_022_07350_y
GrantInformation_xml – fundername: Research Initiative of Ideological and Political Theory Teachers
  grantid: 20JDSZK061
– fundername: National Natural Science Foundation of China
  grantid: 61876199
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -EM
0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ6
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
ID FETCH-LOGICAL-c319t-38c5cb9c1f947d6bacc1a7563380a59ec80b06b388649db3ffd812e94411a9a93
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000877411300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2193-567X
1319-8025
IngestDate Mon Jun 30 09:06:20 EDT 2025
Sat Nov 29 02:51:48 EST 2025
Tue Nov 18 21:28:17 EST 2025
Fri Feb 21 02:42:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Swarm intelligence
Meta-heuristic algorithm
Evolutionary algorithms
Agile strategies
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-38c5cb9c1f947d6bacc1a7563380a59ec80b06b388649db3ffd812e94411a9a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2843077912
PQPubID 2044268
PageCount 39
ParticipantIDs proquest_journals_2843077912
crossref_primary_10_1007_s13369_022_07350_y
crossref_citationtrail_10_1007_s13369_022_07350_y
springer_journals_10_1007_s13369_022_07350_y
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering (2011)
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Liao, T.; Stutzle, T.: Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real-parameter optimization. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1938–1944 (2013)
RaoRVSavsaniVJVakhariaDPTeaching-learning-based optimization: an optimization method for continuous non-linear large scale problemsInf. Sci.201218311152847014
ChopraNAnsariMMGolden jackal optimization: A novel nature-inspired optimizer for engineering applicationsExp. Syst. Appl.2022198
OsabaEVillar-RodriguezEDel SerJNebroAJMolinaDLaTorreASuganthanPNCoelloCACHerreraFA tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problemsSwarm Evol. Comput.202164
HuangCA novel three-dimensional path planning method for fixed-wing UAV using improved particle swarm optimization algorithmInt. J Aerosp. Eng.202120217667173
MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv. Eng. Softw.2014694661
WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans. Evol. Comput.1997116782
Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)
ParrishRHSerraRGrantWSThe monotypic sardines, Sardina and Sardinops: their taxonomy, distribution, stock structure, and zoogeographyCan. J Fish. Aquat. Sci.19894620192036
Holland, J.H.: Reproductive plans and genetic operators. In: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, pp. 90–96 (1992)
Yang, X.S.; Deb, S.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature and Biologically Inspired Computing, pp. 210–214 (2009)
MisundOASvellingenICoetzeeJCFréonPGardenerMOlsenKHamptonISchooling behaviour of sardine sardinops sagax in false bay, south africaAfrican J Mar. Sci.2003251185193
SilvaAMorphometric variation among sardine (Sardina pilchardus) populations from the northeastern Atlantic and the western MediterraneanICES J Mar. Sci.200360613521360
López-IbáezMDubois-LacosteJPérez CáceresLBirattariMStützleTThe irace package: iterated racing for automatic algorithm configurationOper. Res. Perspect.2016343583579175
LamAYSLiVOKChemical reaction optimization: a tutorialMemetic Comput.20124317
YanBYanCLongFTanXCMulti-objective optimization of electronic product goods location assignment in stereoscopic warehouse based on adaptive genetic algorithmJ Intell. Manuf.20182912731285
Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95—International Conference on Neural Networks, pp. 1942–1948 (1995)
SrivastavaADasDKCriminal search optimization algorithm: a population-based meta-heuristic optimization technique to solve real-world optimization problemsArab. J. Sci. Eng.20224735513571
Koza, J.R.: Overview of genetic programming. In: Genetic Programming: On the Programming of Computers by Means of Natural Selection, pp. 73–78 (1992)
DebKAn efficient constraint handling method for genetic algorithmsComput. Methods Appl. Mech. Eng.20001862–43113381028.90533
WangLCaoQZhangZMirjaliliSZhaoWArtificial rabbits optimization: a new bio-inspired meta-heuristic algorithm for solving engineering optimization problemsEng. Appl. Artif. Intel.2022114
Van Laarhoven, P.J.M.; Aarts, E.H.L.: Simulated annealing. In: Simulated Annealing: Theory and Applications, pp. 7–15 (1987)
HaraIShape and size of Japanese sardine school in the waters off the southeastern hokkaido on the basis of acoustic and aerial surveysNippon Suisan Gakkaishi19855114146
AttiyaIAbualigahLAlshathriSElsadekDAbd ElazizMDynamic jellyfish search algorithm based on simulated annealing and disruption operators for global optimization with applications to cloud task schedulingMathematics2022101894
YaoXLiuYLinGMEvolutionary programming made fasterIEEE Trans. Evol. Comput.19993282102
RashediENezamabadi-pourHSaryazdiSGSA: a gravitational search algorithmInf. Sci.200917913223222481177.90378
DhimanGKumarVSeagull optimization algorithm: theory and its applications for large-scale industrial engineering problemsKnowl. Based Syst.2019165169196
Tanabe, R.; Fukunaga, A.S.: Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665 (2014)
Liang, J.J.; Qu, B.Y.; Suganthan, P.N.; Hernández-Díaz, A.G.: Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization. Technical Report, pp. 1–39 (2013)
LiSChenHWangMHeidariAAMirjaliliSSlime mould algorithm: a new method for stochastic optimizationFutur. Gener. Comput. Syst.2020111300323
DorigoMBlumCAnt colony optimization theory: a surveyTheor. Comput. Sci.20053442–324327821788551154.90626
FreonPCoetzeeJCvan der LingenCDConnellADO’DonoghueSHRobertsMJDemarcqHAttwoodCGLamberthSJHutchingsLA review and tests of hypotheses about causes of the kwazulu-natal sardine runAfrican. J Mar. Sci.2010322449479
BrownCTLiebovitchLSGlendonRLévy Flights in dobe Ju/’hoansi foraging patternsHum. Ecol.200735129138
ViswanathanGMAfanasyevVBuldyrevSVHavlinSDa LuzMGERaposoEPStanleyHELévy flights search patterns of biological organismsPhys. A: Stat. Mech. its Appl.200129585880984.92519
HansenNMullerSDKoumoutsakosPReducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)Evol. Comput.200311118
KavehATalatahariSA novel heuristic optimization method: charged system searchACTA Mech.20102132672891397.65094
ErogluHAydinMSolving power transmission line routing problem using improved genetic and artificial bee colony algorithmsElectr. Eng.201810021032116
KavehAKhayatazadMA new meta-heuristic method: ray optimizationComput & Struct2012112–113283294
LiangJJQinAKSuganthanPNBaskarSComprehensive learning particle swarm optimizer for global optimization of multimodal functionsIEEE Trans. Evol. Comput.2006103281295
MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. Softw.2016955167
MirjaliliSThe ant lion optimizerAdv. Eng. Softw.2015838098
HashimFAHousseinEHMabroukMSAl-AtabanyWMirjaliliSHenry gas solubility optimization: a novel physics-based algorithmFutur. Gener. Comput. Syst.2019101646667
KaltenbergAMBenoit-BirdKJDiel behavior of sardine and anchovy schools in the California Current SystemMar. Ecol. Prog. Ser.2009394247262
BansalJCSharmaHJadonSSClercMSpider monkey optimization algorithm for numerical optimizationMemetic Comput.201463147
ZitouniFHarousSBelkeramAHammouLEBThe archerfish hunting optimizer: a novel metaheuristic algorithm for global optimizationArab. J. Sci. Eng.20224725132553
Yang, X.S.: Firefly algorithms for multimodal optimization. In: 5th International Symposium on Stochastic Algorithms—Foundations and Applications, pp. 169–178 (2009)
van der LingenCDHendricksMDurholtzMDWesselsGMtengwaneCBiological characteristics of sardine caught by the beach-seine fishery during the KwaZulu-Natal sardine runAfrican J Mar. Sci.201032309330
StornRPriceKDifferential evolution—a simple and efficient heuristic for global optimization over continuous spacesJ Glob. Optim.19971134135914795530888.90135
MacielOCuevasENavarroMAZaldivarDHinojosaSSide-blotched lizard algorithm: a polymorphic population approachAppl Soft. Comput.202088
RaoFLuoJZhangZKangYSpatiotemporal dynamics of a predation system with time delay and spatial diffusionJ Stat. Mech. Theory Exp.2020202041975411459.92093
GodinJGClassonLJAbrahamsMVGroup vigilance and shoal size in a small characin fishBehaviour19881042940
MantegnaRNFast, accurate algorithm for numerical simulation of levy stable stochastic processesPhys. Rev. E.1994494677
OmranMGHClercMAPS 9: an improved adaptive population-based simplex method for real-world engineering optimization problemsAppl. Intell.20184815961608
GautraisJJostCTheraulazGKey behavioural factors in a self-organised fish school modelAnn. Zool. Fennici200845415428
P Freon (7350_CR39) 2010; 32
A Silva (7350_CR31) 2003; 60
7350_CR48
S Mirjalili (7350_CR23) 2014; 69
E Osaba (7350_CR46) 2021; 64
DH Wolpert (7350_CR30) 1997; 1
C Huang (7350_CR10) 2021; 2021
A Kaveh (7350_CR18) 2012; 112–113
E Rashedi (7350_CR16) 2009; 179
7350_CR9
FA Hashim (7350_CR20) 2019; 101
7350_CR8
S Mirjalili (7350_CR24) 2016; 95
7350_CR4
7350_CR3
7350_CR2
7350_CR1
B Yan (7350_CR12) 2018; 29
CT Brown (7350_CR41) 2007; 35
S Li (7350_CR25) 2020; 111
G Dhiman (7350_CR44) 2019; 165
L Wang (7350_CR15) 2022; 114
JC Bansal (7350_CR22) 2014; 6
J Gautrais (7350_CR35) 2008; 45
RN Mantegna (7350_CR43) 1994; 49
F Zitouni (7350_CR14) 2022; 47
S Mirjalili (7350_CR45) 2015; 83
I Attiya (7350_CR28) 2022; 10
RV Rao (7350_CR50) 2012; 183
O Maciel (7350_CR26) 2020; 88
JG Godin (7350_CR38) 1988; 104
GM Viswanathan (7350_CR42) 2001; 295
7350_CR21
CD van der Lingen (7350_CR33) 2010; 32
M López-Ibáez (7350_CR53) 2016; 3
K Deb (7350_CR47) 2000; 186
A Srivastava (7350_CR29) 2022; 47
RH Parrish (7350_CR32) 1989; 46
I Hara (7350_CR34) 1985; 51
AYS Lam (7350_CR19) 2012; 4
X Yao (7350_CR6) 1999; 3
N Chopra (7350_CR27) 2022; 198
7350_CR52
M Dorigo (7350_CR7) 2005; 344
7350_CR54
F Rao (7350_CR37) 2020; 2020
N Hansen (7350_CR13) 2003; 11
R Storn (7350_CR5) 1997; 11
OA Misund (7350_CR36) 2003; 25
MGH Omran (7350_CR51) 2018; 48
H Eroglu (7350_CR11) 2018; 100
A Kaveh (7350_CR17) 2010; 213
JJ Liang (7350_CR49) 2006; 10
AM Kaltenberg (7350_CR40) 2009; 394
References_xml – reference: GodinJGClassonLJAbrahamsMVGroup vigilance and shoal size in a small characin fishBehaviour19881042940
– reference: Tanabe, R.; Fukunaga, A.S.: Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665 (2014)
– reference: Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95—International Conference on Neural Networks, pp. 1942–1948 (1995)
– reference: YanBYanCLongFTanXCMulti-objective optimization of electronic product goods location assignment in stereoscopic warehouse based on adaptive genetic algorithmJ Intell. Manuf.20182912731285
– reference: KaltenbergAMBenoit-BirdKJDiel behavior of sardine and anchovy schools in the California Current SystemMar. Ecol. Prog. Ser.2009394247262
– reference: Van Laarhoven, P.J.M.; Aarts, E.H.L.: Simulated annealing. In: Simulated Annealing: Theory and Applications, pp. 7–15 (1987)
– reference: KavehAKhayatazadMA new meta-heuristic method: ray optimizationComput & Struct2012112–113283294
– reference: HuangCA novel three-dimensional path planning method for fixed-wing UAV using improved particle swarm optimization algorithmInt. J Aerosp. Eng.202120217667173
– reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv. Eng. Softw.2014694661
– reference: Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)
– reference: GautraisJJostCTheraulazGKey behavioural factors in a self-organised fish school modelAnn. Zool. Fennici200845415428
– reference: OmranMGHClercMAPS 9: an improved adaptive population-based simplex method for real-world engineering optimization problemsAppl. Intell.20184815961608
– reference: Koza, J.R.: Overview of genetic programming. In: Genetic Programming: On the Programming of Computers by Means of Natural Selection, pp. 73–78 (1992)
– reference: Liao, T.; Stutzle, T.: Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real-parameter optimization. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1938–1944 (2013)
– reference: Yang, X.S.: Firefly algorithms for multimodal optimization. In: 5th International Symposium on Stochastic Algorithms—Foundations and Applications, pp. 169–178 (2009)
– reference: ChopraNAnsariMMGolden jackal optimization: A novel nature-inspired optimizer for engineering applicationsExp. Syst. Appl.2022198
– reference: WangLCaoQZhangZMirjaliliSZhaoWArtificial rabbits optimization: a new bio-inspired meta-heuristic algorithm for solving engineering optimization problemsEng. Appl. Artif. Intel.2022114
– reference: RaoFLuoJZhangZKangYSpatiotemporal dynamics of a predation system with time delay and spatial diffusionJ Stat. Mech. Theory Exp.2020202041975411459.92093
– reference: LamAYSLiVOKChemical reaction optimization: a tutorialMemetic Comput.20124317
– reference: StornRPriceKDifferential evolution—a simple and efficient heuristic for global optimization over continuous spacesJ Glob. Optim.19971134135914795530888.90135
– reference: MirjaliliSThe ant lion optimizerAdv. Eng. Softw.2015838098
– reference: OsabaEVillar-RodriguezEDel SerJNebroAJMolinaDLaTorreASuganthanPNCoelloCACHerreraFA tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problemsSwarm Evol. Comput.202164
– reference: BansalJCSharmaHJadonSSClercMSpider monkey optimization algorithm for numerical optimizationMemetic Comput.201463147
– reference: SilvaAMorphometric variation among sardine (Sardina pilchardus) populations from the northeastern Atlantic and the western MediterraneanICES J Mar. Sci.200360613521360
– reference: RaoRVSavsaniVJVakhariaDPTeaching-learning-based optimization: an optimization method for continuous non-linear large scale problemsInf. Sci.201218311152847014
– reference: HashimFAHousseinEHMabroukMSAl-AtabanyWMirjaliliSHenry gas solubility optimization: a novel physics-based algorithmFutur. Gener. Comput. Syst.2019101646667
– reference: FreonPCoetzeeJCvan der LingenCDConnellADO’DonoghueSHRobertsMJDemarcqHAttwoodCGLamberthSJHutchingsLA review and tests of hypotheses about causes of the kwazulu-natal sardine runAfrican. J Mar. Sci.2010322449479
– reference: DebKAn efficient constraint handling method for genetic algorithmsComput. Methods Appl. Mech. Eng.20001862–43113381028.90533
– reference: DhimanGKumarVSeagull optimization algorithm: theory and its applications for large-scale industrial engineering problemsKnowl. Based Syst.2019165169196
– reference: SrivastavaADasDKCriminal search optimization algorithm: a population-based meta-heuristic optimization technique to solve real-world optimization problemsArab. J. Sci. Eng.20224735513571
– reference: MantegnaRNFast, accurate algorithm for numerical simulation of levy stable stochastic processesPhys. Rev. E.1994494677
– reference: MisundOASvellingenICoetzeeJCFréonPGardenerMOlsenKHamptonISchooling behaviour of sardine sardinops sagax in false bay, south africaAfrican J Mar. Sci.2003251185193
– reference: ParrishRHSerraRGrantWSThe monotypic sardines, Sardina and Sardinops: their taxonomy, distribution, stock structure, and zoogeographyCan. J Fish. Aquat. Sci.19894620192036
– reference: DorigoMBlumCAnt colony optimization theory: a surveyTheor. Comput. Sci.20053442–324327821788551154.90626
– reference: ViswanathanGMAfanasyevVBuldyrevSVHavlinSDa LuzMGERaposoEPStanleyHELévy flights search patterns of biological organismsPhys. A: Stat. Mech. its Appl.200129585880984.92519
– reference: HansenNMullerSDKoumoutsakosPReducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)Evol. Comput.200311118
– reference: MacielOCuevasENavarroMAZaldivarDHinojosaSSide-blotched lizard algorithm: a polymorphic population approachAppl Soft. Comput.202088
– reference: MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. Softw.2016955167
– reference: BrownCTLiebovitchLSGlendonRLévy Flights in dobe Ju/’hoansi foraging patternsHum. Ecol.200735129138
– reference: YaoXLiuYLinGMEvolutionary programming made fasterIEEE Trans. Evol. Comput.19993282102
– reference: Holland, J.H.: Reproductive plans and genetic operators. In: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, pp. 90–96 (1992)
– reference: LiangJJQinAKSuganthanPNBaskarSComprehensive learning particle swarm optimizer for global optimization of multimodal functionsIEEE Trans. Evol. Comput.2006103281295
– reference: van der LingenCDHendricksMDurholtzMDWesselsGMtengwaneCBiological characteristics of sardine caught by the beach-seine fishery during the KwaZulu-Natal sardine runAfrican J Mar. Sci.201032309330
– reference: Yang, X.S.; Deb, S.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature and Biologically Inspired Computing, pp. 210–214 (2009)
– reference: LiSChenHWangMHeidariAAMirjaliliSSlime mould algorithm: a new method for stochastic optimizationFutur. Gener. Comput. Syst.2020111300323
– reference: HaraIShape and size of Japanese sardine school in the waters off the southeastern hokkaido on the basis of acoustic and aerial surveysNippon Suisan Gakkaishi19855114146
– reference: ErogluHAydinMSolving power transmission line routing problem using improved genetic and artificial bee colony algorithmsElectr. Eng.201810021032116
– reference: ZitouniFHarousSBelkeramAHammouLEBThe archerfish hunting optimizer: a novel metaheuristic algorithm for global optimizationArab. J. Sci. Eng.20224725132553
– reference: Liang, J.J.; Qu, B.Y.; Suganthan, P.N.; Hernández-Díaz, A.G.: Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization. Technical Report, pp. 1–39 (2013)
– reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans. Evol. Comput.1997116782
– reference: RashediENezamabadi-pourHSaryazdiSGSA: a gravitational search algorithmInf. Sci.200917913223222481177.90378
– reference: López-IbáezMDubois-LacosteJPérez CáceresLBirattariMStützleTThe irace package: iterated racing for automatic algorithm configurationOper. Res. Perspect.2016343583579175
– reference: AttiyaIAbualigahLAlshathriSElsadekDAbd ElazizMDynamic jellyfish search algorithm based on simulated annealing and disruption operators for global optimization with applications to cloud task schedulingMathematics2022101894
– reference: KavehATalatahariSA novel heuristic optimization method: charged system searchACTA Mech.20102132672891397.65094
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 7350_CR30
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 344
  start-page: 243
  issue: 2–3
  year: 2005
  ident: 7350_CR7
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2005.05.020
– ident: 7350_CR52
  doi: 10.1109/CEC.2014.6900380
– volume: 4
  start-page: 3
  year: 2012
  ident: 7350_CR19
  publication-title: Memetic Comput.
  doi: 10.1007/s12293-012-0075-1
– volume: 183
  start-page: 1
  issue: 1
  year: 2012
  ident: 7350_CR50
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.08.006
– volume: 10
  start-page: 281
  issue: 3
  year: 2006
  ident: 7350_CR49
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.857610
– volume: 2020
  year: 2020
  ident: 7350_CR37
  publication-title: J Stat. Mech. Theory Exp.
– volume: 32
  start-page: 449
  issue: 2
  year: 2010
  ident: 7350_CR39
  publication-title: African. J Mar. Sci.
  doi: 10.2989/1814232X.2010.519451
– ident: 7350_CR21
  doi: 10.1007/978-3-642-04944-6_14
– ident: 7350_CR2
  doi: 10.1109/ICNN.1995.488968
– ident: 7350_CR54
– volume: 95
  start-page: 51
  year: 2016
  ident: 7350_CR24
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 198
  year: 2022
  ident: 7350_CR27
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2022.116924
– volume: 10
  start-page: 1894
  year: 2022
  ident: 7350_CR28
  publication-title: Mathematics
  doi: 10.3390/math10111894
– volume: 64
  year: 2021
  ident: 7350_CR46
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100888
– volume: 11
  start-page: 1
  year: 2003
  ident: 7350_CR13
  publication-title: Evol. Comput.
  doi: 10.1162/106365603321828970
– volume: 49
  start-page: 4677
  year: 1994
  ident: 7350_CR43
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.49.4677
– volume: 25
  start-page: 185
  issue: 1
  year: 2003
  ident: 7350_CR36
  publication-title: African J Mar. Sci.
  doi: 10.2989/18142320309504009
– volume: 101
  start-page: 646
  year: 2019
  ident: 7350_CR20
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.07.015
– volume: 165
  start-page: 169
  year: 2019
  ident: 7350_CR44
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.11.024
– volume: 47
  start-page: 3551
  year: 2022
  ident: 7350_CR29
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-06446-1
– volume: 2021
  start-page: 7667173
  year: 2021
  ident: 7350_CR10
  publication-title: Int. J Aerosp. Eng.
– volume: 69
  start-page: 46
  year: 2014
  ident: 7350_CR23
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 6
  start-page: 31
  year: 2014
  ident: 7350_CR22
  publication-title: Memetic Comput.
  doi: 10.1007/s12293-013-0128-0
– ident: 7350_CR3
  doi: 10.1007/978-94-015-7744-1_2
– ident: 7350_CR48
  doi: 10.1109/CEC.2013.6557796
– volume: 60
  start-page: 1352
  issue: 6
  year: 2003
  ident: 7350_CR31
  publication-title: ICES J Mar. Sci.
  doi: 10.1016/S1054-3139(03)00141-3
– volume: 111
  start-page: 300
  year: 2020
  ident: 7350_CR25
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.03.055
– volume: 51
  start-page: 41
  issue: 1
  year: 1985
  ident: 7350_CR34
  publication-title: Nippon Suisan Gakkaishi
  doi: 10.2331/suisan.51.41
– ident: 7350_CR1
– volume: 47
  start-page: 2513
  year: 2022
  ident: 7350_CR14
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-06208-z
– volume: 46
  start-page: 2019
  year: 1989
  ident: 7350_CR32
  publication-title: Can. J Fish. Aquat. Sci.
  doi: 10.1139/f89-251
– volume: 394
  start-page: 247
  year: 2009
  ident: 7350_CR40
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps08252
– volume: 295
  start-page: 85
  year: 2001
  ident: 7350_CR42
  publication-title: Phys. A: Stat. Mech. its Appl.
  doi: 10.1016/S0378-4371(01)00057-7
– volume: 112–113
  start-page: 283
  year: 2012
  ident: 7350_CR18
  publication-title: Comput & Struct
  doi: 10.1016/j.compstruc.2012.09.003
– volume: 29
  start-page: 1273
  year: 2018
  ident: 7350_CR12
  publication-title: J Intell. Manuf.
  doi: 10.1007/s10845-015-1177-7
– ident: 7350_CR9
  doi: 10.1109/NABIC.2009.5393690
– volume: 186
  start-page: 311
  issue: 2–4
  year: 2000
  ident: 7350_CR47
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00389-8
– volume: 48
  start-page: 1596
  year: 2018
  ident: 7350_CR51
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-1015-z
– volume: 213
  start-page: 267
  year: 2010
  ident: 7350_CR17
  publication-title: ACTA Mech.
  doi: 10.1007/s00707-009-0270-4
– volume: 45
  start-page: 415
  year: 2008
  ident: 7350_CR35
  publication-title: Ann. Zool. Fennici
  doi: 10.5735/086.045.0505
– volume: 35
  start-page: 129
  year: 2007
  ident: 7350_CR41
  publication-title: Hum. Ecol.
  doi: 10.1007/s10745-006-9083-4
– ident: 7350_CR4
– volume: 88
  year: 2020
  ident: 7350_CR26
  publication-title: Appl Soft. Comput.
  doi: 10.1016/j.asoc.2019.106039
– volume: 100
  start-page: 2103
  year: 2018
  ident: 7350_CR11
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-018-0688-6
– volume: 104
  start-page: 29
  year: 1988
  ident: 7350_CR38
  publication-title: Behaviour
  doi: 10.1163/156853988X00584
– volume: 11
  start-page: 341
  year: 1997
  ident: 7350_CR5
  publication-title: J Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 83
  start-page: 80
  year: 2015
  ident: 7350_CR45
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 3
  start-page: 43
  year: 2016
  ident: 7350_CR53
  publication-title: Oper. Res. Perspect.
– volume: 32
  start-page: 309
  year: 2010
  ident: 7350_CR33
  publication-title: African J Mar. Sci.
  doi: 10.2989/1814232X.2010.501591
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 7350_CR6
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771163
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 7350_CR16
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– ident: 7350_CR8
– volume: 114
  year: 2022
  ident: 7350_CR15
  publication-title: Eng. Appl. Artif. Intel.
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.3102422
Snippet How to steadily find satisfactory solutions for high-dimensional multimodal and composition optimization problems is still a challenging issue. To fight...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9787
SubjectTerms Algorithms
Composition
Engineering
Heuristic methods
Humanities and Social Sciences
multidisciplinary
Operators
Optimization
Optimization algorithms
Research Article-Computer Engineering and Computer Science
Sardines
Science
Searching
Title Sardine Optimization Algorithm with Agile Locality and Globality Strategies for Real Optimization Problems
URI https://link.springer.com/article/10.1007/s13369-022-07350-y
https://www.proquest.com/docview/2843077912
Volume 48
WOSCitedRecordID wos000877411300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary Journals
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001916267
  issn: 2193-567X
  databaseCode: RSV
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbWIpjO4nHClExoFJRQN0ix3EKqE1RU5D67znnQSgCJBgjPxTdne8-P-4-hE4NDRLhux6RInEI9xklUrmMaNC2ETSmmsY52YTf7QaDgeyVSWFZ9dq9upLMPXWd7MaYJ4l9fQ5mKRwyX0YrwlabsXv0_kNlRRxCPqAIVp-0AAJycypZWJ2MCM8flNkz30-7GKFq2PnlpjQPQJ3N__36FtooASduFxayjZZMuoPWP5Uh3EXPfWsmqcE34D_GZWImbo-Gk-nT7HGM7Vktbg_Bf-BrG_oAuGOVxrjgC7BfVY1bk2EAwfgW0OfiZL2CtybbQ_edy7uLK1JyMBANi3NGWKCFjqSmieR-7EVKa6p84cHO1lFCGh04keNFLAg8LuOIJUkMkMFIQFlUSSXZPmqkk9QcIByAtQjYuzucKq4ST8EIzSNX0wicHNdNRCu5h7osUG55MkZhXVrZyjEEOYa5HMN5E519jHkpynP82rtVqTMsl2oWQnwGP-dL6jbReaW-uvnn2Q7_1v0IrVmq-uLxYAs1ZtNXc4xW9dvsKZue5Cb8DqW76lE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BrQQcaAtFLI_Wh97AUhzbSXxcIdAitttVl1Z7ixzHWaggoM2CxL9nnAdhK0CCY-SHopnxzOfHzAfww7Iok6EfUCUzj4qQM6q0z6lBbVvJUmZYWpJNhINBNB6rYZ0UVjSv3ZsrydJTt8lunAeKutfnaJbSo_eL8EE4mh23Rx_9baxIYMhHFMHbkxZEQH5JJYurk1MZhOM6e-b5aecjVAs7_7spLQPQ8af3_fpnWKsBJ-lWFvIFFmy-DqtPyhBuwL-RM5Pckl_oP67qxEzSvZxcTy9m51fEndWS7gT9B-m70IfAneg8JRVfgPtqatzagiAIJr8Rfc5PNqx4a4qv8Of46OywR2sOBmpwcc4oj4w0iTIsUyJMg0Qbw3QoA9zZeloqayIv8YKER1EgVJrwLEsRMliFKItppRXfhKX8OrdbQCK0Fol7d08wLXQWaBxhROIblqCTE6YDrJF7bOoC5Y4n4zJuSys7OcYox7iUY3zfgf3HMTdVeY5Xe-826ozrpVrEGJ_Rz4WK-R04aNTXNr882_bbun-H5d7Zz37cPxmc7sCKo62vHhLuwtJsemv34KO5m10U02-lOT8AqU_tNQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BQGh7GB8DrWyAH3jbrMbxR-LHiq0CMZVqhalvkeM4ZWhNpzZD2n_POR-kRWMS4jHyhxTf-e5n--5-AO8di3MZhYpqmQdURJxRbUJOLUrbSZYxy7KKbCIajeLpVI_XsviraPf2SbLOafBVmoqyf53l_S7xjXOlqY9ERxWVAb19CI8EnmR8UNf55KLVKIHuHxEF725dEA2FFa0s7lROpYqmTSbN3dNueqsOgv7xalo5o-HT__-NZ7DbAFEyqDXnOTxwxQvYWStPuAc_Jl59Cke-oF2ZNwmbZHA1Wywvy-9z4u9wyWCGdoWceZeIgJ6YIiM1j4D_amvfuhVBcEzOEZVuTjau-WxWL-Hb8PTrh4-04WagFjdtSXlspU21ZbkWUaZSYy0zkVR44g2M1M7GQRqolMexEjpLeZ5nCCWcRvTFjDaav4KtYlG4fSAxapHEM30gmBEmVwZHWJGGlqVo_ITtAWtlkNimcLnnz7hKupLLfh0TXMekWsfktgdHv8dc12U77u192Io2abbwKkG_jfYv0izswXEryq7577O9_rfu7-DJ-GSYnH0afT6Abc9mX8cXHsJWubxxb-Cx_VlerpZvK83-BU6K9hk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sardine+Optimization+Algorithm+with+Agile+Locality+and+Globality+Strategies+for+Real+Optimization+Problems&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Zhang%2C+HongGuang&rft.au=Tang%2C+MengZhen&rft.au=Liu%2C+YuanAn&rft.au=Li%2C+Xiang&rft.date=2023-08-01&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=48&rft.issue=8&rft.spage=9787&rft.epage=9825&rft_id=info:doi/10.1007%2Fs13369-022-07350-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13369_022_07350_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon