Sardine Optimization Algorithm with Agile Locality and Globality Strategies for Real Optimization Problems
How to steadily find satisfactory solutions for high-dimensional multimodal and composition optimization problems is still a challenging issue. To fight against this pain-point problem, we propose sardine optimization algorithm (SOA) with agile locality and globality strategies for real optimization...
Gespeichert in:
| Veröffentlicht in: | Arabian journal for science and engineering (2011) Jg. 48; H. 8; S. 9787 - 9825 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2023
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 2193-567X, 1319-8025, 2191-4281 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | How to steadily find satisfactory solutions for high-dimensional multimodal and composition optimization problems is still a challenging issue. To fight against this pain-point problem, we propose sardine optimization algorithm (SOA) with agile locality and globality strategies for real optimization problems. Inspired by the survival philosophy of sardines, SOA simulates the transformation, migration, reproduction, elimination, and spread of sardines. As a varied-population-size optimization algorithm, the features of SOA are summarized as two key points. (i) Agile locality and globality strategies use adjacent and corresponding period ratios to control the local and global search behaviors. To our best knowledge, these strategies are a new technical road to balance exploration and exploitation efforts. (ii) Besides, SOA uses unique search operators based on the center movement of sardine schools. Specifically, when the center of one sardine school moves in these search operators, all sardines in this school also move in the same direction. This mobility style is different from most meta-heuristic algorithms, as far as we know. We used all unconstrained optimization problems in the CEC2013 test suite and six real-world constrained optimization problems as our benchmarks. SOA outperforms eight algorithms (like the two winning algorithms of CEC2013 and CEC2014), especially for high-dimension multimodal and composition optimization problems. For instance, Wilcoxon results between SOA and the two winning algorithms of CEC2013 and CEC2014 for 90-dimensional unconstrained optimization problems of the CEC2013 test suite are 16:10 and 18:8. The coding of SOA can be downloaded from “
https://github.com/1654402787/SOA
” (unzip password: soasoasoa1357). |
|---|---|
| AbstractList | How to steadily find satisfactory solutions for high-dimensional multimodal and composition optimization problems is still a challenging issue. To fight against this pain-point problem, we propose sardine optimization algorithm (SOA) with agile locality and globality strategies for real optimization problems. Inspired by the survival philosophy of sardines, SOA simulates the transformation, migration, reproduction, elimination, and spread of sardines. As a varied-population-size optimization algorithm, the features of SOA are summarized as two key points. (i) Agile locality and globality strategies use adjacent and corresponding period ratios to control the local and global search behaviors. To our best knowledge, these strategies are a new technical road to balance exploration and exploitation efforts. (ii) Besides, SOA uses unique search operators based on the center movement of sardine schools. Specifically, when the center of one sardine school moves in these search operators, all sardines in this school also move in the same direction. This mobility style is different from most meta-heuristic algorithms, as far as we know. We used all unconstrained optimization problems in the CEC2013 test suite and six real-world constrained optimization problems as our benchmarks. SOA outperforms eight algorithms (like the two winning algorithms of CEC2013 and CEC2014), especially for high-dimension multimodal and composition optimization problems. For instance, Wilcoxon results between SOA and the two winning algorithms of CEC2013 and CEC2014 for 90-dimensional unconstrained optimization problems of the CEC2013 test suite are 16:10 and 18:8. The coding of SOA can be downloaded from “https://github.com/1654402787/SOA” (unzip password: soasoasoa1357). How to steadily find satisfactory solutions for high-dimensional multimodal and composition optimization problems is still a challenging issue. To fight against this pain-point problem, we propose sardine optimization algorithm (SOA) with agile locality and globality strategies for real optimization problems. Inspired by the survival philosophy of sardines, SOA simulates the transformation, migration, reproduction, elimination, and spread of sardines. As a varied-population-size optimization algorithm, the features of SOA are summarized as two key points. (i) Agile locality and globality strategies use adjacent and corresponding period ratios to control the local and global search behaviors. To our best knowledge, these strategies are a new technical road to balance exploration and exploitation efforts. (ii) Besides, SOA uses unique search operators based on the center movement of sardine schools. Specifically, when the center of one sardine school moves in these search operators, all sardines in this school also move in the same direction. This mobility style is different from most meta-heuristic algorithms, as far as we know. We used all unconstrained optimization problems in the CEC2013 test suite and six real-world constrained optimization problems as our benchmarks. SOA outperforms eight algorithms (like the two winning algorithms of CEC2013 and CEC2014), especially for high-dimension multimodal and composition optimization problems. For instance, Wilcoxon results between SOA and the two winning algorithms of CEC2013 and CEC2014 for 90-dimensional unconstrained optimization problems of the CEC2013 test suite are 16:10 and 18:8. The coding of SOA can be downloaded from “ https://github.com/1654402787/SOA ” (unzip password: soasoasoa1357). |
| Author | Li, Xiang Zhang, HongGuang Liu, YuanAn Tang, MengZhen |
| Author_xml | – sequence: 1 givenname: HongGuang surname: Zhang fullname: Zhang, HongGuang email: hongguang-zhang@bupt.edu.cn organization: School of Electronic Engineering, Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications – sequence: 2 givenname: MengZhen surname: Tang fullname: Tang, MengZhen organization: School of Electronic Engineering, Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications – sequence: 3 givenname: YuanAn surname: Liu fullname: Liu, YuanAn organization: School of Electronic Engineering, Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications – sequence: 4 givenname: Xiang surname: Li fullname: Li, Xiang organization: School of Electronic Engineering, Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications |
| BookMark | eNp9kMtKAzEUhoNUsNa-gKuA69Fc5pIsS9EqFCpWwV1IMpkxZTqpSYqMT-_YEUQX3SQ5cL7zn3znYNS61gBwidE1Rqi4CZjSnCeIkAQVNENJdwLGBHOcpITh0eFNkywvXs_ANASrUMoozzCmY7BZS1_a1sDVLtqt_ZTRuhbOmtp5G9-28KM_4ay2jYFLp2VjYwdlW8JF49RQraOX0dTWBFg5D5-MbP4Oe_RONWYbLsBpJZtgpj_3BLzc3T7P75PlavEwny0TTTGPCWU604prXPG0KHMltcayyHJKGZIZN5ohhXJFGctTXipaVSXDxPA0xVhyyekEXA1zd969702IYuP2vu0jBWEpRUXBMem7yNClvQvBm0rsvN1K3wmMxLdWMWgVvVZx0Cq6HmL_IG3j4Ze9BNscR-mAhj6nrY3_3eoI9QUgCJCu |
| CitedBy_id | crossref_primary_10_1002_aic_18717 crossref_primary_10_3390_electronics12051153 crossref_primary_10_1088_2632_2153_ad55a5 crossref_primary_10_1016_j_epsr_2025_112047 |
| Cites_doi | 10.1109/4235.585893 10.1016/j.tcs.2005.05.020 10.1109/CEC.2014.6900380 10.1007/s12293-012-0075-1 10.1016/j.ins.2011.08.006 10.1109/TEVC.2005.857610 10.2989/1814232X.2010.519451 10.1007/978-3-642-04944-6_14 10.1109/ICNN.1995.488968 10.1016/j.advengsoft.2016.01.008 10.1016/j.eswa.2022.116924 10.3390/math10111894 10.1016/j.swevo.2021.100888 10.1162/106365603321828970 10.1103/PhysRevE.49.4677 10.2989/18142320309504009 10.1016/j.future.2019.07.015 10.1016/j.knosys.2018.11.024 10.1007/s13369-021-06446-1 10.1016/j.advengsoft.2013.12.007 10.1007/s12293-013-0128-0 10.1007/978-94-015-7744-1_2 10.1109/CEC.2013.6557796 10.1016/S1054-3139(03)00141-3 10.1016/j.future.2020.03.055 10.2331/suisan.51.41 10.1007/s13369-021-06208-z 10.1139/f89-251 10.3354/meps08252 10.1016/S0378-4371(01)00057-7 10.1016/j.compstruc.2012.09.003 10.1007/s10845-015-1177-7 10.1109/NABIC.2009.5393690 10.1016/S0045-7825(99)00389-8 10.1007/s10489-017-1015-z 10.1007/s00707-009-0270-4 10.5735/086.045.0505 10.1007/s10745-006-9083-4 10.1016/j.asoc.2019.106039 10.1007/s00202-018-0688-6 10.1163/156853988X00584 10.1023/A:1008202821328 10.1016/j.advengsoft.2015.01.010 10.2989/1814232X.2010.501591 10.1109/4235.771163 10.1016/j.ins.2009.03.004 |
| ContentType | Journal Article |
| Copyright | King Fahd University of Petroleum & Minerals 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s13369-022-07350-y |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2191-4281 |
| EndPage | 9825 |
| ExternalDocumentID | 10_1007_s13369_022_07350_y |
| GrantInformation_xml | – fundername: Research Initiative of Ideological and Political Theory Teachers grantid: 20JDSZK061 – fundername: National Natural Science Foundation of China grantid: 61876199 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -EM 0R~ 203 2KG 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACHSB ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AHAVH AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG AXYYD BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESX FERAY FIGPU FINBP FNLPD FSGXE GGCAI GQ6 GQ7 H13 HG6 I-F IKXTQ IWAJR J-C JBSCW JZLTJ L8X LLZTM M4Y MK~ NPVJJ NQJWS NU0 O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS UOJIU UTJUX UZXMN VFIZW Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 06D 0VY 23M 29~ 2KM 30V 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL AMKLP AMYQR ANMIH AYJHY ESBYG FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HMJXF HRMNR HZ~ I0C IXD J9A KOV O93 OVT P9P R9I RLLFE S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 |
| ID | FETCH-LOGICAL-c319t-38c5cb9c1f947d6bacc1a7563380a59ec80b06b388649db3ffd812e94411a9a93 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000877411300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2193-567X 1319-8025 |
| IngestDate | Mon Jun 30 09:06:20 EDT 2025 Sat Nov 29 02:51:48 EST 2025 Tue Nov 18 21:28:17 EST 2025 Fri Feb 21 02:42:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Swarm intelligence Meta-heuristic algorithm Evolutionary algorithms Agile strategies Optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-38c5cb9c1f947d6bacc1a7563380a59ec80b06b388649db3ffd812e94411a9a93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2843077912 |
| PQPubID | 2044268 |
| PageCount | 39 |
| ParticipantIDs | proquest_journals_2843077912 crossref_primary_10_1007_s13369_022_07350_y crossref_citationtrail_10_1007_s13369_022_07350_y springer_journals_10_1007_s13369_022_07350_y |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Arabian journal for science and engineering (2011) |
| PublicationTitleAbbrev | Arab J Sci Eng |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Liao, T.; Stutzle, T.: Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real-parameter optimization. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1938–1944 (2013) RaoRVSavsaniVJVakhariaDPTeaching-learning-based optimization: an optimization method for continuous non-linear large scale problemsInf. Sci.201218311152847014 ChopraNAnsariMMGolden jackal optimization: A novel nature-inspired optimizer for engineering applicationsExp. Syst. Appl.2022198 OsabaEVillar-RodriguezEDel SerJNebroAJMolinaDLaTorreASuganthanPNCoelloCACHerreraFA tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problemsSwarm Evol. Comput.202164 HuangCA novel three-dimensional path planning method for fixed-wing UAV using improved particle swarm optimization algorithmInt. J Aerosp. Eng.202120217667173 MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv. Eng. Softw.2014694661 WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans. Evol. Comput.1997116782 Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005) ParrishRHSerraRGrantWSThe monotypic sardines, Sardina and Sardinops: their taxonomy, distribution, stock structure, and zoogeographyCan. J Fish. Aquat. Sci.19894620192036 Holland, J.H.: Reproductive plans and genetic operators. In: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, pp. 90–96 (1992) Yang, X.S.; Deb, S.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature and Biologically Inspired Computing, pp. 210–214 (2009) MisundOASvellingenICoetzeeJCFréonPGardenerMOlsenKHamptonISchooling behaviour of sardine sardinops sagax in false bay, south africaAfrican J Mar. Sci.2003251185193 SilvaAMorphometric variation among sardine (Sardina pilchardus) populations from the northeastern Atlantic and the western MediterraneanICES J Mar. Sci.200360613521360 López-IbáezMDubois-LacosteJPérez CáceresLBirattariMStützleTThe irace package: iterated racing for automatic algorithm configurationOper. Res. Perspect.2016343583579175 LamAYSLiVOKChemical reaction optimization: a tutorialMemetic Comput.20124317 YanBYanCLongFTanXCMulti-objective optimization of electronic product goods location assignment in stereoscopic warehouse based on adaptive genetic algorithmJ Intell. Manuf.20182912731285 Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95—International Conference on Neural Networks, pp. 1942–1948 (1995) SrivastavaADasDKCriminal search optimization algorithm: a population-based meta-heuristic optimization technique to solve real-world optimization problemsArab. J. Sci. Eng.20224735513571 Koza, J.R.: Overview of genetic programming. In: Genetic Programming: On the Programming of Computers by Means of Natural Selection, pp. 73–78 (1992) DebKAn efficient constraint handling method for genetic algorithmsComput. Methods Appl. Mech. Eng.20001862–43113381028.90533 WangLCaoQZhangZMirjaliliSZhaoWArtificial rabbits optimization: a new bio-inspired meta-heuristic algorithm for solving engineering optimization problemsEng. Appl. Artif. Intel.2022114 Van Laarhoven, P.J.M.; Aarts, E.H.L.: Simulated annealing. In: Simulated Annealing: Theory and Applications, pp. 7–15 (1987) HaraIShape and size of Japanese sardine school in the waters off the southeastern hokkaido on the basis of acoustic and aerial surveysNippon Suisan Gakkaishi19855114146 AttiyaIAbualigahLAlshathriSElsadekDAbd ElazizMDynamic jellyfish search algorithm based on simulated annealing and disruption operators for global optimization with applications to cloud task schedulingMathematics2022101894 YaoXLiuYLinGMEvolutionary programming made fasterIEEE Trans. Evol. Comput.19993282102 RashediENezamabadi-pourHSaryazdiSGSA: a gravitational search algorithmInf. Sci.200917913223222481177.90378 DhimanGKumarVSeagull optimization algorithm: theory and its applications for large-scale industrial engineering problemsKnowl. Based Syst.2019165169196 Tanabe, R.; Fukunaga, A.S.: Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665 (2014) Liang, J.J.; Qu, B.Y.; Suganthan, P.N.; Hernández-Díaz, A.G.: Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization. Technical Report, pp. 1–39 (2013) LiSChenHWangMHeidariAAMirjaliliSSlime mould algorithm: a new method for stochastic optimizationFutur. Gener. Comput. Syst.2020111300323 DorigoMBlumCAnt colony optimization theory: a surveyTheor. Comput. Sci.20053442–324327821788551154.90626 FreonPCoetzeeJCvan der LingenCDConnellADO’DonoghueSHRobertsMJDemarcqHAttwoodCGLamberthSJHutchingsLA review and tests of hypotheses about causes of the kwazulu-natal sardine runAfrican. J Mar. Sci.2010322449479 BrownCTLiebovitchLSGlendonRLévy Flights in dobe Ju/’hoansi foraging patternsHum. Ecol.200735129138 ViswanathanGMAfanasyevVBuldyrevSVHavlinSDa LuzMGERaposoEPStanleyHELévy flights search patterns of biological organismsPhys. A: Stat. Mech. its Appl.200129585880984.92519 HansenNMullerSDKoumoutsakosPReducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)Evol. Comput.200311118 KavehATalatahariSA novel heuristic optimization method: charged system searchACTA Mech.20102132672891397.65094 ErogluHAydinMSolving power transmission line routing problem using improved genetic and artificial bee colony algorithmsElectr. Eng.201810021032116 KavehAKhayatazadMA new meta-heuristic method: ray optimizationComput & Struct2012112–113283294 LiangJJQinAKSuganthanPNBaskarSComprehensive learning particle swarm optimizer for global optimization of multimodal functionsIEEE Trans. Evol. Comput.2006103281295 MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. Softw.2016955167 MirjaliliSThe ant lion optimizerAdv. Eng. Softw.2015838098 HashimFAHousseinEHMabroukMSAl-AtabanyWMirjaliliSHenry gas solubility optimization: a novel physics-based algorithmFutur. Gener. Comput. Syst.2019101646667 KaltenbergAMBenoit-BirdKJDiel behavior of sardine and anchovy schools in the California Current SystemMar. Ecol. Prog. Ser.2009394247262 BansalJCSharmaHJadonSSClercMSpider monkey optimization algorithm for numerical optimizationMemetic Comput.201463147 ZitouniFHarousSBelkeramAHammouLEBThe archerfish hunting optimizer: a novel metaheuristic algorithm for global optimizationArab. J. Sci. Eng.20224725132553 Yang, X.S.: Firefly algorithms for multimodal optimization. In: 5th International Symposium on Stochastic Algorithms—Foundations and Applications, pp. 169–178 (2009) van der LingenCDHendricksMDurholtzMDWesselsGMtengwaneCBiological characteristics of sardine caught by the beach-seine fishery during the KwaZulu-Natal sardine runAfrican J Mar. Sci.201032309330 StornRPriceKDifferential evolution—a simple and efficient heuristic for global optimization over continuous spacesJ Glob. Optim.19971134135914795530888.90135 MacielOCuevasENavarroMAZaldivarDHinojosaSSide-blotched lizard algorithm: a polymorphic population approachAppl Soft. Comput.202088 RaoFLuoJZhangZKangYSpatiotemporal dynamics of a predation system with time delay and spatial diffusionJ Stat. Mech. Theory Exp.2020202041975411459.92093 GodinJGClassonLJAbrahamsMVGroup vigilance and shoal size in a small characin fishBehaviour19881042940 MantegnaRNFast, accurate algorithm for numerical simulation of levy stable stochastic processesPhys. Rev. E.1994494677 OmranMGHClercMAPS 9: an improved adaptive population-based simplex method for real-world engineering optimization problemsAppl. Intell.20184815961608 GautraisJJostCTheraulazGKey behavioural factors in a self-organised fish school modelAnn. Zool. Fennici200845415428 P Freon (7350_CR39) 2010; 32 A Silva (7350_CR31) 2003; 60 7350_CR48 S Mirjalili (7350_CR23) 2014; 69 E Osaba (7350_CR46) 2021; 64 DH Wolpert (7350_CR30) 1997; 1 C Huang (7350_CR10) 2021; 2021 A Kaveh (7350_CR18) 2012; 112–113 E Rashedi (7350_CR16) 2009; 179 7350_CR9 FA Hashim (7350_CR20) 2019; 101 7350_CR8 S Mirjalili (7350_CR24) 2016; 95 7350_CR4 7350_CR3 7350_CR2 7350_CR1 B Yan (7350_CR12) 2018; 29 CT Brown (7350_CR41) 2007; 35 S Li (7350_CR25) 2020; 111 G Dhiman (7350_CR44) 2019; 165 L Wang (7350_CR15) 2022; 114 JC Bansal (7350_CR22) 2014; 6 J Gautrais (7350_CR35) 2008; 45 RN Mantegna (7350_CR43) 1994; 49 F Zitouni (7350_CR14) 2022; 47 S Mirjalili (7350_CR45) 2015; 83 I Attiya (7350_CR28) 2022; 10 RV Rao (7350_CR50) 2012; 183 O Maciel (7350_CR26) 2020; 88 JG Godin (7350_CR38) 1988; 104 GM Viswanathan (7350_CR42) 2001; 295 7350_CR21 CD van der Lingen (7350_CR33) 2010; 32 M López-Ibáez (7350_CR53) 2016; 3 K Deb (7350_CR47) 2000; 186 A Srivastava (7350_CR29) 2022; 47 RH Parrish (7350_CR32) 1989; 46 I Hara (7350_CR34) 1985; 51 AYS Lam (7350_CR19) 2012; 4 X Yao (7350_CR6) 1999; 3 N Chopra (7350_CR27) 2022; 198 7350_CR52 M Dorigo (7350_CR7) 2005; 344 7350_CR54 F Rao (7350_CR37) 2020; 2020 N Hansen (7350_CR13) 2003; 11 R Storn (7350_CR5) 1997; 11 OA Misund (7350_CR36) 2003; 25 MGH Omran (7350_CR51) 2018; 48 H Eroglu (7350_CR11) 2018; 100 A Kaveh (7350_CR17) 2010; 213 JJ Liang (7350_CR49) 2006; 10 AM Kaltenberg (7350_CR40) 2009; 394 |
| References_xml | – reference: GodinJGClassonLJAbrahamsMVGroup vigilance and shoal size in a small characin fishBehaviour19881042940 – reference: Tanabe, R.; Fukunaga, A.S.: Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665 (2014) – reference: Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95—International Conference on Neural Networks, pp. 1942–1948 (1995) – reference: YanBYanCLongFTanXCMulti-objective optimization of electronic product goods location assignment in stereoscopic warehouse based on adaptive genetic algorithmJ Intell. Manuf.20182912731285 – reference: KaltenbergAMBenoit-BirdKJDiel behavior of sardine and anchovy schools in the California Current SystemMar. Ecol. Prog. Ser.2009394247262 – reference: Van Laarhoven, P.J.M.; Aarts, E.H.L.: Simulated annealing. In: Simulated Annealing: Theory and Applications, pp. 7–15 (1987) – reference: KavehAKhayatazadMA new meta-heuristic method: ray optimizationComput & Struct2012112–113283294 – reference: HuangCA novel three-dimensional path planning method for fixed-wing UAV using improved particle swarm optimization algorithmInt. J Aerosp. Eng.202120217667173 – reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdv. Eng. Softw.2014694661 – reference: Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005) – reference: GautraisJJostCTheraulazGKey behavioural factors in a self-organised fish school modelAnn. Zool. Fennici200845415428 – reference: OmranMGHClercMAPS 9: an improved adaptive population-based simplex method for real-world engineering optimization problemsAppl. Intell.20184815961608 – reference: Koza, J.R.: Overview of genetic programming. In: Genetic Programming: On the Programming of Computers by Means of Natural Selection, pp. 73–78 (1992) – reference: Liao, T.; Stutzle, T.: Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real-parameter optimization. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1938–1944 (2013) – reference: Yang, X.S.: Firefly algorithms for multimodal optimization. In: 5th International Symposium on Stochastic Algorithms—Foundations and Applications, pp. 169–178 (2009) – reference: ChopraNAnsariMMGolden jackal optimization: A novel nature-inspired optimizer for engineering applicationsExp. Syst. Appl.2022198 – reference: WangLCaoQZhangZMirjaliliSZhaoWArtificial rabbits optimization: a new bio-inspired meta-heuristic algorithm for solving engineering optimization problemsEng. Appl. Artif. Intel.2022114 – reference: RaoFLuoJZhangZKangYSpatiotemporal dynamics of a predation system with time delay and spatial diffusionJ Stat. Mech. Theory Exp.2020202041975411459.92093 – reference: LamAYSLiVOKChemical reaction optimization: a tutorialMemetic Comput.20124317 – reference: StornRPriceKDifferential evolution—a simple and efficient heuristic for global optimization over continuous spacesJ Glob. Optim.19971134135914795530888.90135 – reference: MirjaliliSThe ant lion optimizerAdv. Eng. Softw.2015838098 – reference: OsabaEVillar-RodriguezEDel SerJNebroAJMolinaDLaTorreASuganthanPNCoelloCACHerreraFA tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problemsSwarm Evol. Comput.202164 – reference: BansalJCSharmaHJadonSSClercMSpider monkey optimization algorithm for numerical optimizationMemetic Comput.201463147 – reference: SilvaAMorphometric variation among sardine (Sardina pilchardus) populations from the northeastern Atlantic and the western MediterraneanICES J Mar. Sci.200360613521360 – reference: RaoRVSavsaniVJVakhariaDPTeaching-learning-based optimization: an optimization method for continuous non-linear large scale problemsInf. Sci.201218311152847014 – reference: HashimFAHousseinEHMabroukMSAl-AtabanyWMirjaliliSHenry gas solubility optimization: a novel physics-based algorithmFutur. Gener. Comput. Syst.2019101646667 – reference: FreonPCoetzeeJCvan der LingenCDConnellADO’DonoghueSHRobertsMJDemarcqHAttwoodCGLamberthSJHutchingsLA review and tests of hypotheses about causes of the kwazulu-natal sardine runAfrican. J Mar. Sci.2010322449479 – reference: DebKAn efficient constraint handling method for genetic algorithmsComput. Methods Appl. Mech. Eng.20001862–43113381028.90533 – reference: DhimanGKumarVSeagull optimization algorithm: theory and its applications for large-scale industrial engineering problemsKnowl. Based Syst.2019165169196 – reference: SrivastavaADasDKCriminal search optimization algorithm: a population-based meta-heuristic optimization technique to solve real-world optimization problemsArab. J. Sci. Eng.20224735513571 – reference: MantegnaRNFast, accurate algorithm for numerical simulation of levy stable stochastic processesPhys. Rev. E.1994494677 – reference: MisundOASvellingenICoetzeeJCFréonPGardenerMOlsenKHamptonISchooling behaviour of sardine sardinops sagax in false bay, south africaAfrican J Mar. Sci.2003251185193 – reference: ParrishRHSerraRGrantWSThe monotypic sardines, Sardina and Sardinops: their taxonomy, distribution, stock structure, and zoogeographyCan. J Fish. Aquat. Sci.19894620192036 – reference: DorigoMBlumCAnt colony optimization theory: a surveyTheor. Comput. Sci.20053442–324327821788551154.90626 – reference: ViswanathanGMAfanasyevVBuldyrevSVHavlinSDa LuzMGERaposoEPStanleyHELévy flights search patterns of biological organismsPhys. A: Stat. Mech. its Appl.200129585880984.92519 – reference: HansenNMullerSDKoumoutsakosPReducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)Evol. Comput.200311118 – reference: MacielOCuevasENavarroMAZaldivarDHinojosaSSide-blotched lizard algorithm: a polymorphic population approachAppl Soft. Comput.202088 – reference: MirjaliliSLewisAThe whale optimization algorithmAdv. Eng. Softw.2016955167 – reference: BrownCTLiebovitchLSGlendonRLévy Flights in dobe Ju/’hoansi foraging patternsHum. Ecol.200735129138 – reference: YaoXLiuYLinGMEvolutionary programming made fasterIEEE Trans. Evol. Comput.19993282102 – reference: Holland, J.H.: Reproductive plans and genetic operators. In: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, pp. 90–96 (1992) – reference: LiangJJQinAKSuganthanPNBaskarSComprehensive learning particle swarm optimizer for global optimization of multimodal functionsIEEE Trans. Evol. Comput.2006103281295 – reference: van der LingenCDHendricksMDurholtzMDWesselsGMtengwaneCBiological characteristics of sardine caught by the beach-seine fishery during the KwaZulu-Natal sardine runAfrican J Mar. Sci.201032309330 – reference: Yang, X.S.; Deb, S.: Cuckoo search via Lévy flights. In: 2009 World Congress on Nature and Biologically Inspired Computing, pp. 210–214 (2009) – reference: LiSChenHWangMHeidariAAMirjaliliSSlime mould algorithm: a new method for stochastic optimizationFutur. Gener. Comput. Syst.2020111300323 – reference: HaraIShape and size of Japanese sardine school in the waters off the southeastern hokkaido on the basis of acoustic and aerial surveysNippon Suisan Gakkaishi19855114146 – reference: ErogluHAydinMSolving power transmission line routing problem using improved genetic and artificial bee colony algorithmsElectr. Eng.201810021032116 – reference: ZitouniFHarousSBelkeramAHammouLEBThe archerfish hunting optimizer: a novel metaheuristic algorithm for global optimizationArab. J. Sci. Eng.20224725132553 – reference: Liang, J.J.; Qu, B.Y.; Suganthan, P.N.; Hernández-Díaz, A.G.: Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization. Technical Report, pp. 1–39 (2013) – reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans. Evol. Comput.1997116782 – reference: RashediENezamabadi-pourHSaryazdiSGSA: a gravitational search algorithmInf. Sci.200917913223222481177.90378 – reference: López-IbáezMDubois-LacosteJPérez CáceresLBirattariMStützleTThe irace package: iterated racing for automatic algorithm configurationOper. Res. Perspect.2016343583579175 – reference: AttiyaIAbualigahLAlshathriSElsadekDAbd ElazizMDynamic jellyfish search algorithm based on simulated annealing and disruption operators for global optimization with applications to cloud task schedulingMathematics2022101894 – reference: KavehATalatahariSA novel heuristic optimization method: charged system searchACTA Mech.20102132672891397.65094 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 7350_CR30 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 344 start-page: 243 issue: 2–3 year: 2005 ident: 7350_CR7 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2005.05.020 – ident: 7350_CR52 doi: 10.1109/CEC.2014.6900380 – volume: 4 start-page: 3 year: 2012 ident: 7350_CR19 publication-title: Memetic Comput. doi: 10.1007/s12293-012-0075-1 – volume: 183 start-page: 1 issue: 1 year: 2012 ident: 7350_CR50 publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.08.006 – volume: 10 start-page: 281 issue: 3 year: 2006 ident: 7350_CR49 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.857610 – volume: 2020 year: 2020 ident: 7350_CR37 publication-title: J Stat. Mech. Theory Exp. – volume: 32 start-page: 449 issue: 2 year: 2010 ident: 7350_CR39 publication-title: African. J Mar. Sci. doi: 10.2989/1814232X.2010.519451 – ident: 7350_CR21 doi: 10.1007/978-3-642-04944-6_14 – ident: 7350_CR2 doi: 10.1109/ICNN.1995.488968 – ident: 7350_CR54 – volume: 95 start-page: 51 year: 2016 ident: 7350_CR24 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 198 year: 2022 ident: 7350_CR27 publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2022.116924 – volume: 10 start-page: 1894 year: 2022 ident: 7350_CR28 publication-title: Mathematics doi: 10.3390/math10111894 – volume: 64 year: 2021 ident: 7350_CR46 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100888 – volume: 11 start-page: 1 year: 2003 ident: 7350_CR13 publication-title: Evol. Comput. doi: 10.1162/106365603321828970 – volume: 49 start-page: 4677 year: 1994 ident: 7350_CR43 publication-title: Phys. Rev. E. doi: 10.1103/PhysRevE.49.4677 – volume: 25 start-page: 185 issue: 1 year: 2003 ident: 7350_CR36 publication-title: African J Mar. Sci. doi: 10.2989/18142320309504009 – volume: 101 start-page: 646 year: 2019 ident: 7350_CR20 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2019.07.015 – volume: 165 start-page: 169 year: 2019 ident: 7350_CR44 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.11.024 – volume: 47 start-page: 3551 year: 2022 ident: 7350_CR29 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-06446-1 – volume: 2021 start-page: 7667173 year: 2021 ident: 7350_CR10 publication-title: Int. J Aerosp. Eng. – volume: 69 start-page: 46 year: 2014 ident: 7350_CR23 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 6 start-page: 31 year: 2014 ident: 7350_CR22 publication-title: Memetic Comput. doi: 10.1007/s12293-013-0128-0 – ident: 7350_CR3 doi: 10.1007/978-94-015-7744-1_2 – ident: 7350_CR48 doi: 10.1109/CEC.2013.6557796 – volume: 60 start-page: 1352 issue: 6 year: 2003 ident: 7350_CR31 publication-title: ICES J Mar. Sci. doi: 10.1016/S1054-3139(03)00141-3 – volume: 111 start-page: 300 year: 2020 ident: 7350_CR25 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2020.03.055 – volume: 51 start-page: 41 issue: 1 year: 1985 ident: 7350_CR34 publication-title: Nippon Suisan Gakkaishi doi: 10.2331/suisan.51.41 – ident: 7350_CR1 – volume: 47 start-page: 2513 year: 2022 ident: 7350_CR14 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-06208-z – volume: 46 start-page: 2019 year: 1989 ident: 7350_CR32 publication-title: Can. J Fish. Aquat. Sci. doi: 10.1139/f89-251 – volume: 394 start-page: 247 year: 2009 ident: 7350_CR40 publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps08252 – volume: 295 start-page: 85 year: 2001 ident: 7350_CR42 publication-title: Phys. A: Stat. Mech. its Appl. doi: 10.1016/S0378-4371(01)00057-7 – volume: 112–113 start-page: 283 year: 2012 ident: 7350_CR18 publication-title: Comput & Struct doi: 10.1016/j.compstruc.2012.09.003 – volume: 29 start-page: 1273 year: 2018 ident: 7350_CR12 publication-title: J Intell. Manuf. doi: 10.1007/s10845-015-1177-7 – ident: 7350_CR9 doi: 10.1109/NABIC.2009.5393690 – volume: 186 start-page: 311 issue: 2–4 year: 2000 ident: 7350_CR47 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(99)00389-8 – volume: 48 start-page: 1596 year: 2018 ident: 7350_CR51 publication-title: Appl. Intell. doi: 10.1007/s10489-017-1015-z – volume: 213 start-page: 267 year: 2010 ident: 7350_CR17 publication-title: ACTA Mech. doi: 10.1007/s00707-009-0270-4 – volume: 45 start-page: 415 year: 2008 ident: 7350_CR35 publication-title: Ann. Zool. Fennici doi: 10.5735/086.045.0505 – volume: 35 start-page: 129 year: 2007 ident: 7350_CR41 publication-title: Hum. Ecol. doi: 10.1007/s10745-006-9083-4 – ident: 7350_CR4 – volume: 88 year: 2020 ident: 7350_CR26 publication-title: Appl Soft. Comput. doi: 10.1016/j.asoc.2019.106039 – volume: 100 start-page: 2103 year: 2018 ident: 7350_CR11 publication-title: Electr. Eng. doi: 10.1007/s00202-018-0688-6 – volume: 104 start-page: 29 year: 1988 ident: 7350_CR38 publication-title: Behaviour doi: 10.1163/156853988X00584 – volume: 11 start-page: 341 year: 1997 ident: 7350_CR5 publication-title: J Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 83 start-page: 80 year: 2015 ident: 7350_CR45 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.01.010 – volume: 3 start-page: 43 year: 2016 ident: 7350_CR53 publication-title: Oper. Res. Perspect. – volume: 32 start-page: 309 year: 2010 ident: 7350_CR33 publication-title: African J Mar. Sci. doi: 10.2989/1814232X.2010.501591 – volume: 3 start-page: 82 issue: 2 year: 1999 ident: 7350_CR6 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771163 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 7350_CR16 publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – ident: 7350_CR8 – volume: 114 year: 2022 ident: 7350_CR15 publication-title: Eng. Appl. Artif. Intel. |
| SSID | ssib048395113 ssj0001916267 ssj0061873 |
| Score | 2.3102422 |
| Snippet | How to steadily find satisfactory solutions for high-dimensional multimodal and composition optimization problems is still a challenging issue. To fight... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9787 |
| SubjectTerms | Algorithms Composition Engineering Heuristic methods Humanities and Social Sciences multidisciplinary Operators Optimization Optimization algorithms Research Article-Computer Engineering and Computer Science Sardines Science Searching |
| Title | Sardine Optimization Algorithm with Agile Locality and Globality Strategies for Real Optimization Problems |
| URI | https://link.springer.com/article/10.1007/s13369-022-07350-y https://www.proquest.com/docview/2843077912 |
| Volume | 48 |
| WOSCitedRecordID | wos000877411300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary Journals customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001916267 issn: 2193-567X databaseCode: RSV dateStart: 20110101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyAMbWIpjO4nHClExoFJRQN0ix3EKqE1RU5D67znnQSgCJBgjPxTdne8-P-4-hE4NDRLhux6RInEI9xklUrmMaNC2ETSmmsY52YTf7QaDgeyVSWFZ9dq9upLMPXWd7MaYJ4l9fQ5mKRwyX0YrwlabsXv0_kNlRRxCPqAIVp-0AAJycypZWJ2MCM8flNkz30-7GKFq2PnlpjQPQJ3N__36FtooASduFxayjZZMuoPWP5Uh3EXPfWsmqcE34D_GZWImbo-Gk-nT7HGM7Vktbg_Bf-BrG_oAuGOVxrjgC7BfVY1bk2EAwfgW0OfiZL2CtybbQ_edy7uLK1JyMBANi3NGWKCFjqSmieR-7EVKa6p84cHO1lFCGh04keNFLAg8LuOIJUkMkMFIQFlUSSXZPmqkk9QcIByAtQjYuzucKq4ST8EIzSNX0wicHNdNRCu5h7osUG55MkZhXVrZyjEEOYa5HMN5E519jHkpynP82rtVqTMsl2oWQnwGP-dL6jbReaW-uvnn2Q7_1v0IrVmq-uLxYAs1ZtNXc4xW9dvsKZue5Cb8DqW76lE |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BrQQcaAtFLI_Wh97AUhzbSXxcIdAitttVl1Z7ixzHWaggoM2CxL9nnAdhK0CCY-SHopnxzOfHzAfww7Iok6EfUCUzj4qQM6q0z6lBbVvJUmZYWpJNhINBNB6rYZ0UVjSv3ZsrydJTt8lunAeKutfnaJbSo_eL8EE4mh23Rx_9baxIYMhHFMHbkxZEQH5JJYurk1MZhOM6e-b5aecjVAs7_7spLQPQ8af3_fpnWKsBJ-lWFvIFFmy-DqtPyhBuwL-RM5Pckl_oP67qxEzSvZxcTy9m51fEndWS7gT9B-m70IfAneg8JRVfgPtqatzagiAIJr8Rfc5PNqx4a4qv8Of46OywR2sOBmpwcc4oj4w0iTIsUyJMg0Qbw3QoA9zZeloqayIv8YKER1EgVJrwLEsRMliFKItppRXfhKX8OrdbQCK0Fol7d08wLXQWaBxhROIblqCTE6YDrJF7bOoC5Y4n4zJuSys7OcYox7iUY3zfgf3HMTdVeY5Xe-826ozrpVrEGJ_Rz4WK-R04aNTXNr882_bbun-H5d7Zz37cPxmc7sCKo62vHhLuwtJsemv34KO5m10U02-lOT8AqU_tNQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BQGh7GB8DrWyAH3jbrMbxR-LHiq0CMZVqhalvkeM4ZWhNpzZD2n_POR-kRWMS4jHyhxTf-e5n--5-AO8di3MZhYpqmQdURJxRbUJOLUrbSZYxy7KKbCIajeLpVI_XsviraPf2SbLOafBVmoqyf53l_S7xjXOlqY9ERxWVAb19CI8EnmR8UNf55KLVKIHuHxEF725dEA2FFa0s7lROpYqmTSbN3dNueqsOgv7xalo5o-HT__-NZ7DbAFEyqDXnOTxwxQvYWStPuAc_Jl59Cke-oF2ZNwmbZHA1Wywvy-9z4u9wyWCGdoWceZeIgJ6YIiM1j4D_amvfuhVBcEzOEZVuTjau-WxWL-Hb8PTrh4-04WagFjdtSXlspU21ZbkWUaZSYy0zkVR44g2M1M7GQRqolMexEjpLeZ5nCCWcRvTFjDaav4KtYlG4fSAxapHEM30gmBEmVwZHWJGGlqVo_ITtAWtlkNimcLnnz7hKupLLfh0TXMekWsfktgdHv8dc12U77u192Io2abbwKkG_jfYv0izswXEryq7577O9_rfu7-DJ-GSYnH0afT6Abc9mX8cXHsJWubxxb-Cx_VlerpZvK83-BU6K9hk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sardine+Optimization+Algorithm+with+Agile+Locality+and+Globality+Strategies+for+Real+Optimization+Problems&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Zhang%2C+HongGuang&rft.au=Tang%2C+MengZhen&rft.au=Liu%2C+YuanAn&rft.au=Li%2C+Xiang&rft.date=2023-08-01&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=48&rft.issue=8&rft.spage=9787&rft.epage=9825&rft_id=info:doi/10.1007%2Fs13369-022-07350-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13369_022_07350_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon |