HODLR3D: hierarchical matrices for N-body problems in three dimensions

This article introduces HODLR3D, a class of hierarchical matrices arising out of N -body problems in three dimensions. HODLR3D relies on the fact that certain off-diagonal matrix sub-blocks arising out of the N -body problems in three dimensions are numerically low rank. For the Laplace kernel in 3D...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Numerical algorithms Ročník 97; číslo 4; s. 1635 - 1672
Hlavní autori: A, Kandappan V., Gujjula, Vaishnavi, Ambikasaran, Sivaram
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.12.2024
Springer Nature B.V
Predmet:
ISSN:1017-1398, 1572-9265
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This article introduces HODLR3D, a class of hierarchical matrices arising out of N -body problems in three dimensions. HODLR3D relies on the fact that certain off-diagonal matrix sub-blocks arising out of the N -body problems in three dimensions are numerically low rank. For the Laplace kernel in 3D, which is widely encountered, we prove that all the off-diagonal matrix sub-blocks are rank deficient in finite precision. We also obtain the growth of the rank as a function of the size of these matrix sub-blocks. For other kernels in three dimensions, we numerically illustrate a similar scaling in rank for the different off-diagonal sub-blocks. We leverage this hierarchical low-rank structure to construct HODLR3D representation, with which we accelerate matrix-vector products. The storage and computational complexity of the HODLR3D matrix-vector product scales almost linearly with system size. We demonstrate the computational performance of HODLR3D representation through various numerical experiments. Further, we explore the performance of the HODLR3D representation on distributed memory systems. HODLR3D, described in this article, is based on a weak admissibility condition. Among the hierarchical matrices with different weak admissibility conditions in 3D, only in HODLR3D did the rank of the admissible off-diagonal blocks not scale with any power of the system size. Thus, the storage and the computational complexity of the HODLR3D matrix-vector product remain tractable for N -body problems with large system sizes.
AbstractList This article introduces HODLR3D, a class of hierarchical matrices arising out of N -body problems in three dimensions. HODLR3D relies on the fact that certain off-diagonal matrix sub-blocks arising out of the N -body problems in three dimensions are numerically low rank. For the Laplace kernel in 3D, which is widely encountered, we prove that all the off-diagonal matrix sub-blocks are rank deficient in finite precision. We also obtain the growth of the rank as a function of the size of these matrix sub-blocks. For other kernels in three dimensions, we numerically illustrate a similar scaling in rank for the different off-diagonal sub-blocks. We leverage this hierarchical low-rank structure to construct HODLR3D representation, with which we accelerate matrix-vector products. The storage and computational complexity of the HODLR3D matrix-vector product scales almost linearly with system size. We demonstrate the computational performance of HODLR3D representation through various numerical experiments. Further, we explore the performance of the HODLR3D representation on distributed memory systems. HODLR3D, described in this article, is based on a weak admissibility condition. Among the hierarchical matrices with different weak admissibility conditions in 3D, only in HODLR3D did the rank of the admissible off-diagonal blocks not scale with any power of the system size. Thus, the storage and the computational complexity of the HODLR3D matrix-vector product remain tractable for N -body problems with large system sizes.
This article introduces HODLR3D, a class of hierarchical matrices arising out of N-body problems in three dimensions. HODLR3D relies on the fact that certain off-diagonal matrix sub-blocks arising out of the N-body problems in three dimensions are numerically low rank. For the Laplace kernel in 3D, which is widely encountered, we prove that all the off-diagonal matrix sub-blocks are rank deficient in finite precision. We also obtain the growth of the rank as a function of the size of these matrix sub-blocks. For other kernels in three dimensions, we numerically illustrate a similar scaling in rank for the different off-diagonal sub-blocks. We leverage this hierarchical low-rank structure to construct HODLR3D representation, with which we accelerate matrix-vector products. The storage and computational complexity of the HODLR3D matrix-vector product scales almost linearly with system size. We demonstrate the computational performance of HODLR3D representation through various numerical experiments. Further, we explore the performance of the HODLR3D representation on distributed memory systems. HODLR3D, described in this article, is based on a weak admissibility condition. Among the hierarchical matrices with different weak admissibility conditions in 3D, only in HODLR3D did the rank of the admissible off-diagonal blocks not scale with any power of the system size. Thus, the storage and the computational complexity of the HODLR3D matrix-vector product remain tractable for N-body problems with large system sizes.
Author Gujjula, Vaishnavi
A, Kandappan V.
Ambikasaran, Sivaram
Author_xml – sequence: 1
  givenname: Kandappan V.
  surname: A
  fullname: A, Kandappan V.
  email: kandappanva@gmail.com
  organization: Department of Mathematics, Indian Institute of Technology Madras
– sequence: 2
  givenname: Vaishnavi
  surname: Gujjula
  fullname: Gujjula, Vaishnavi
  organization: Department of Mathematics, Indian Institute of Technology Madras
– sequence: 3
  givenname: Sivaram
  surname: Ambikasaran
  fullname: Ambikasaran, Sivaram
  organization: Department of Mathematics, Indian Institute of Technology Madras, Wadhwani School of Data Science and Artificial Intelligence, Indian Institute of Technology Madras, Department of Data Science and Artificial Intelligence, Indian Institute of Technology Madras, Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of Technology Madras
BookMark eNp9kEFLwzAYhoNMcJv-AU8Fz9EkX5O03mRzThgORM8hTROX0bUz6Q7790YrCB52ykd4n-97eSZo1HatReiakltKiLyLlBLJMWE5JlQKjvMzNKZcMlwywUdpTt-YQllcoEmMW0ISxuQYLZbr-eoV5vfZxtugg9l4o5tsp_vgjY2Z60L2gquuPmb70FWN3cXMt1m_CdZmtd_ZNvqujZfo3Okm2qvfd4reF49vsyVerZ-eZw8rbICWPQZZl3ktrRCMG1eUUBFXWshdJRgtNDCXawHSgtaVkIZbVxrKQQpac1ZJA1N0M-xNZT4PNvZq2x1Cm04qoACFZCBEShVDyoQuxmCdMr7XfSraB-0bRYn6tqYGaypZUz_WVJ5Q9g_dB7_T4XgaggGKKdx-2PDX6gT1BTBCf_M
CitedBy_id crossref_primary_10_1137_24M1683925
Cites_doi 10.1007/s00607-004-0080-4
10.1007/s006070070031
10.1137/120903476
10.1016/j.cma.2016.05.029
10.1007/s006070050015
10.1007/978-3-662-47324-5
10.1002/nla.455
10.1137/S0895479802405884
10.1137/060662083
10.1109/TEMC.2005.857898
10.1216/JIE-2009-21-3-331
10.1016/j.jcp.2023.112627
10.7551/mitpress/5750.001.0001
10.1137/22M1491253
10.1017/S0962492900002725
10.1007/PL00005410
10.1007/s00607-003-0019-1
10.1137/16M1077192
10.1007/s00607-002-1469-6
10.1007/s10092-005-0107-z
10.1137/1.9781611971538
10.1016/j.csda.2019.02.002
10.1016/S0955-7997(02)00152-2
10.1007/978-3-319-62426-6_17
10.1038/324446a0
10.1016/0021-9991(87)90140-9
10.1007/s10915-013-9714-z
10.1137/0907058
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11075-024-01765-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (NC Live)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 1672
ExternalDocumentID 10_1007_s11075_024_01765_4
GrantInformation_xml – fundername: Board of Research in Nuclear Sciences, Department of Atomic Energy, India
  grantid: 34/20/03/2017-BRNS/34278
– fundername: MATRICS grant from the Science and Engineering Research Board, India
  grantid: MTR/2019/001241
– fundername: Women Leading IITM (India) 2022 in Mathematics
  grantid: SB22230053MAIITM008880
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-37d94d7e6625cf893b0f9e34fb6218a32f4a637e3aab67c5ef9c153761d52b7c3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001174414500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1017-1398
IngestDate Tue Dec 02 10:00:36 EST 2025
Sat Nov 29 01:35:02 EST 2025
Tue Nov 18 21:43:06 EST 2025
Fri Feb 21 02:38:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 68Q25
Hierarchical matrices
68U20
45B05
body problems
HODLR
68U05
68R10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-37d94d7e6625cf893b0f9e34fb6218a32f4a637e3aab67c5ef9c153761d52b7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3133872366
PQPubID 2043837
PageCount 38
ParticipantIDs proquest_journals_3133872366
crossref_citationtrail_10_1007_s11075_024_01765_4
crossref_primary_10_1007_s11075_024_01765_4
springer_journals_10_1007_s11075_024_01765_4
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References HackbuschWKhoromskijBNKriemannRHierarchical matrices based on a weak admissibility criterionComputing2004733207243210624910.1007/s00607-004-0080-4
Gujjula, V., Ambikasaran, S.: Algebraic inverse fast multipole method: a fast direct solver that is better than HODLR based fast direct solver. arXiv:2301.12704 (2023)
GrasedyckLHackbuschWConstruction and arithmetics of H-matricesComputing2003704295334201141910.1007/s00607-003-0019-1
Li, Y., Poulson, J., Ying, L.: Distributed-memory H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}$$\end{document}-matrix algebra I: data distribution and matrix-vector multiplication. arXiv:2008.12441 (2020)
Gray, A., Moore, A.: N-body’ problems in statistical learning. Advances in neural information processing systems 13 (2000)
TyrtyshnikovEIncomplete cross approximation in the mosaic-skeleton methodComputing2000644367380178346810.1007/s006070070031
VandebrilRBarelMVGolubGMastronardiNA bibliography on semiseparable matricesCalcolo2005423249270219120110.1007/s10092-005-0107-z
GumerovNADuraiswamiRFast radial basis function interpolation via preconditioned Krylov iterationSIAM J. Sci. Comput.200729518761899235001110.1137/060662083
CoulierPDarveEEfficient mesh deformation based on radial basis function interpolation by means of the inverse fast multipole methodComput. Methods Appl. Mech. Eng.2016308286309352227910.1016/j.cma.2016.05.029
Greengard, L.: The rapid evaluation of potential fields in particle systems. MIT Press, (1988)
GreengardLRokhlinVA fast algorithm for particle simulationsJ. Comput. Phys.198773232534891844810.1016/0021-9991(87)90140-9
Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., Vorst, H.: Templates for the solution of linear systems: building blocks for iterative methods. SIAM, (1994)
Barnes, J., Hut, P.: A hierarchical O (N log N) force-calculation algorithm. Nature. 324(6096), 446–449 (1986)
Amestoy, P., Buttari, A., l’Excellent, J.-Y., Mary, T.: On the complexity of the block low-rank multifrontal factorization. SIAM Journal on Scientific Computing. 39(4), 1710–1740 (2017)
Khan, R., Kandappan, V., Ambikasaran, S.: Numerical rank of singular kernel functions. arXiv:2209.05819 (2022)
Izadi, M.: Hierarchical matrix techniques on massively parallel computers. Thesis (2012)
VandebrilRVan BarelMMastronardiNA note on the representation and definition of semiseparable matricesNumerical Linear Algebra with Applications.2005128839858217268110.1002/nla.455
AmbikasaranSDarveEAn O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{O} (n \log n)$$\end{document}-fast direct solver for partial hierarchically semi-separable matricesJ. Sci. Comput.2013573477501312355410.1007/s10915-013-9714-z
ZhaoKVouvakisMNLeeJ-FThe adaptive cross approximation algorithm for accelerated method of moments computations of EMC problemsIEEE Trans. Electromagn. Compat.200547476377310.1109/TEMC.2005.857898
GreengardLRokhlinVA new version of the fast multipole method for the Laplace equation in three dimensionsActa Numer19976229269148925710.1017/S0962492900002725
BörmSGrasedyckLHackbuschWIntroduction to hierarchical matrices with applicationsEng. Anal. Boundary Elem.200327540542210.1016/S0955-7997(02)00152-2
KandappanVAGujjulaVAmbikasaranSHODLR2D: a new class of hierarchical matricesSIAM J. Sci. Comput.202345523822408464384510.1137/22M1491253
Ambikasaran, S.: Fast algorithms for dense numerical linear algebra and applications. PhD thesis, Stanford University (2013)
SaadYSchultzMHGMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systemsSIAM J. Sci. Stat. Comput.19867385686984856810.1137/0907058
Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. part i:Introduction to H-matrices. Computing. 62(2), 89–108 (1999)
LitvinenkoASunYGentonMGKeyesDELikelihood approximation with hierarchical matrices for large spatial datasetsComputational Statistics & Data Analysis.2019137115132392106410.1016/j.csda.2019.02.002
ChandrasekaranSDewildePGuMPalsTSunXVeenA-JWhiteDSome fast algorithms for sequentially semiseparable representationsSIAM J. Matrix Anal. Appl.2005272341364217967610.1137/S0895479802405884
Hackbusch, W.: Hierarchical matrices: algorithms and analysis vol. 49. Springer (2015)
BebendorfMRjasanowSAdaptive low-rank approximation of collocation matricesComputing2003701124197272410.1007/s00607-002-1469-6
Ambikasaran, S., Darve, E.: The inverse fast multipole method. arXiv:1407.1572 (2014)
Amestoy, P., Ashcraft, C., Boiteau, O., Buttari, A., l’Excellent, J.-Y., Weisbecker, C.: Improving multifrontal methods by means of block low-rank representations. SIAM Journal on Scientific Computing. 37(3), 1451–1474 (2015)
BebendorfMApproximation of boundary element matricesNumer. Math.2000864565589179434310.1007/PL00005410
BörmSGrasedyckLHackbuschWHierarchical matrices. Lecture notes.2003212003
BeatsonRGreengardLA short course on fast multipole methodsWavelets, multilevel methods and elliptic PDEs.199711371600672
Bebendorf, M., Kunis, S.: Recompression techniques for adaptive cross approximation. The Journal of Integral Equations and Applications, 331–357 (2009)
Yokota, R., Ibeid, H., Keyes, D.: Fast multipole method as a matrix-free hierarchical low-rank approximation. In: International Workshop on Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing, pp. 267–286 (2015). Springer
Y Saad (1765_CR32) 1986; 7
P Coulier (1765_CR3) 2016; 308
1765_CR5
1765_CR8
NA Gumerov (1765_CR4) 2007; 29
VA Kandappan (1765_CR7) 2023; 45
1765_CR1
S Börm (1765_CR17) 2003; 21
K Zhao (1765_CR27) 2005; 47
E Tyrtyshnikov (1765_CR28) 2000; 64
1765_CR20
1765_CR22
1765_CR21
1765_CR23
1765_CR19
R Vandebril (1765_CR16) 2005; 12
R Beatson (1765_CR25) 1997; 1
R Vandebril (1765_CR15) 2005; 42
S Chandrasekaran (1765_CR14) 2005; 27
M Bebendorf (1765_CR29) 2000; 86
L Greengard (1765_CR9) 1987; 73
1765_CR31
1765_CR30
L Greengard (1765_CR11) 1997; 6
M Bebendorf (1765_CR26) 2003; 70
A Litvinenko (1765_CR2) 2019; 137
L Grasedyck (1765_CR6) 2003; 70
1765_CR36
W Hackbusch (1765_CR24) 2004; 73
S Börm (1765_CR18) 2003; 27
1765_CR33
1765_CR10
S Ambikasaran (1765_CR13) 2013; 57
1765_CR35
1765_CR12
1765_CR34
References_xml – reference: CoulierPDarveEEfficient mesh deformation based on radial basis function interpolation by means of the inverse fast multipole methodComput. Methods Appl. Mech. Eng.2016308286309352227910.1016/j.cma.2016.05.029
– reference: GreengardLRokhlinVA new version of the fast multipole method for the Laplace equation in three dimensionsActa Numer19976229269148925710.1017/S0962492900002725
– reference: Khan, R., Kandappan, V., Ambikasaran, S.: Numerical rank of singular kernel functions. arXiv:2209.05819 (2022)
– reference: BeatsonRGreengardLA short course on fast multipole methodsWavelets, multilevel methods and elliptic PDEs.199711371600672
– reference: Gray, A., Moore, A.: N-body’ problems in statistical learning. Advances in neural information processing systems 13 (2000)
– reference: VandebrilRVan BarelMMastronardiNA note on the representation and definition of semiseparable matricesNumerical Linear Algebra with Applications.2005128839858217268110.1002/nla.455
– reference: TyrtyshnikovEIncomplete cross approximation in the mosaic-skeleton methodComputing2000644367380178346810.1007/s006070070031
– reference: Barnes, J., Hut, P.: A hierarchical O (N log N) force-calculation algorithm. Nature. 324(6096), 446–449 (1986)
– reference: Yokota, R., Ibeid, H., Keyes, D.: Fast multipole method as a matrix-free hierarchical low-rank approximation. In: International Workshop on Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing, pp. 267–286 (2015). Springer
– reference: GrasedyckLHackbuschWConstruction and arithmetics of H-matricesComputing2003704295334201141910.1007/s00607-003-0019-1
– reference: Ambikasaran, S., Darve, E.: The inverse fast multipole method. arXiv:1407.1572 (2014)
– reference: Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. part i:Introduction to H-matrices. Computing. 62(2), 89–108 (1999)
– reference: AmbikasaranSDarveEAn O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{O} (n \log n)$$\end{document}-fast direct solver for partial hierarchically semi-separable matricesJ. Sci. Comput.2013573477501312355410.1007/s10915-013-9714-z
– reference: Amestoy, P., Buttari, A., l’Excellent, J.-Y., Mary, T.: On the complexity of the block low-rank multifrontal factorization. SIAM Journal on Scientific Computing. 39(4), 1710–1740 (2017)
– reference: BörmSGrasedyckLHackbuschWHierarchical matrices. Lecture notes.2003212003
– reference: Ambikasaran, S.: Fast algorithms for dense numerical linear algebra and applications. PhD thesis, Stanford University (2013)
– reference: Amestoy, P., Ashcraft, C., Boiteau, O., Buttari, A., l’Excellent, J.-Y., Weisbecker, C.: Improving multifrontal methods by means of block low-rank representations. SIAM Journal on Scientific Computing. 37(3), 1451–1474 (2015)
– reference: BebendorfMRjasanowSAdaptive low-rank approximation of collocation matricesComputing2003701124197272410.1007/s00607-002-1469-6
– reference: HackbuschWKhoromskijBNKriemannRHierarchical matrices based on a weak admissibility criterionComputing2004733207243210624910.1007/s00607-004-0080-4
– reference: GreengardLRokhlinVA fast algorithm for particle simulationsJ. Comput. Phys.198773232534891844810.1016/0021-9991(87)90140-9
– reference: ZhaoKVouvakisMNLeeJ-FThe adaptive cross approximation algorithm for accelerated method of moments computations of EMC problemsIEEE Trans. Electromagn. Compat.200547476377310.1109/TEMC.2005.857898
– reference: Gujjula, V., Ambikasaran, S.: Algebraic inverse fast multipole method: a fast direct solver that is better than HODLR based fast direct solver. arXiv:2301.12704 (2023)
– reference: Bebendorf, M., Kunis, S.: Recompression techniques for adaptive cross approximation. The Journal of Integral Equations and Applications, 331–357 (2009)
– reference: Hackbusch, W.: Hierarchical matrices: algorithms and analysis vol. 49. Springer (2015)
– reference: Li, Y., Poulson, J., Ying, L.: Distributed-memory H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}$$\end{document}-matrix algebra I: data distribution and matrix-vector multiplication. arXiv:2008.12441 (2020)
– reference: ChandrasekaranSDewildePGuMPalsTSunXVeenA-JWhiteDSome fast algorithms for sequentially semiseparable representationsSIAM J. Matrix Anal. Appl.2005272341364217967610.1137/S0895479802405884
– reference: LitvinenkoASunYGentonMGKeyesDELikelihood approximation with hierarchical matrices for large spatial datasetsComputational Statistics & Data Analysis.2019137115132392106410.1016/j.csda.2019.02.002
– reference: Greengard, L.: The rapid evaluation of potential fields in particle systems. MIT Press, (1988)
– reference: BebendorfMApproximation of boundary element matricesNumer. Math.2000864565589179434310.1007/PL00005410
– reference: Izadi, M.: Hierarchical matrix techniques on massively parallel computers. Thesis (2012)
– reference: BörmSGrasedyckLHackbuschWIntroduction to hierarchical matrices with applicationsEng. Anal. Boundary Elem.200327540542210.1016/S0955-7997(02)00152-2
– reference: KandappanVAGujjulaVAmbikasaranSHODLR2D: a new class of hierarchical matricesSIAM J. Sci. Comput.202345523822408464384510.1137/22M1491253
– reference: GumerovNADuraiswamiRFast radial basis function interpolation via preconditioned Krylov iterationSIAM J. Sci. Comput.200729518761899235001110.1137/060662083
– reference: Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., Vorst, H.: Templates for the solution of linear systems: building blocks for iterative methods. SIAM, (1994)
– reference: VandebrilRBarelMVGolubGMastronardiNA bibliography on semiseparable matricesCalcolo2005423249270219120110.1007/s10092-005-0107-z
– reference: SaadYSchultzMHGMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systemsSIAM J. Sci. Stat. Comput.19867385686984856810.1137/0907058
– volume: 73
  start-page: 207
  issue: 3
  year: 2004
  ident: 1765_CR24
  publication-title: Computing
  doi: 10.1007/s00607-004-0080-4
– volume: 64
  start-page: 367
  issue: 4
  year: 2000
  ident: 1765_CR28
  publication-title: Computing
  doi: 10.1007/s006070070031
– ident: 1765_CR21
  doi: 10.1137/120903476
– volume: 308
  start-page: 286
  year: 2016
  ident: 1765_CR3
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.05.029
– ident: 1765_CR5
  doi: 10.1007/s006070050015
– ident: 1765_CR23
– ident: 1765_CR19
  doi: 10.1007/978-3-662-47324-5
– volume: 12
  start-page: 839
  issue: 8
  year: 2005
  ident: 1765_CR16
  publication-title: Numerical Linear Algebra with Applications.
  doi: 10.1002/nla.455
– ident: 1765_CR12
– volume: 27
  start-page: 341
  issue: 2
  year: 2005
  ident: 1765_CR14
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479802405884
– volume: 29
  start-page: 1876
  issue: 5
  year: 2007
  ident: 1765_CR4
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/060662083
– volume: 47
  start-page: 763
  issue: 4
  year: 2005
  ident: 1765_CR27
  publication-title: IEEE Trans. Electromagn. Compat.
  doi: 10.1109/TEMC.2005.857898
– ident: 1765_CR30
  doi: 10.1216/JIE-2009-21-3-331
– volume: 21
  start-page: 2003
  year: 2003
  ident: 1765_CR17
  publication-title: Hierarchical matrices. Lecture notes.
– ident: 1765_CR36
  doi: 10.1016/j.jcp.2023.112627
– ident: 1765_CR10
  doi: 10.7551/mitpress/5750.001.0001
– ident: 1765_CR33
– volume: 45
  start-page: 2382
  issue: 5
  year: 2023
  ident: 1765_CR7
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/22M1491253
– volume: 6
  start-page: 229
  year: 1997
  ident: 1765_CR11
  publication-title: Acta Numer
  doi: 10.1017/S0962492900002725
– ident: 1765_CR35
– volume: 86
  start-page: 565
  issue: 4
  year: 2000
  ident: 1765_CR29
  publication-title: Numer. Math.
  doi: 10.1007/PL00005410
– volume: 70
  start-page: 295
  issue: 4
  year: 2003
  ident: 1765_CR6
  publication-title: Computing
  doi: 10.1007/s00607-003-0019-1
– ident: 1765_CR1
– ident: 1765_CR22
  doi: 10.1137/16M1077192
– volume: 70
  start-page: 1
  issue: 1
  year: 2003
  ident: 1765_CR26
  publication-title: Computing
  doi: 10.1007/s00607-002-1469-6
– volume: 1
  start-page: 1
  year: 1997
  ident: 1765_CR25
  publication-title: Wavelets, multilevel methods and elliptic PDEs.
– volume: 42
  start-page: 249
  issue: 3
  year: 2005
  ident: 1765_CR15
  publication-title: Calcolo
  doi: 10.1007/s10092-005-0107-z
– ident: 1765_CR31
  doi: 10.1137/1.9781611971538
– volume: 137
  start-page: 115
  year: 2019
  ident: 1765_CR2
  publication-title: Computational Statistics & Data Analysis.
  doi: 10.1016/j.csda.2019.02.002
– volume: 27
  start-page: 405
  issue: 5
  year: 2003
  ident: 1765_CR18
  publication-title: Eng. Anal. Boundary Elem.
  doi: 10.1016/S0955-7997(02)00152-2
– ident: 1765_CR20
  doi: 10.1007/978-3-319-62426-6_17
– ident: 1765_CR8
  doi: 10.1038/324446a0
– volume: 73
  start-page: 325
  issue: 2
  year: 1987
  ident: 1765_CR9
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(87)90140-9
– ident: 1765_CR34
– volume: 57
  start-page: 477
  issue: 3
  year: 2013
  ident: 1765_CR13
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-013-9714-z
– volume: 7
  start-page: 856
  issue: 3
  year: 1986
  ident: 1765_CR32
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0907058
SSID ssj0010027
Score 2.3819823
Snippet This article introduces HODLR3D, a class of hierarchical matrices arising out of N -body problems in three dimensions. HODLR3D relies on the fact that certain...
This article introduces HODLR3D, a class of hierarchical matrices arising out of N-body problems in three dimensions. HODLR3D relies on the fact that certain...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1635
SubjectTerms Algebra
Algorithms
Complexity
Computer Science
Distributed memory
Many body problem
Numeric Computing
Numerical Analysis
Original Paper
Representations
Theory of Computation
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTwIxEJ0oetCDKGpE0fTgTRvZ7e6WejFGJBwQjR8Jt832YxMSBWTRxH_vtBSIJnLxvLtNs28689qZzgM4VYwLpNWaxrGUNJLMUImBnmK4iHnOBMsyh3SHd7uNXk88-AO3wpdVznyic9R6qOwZ-QWzmykesiS5Gr1Tqxpls6teQmMV1myXhMCV7j3Nswh2z-WyneiJkek0_KWZ6dU53PfYKdkaDJ7ENPoZmBZs81eC1MWdVvm_M96GLc84yfXURHZgxQwqUPbsk_i1XVRg827ewbXYhVb7vtl5ZM1LYsWyXboB0SRvrqO_KQhyXdKlcqi_iNekKUh_QCZoGoZoKxlgj-GKPXhp3T7ftKnXXKAKF-ME_Y0WkeYmQQBVjmRG1nNhWJTLBMlAxsI8yhLGDWIoE65ikwsV2JYwgY5DyRXbh9JgODAHQCTCXW-IEN2Iwe-FlDEGhlBHgisdm6QKweyHp8o3JLe6GK_popWyBSlFkFIHUhpV4Wz-zWjajmPp27UZMqlfmkW6gKUK5zNsF4__Hu1w-WhHsBFac3KlLjUoTcYf5hjW1eekX4xPnGF-A8_Q5WY
  priority: 102
  providerName: ProQuest
Title HODLR3D: hierarchical matrices for N-body problems in three dimensions
URI https://link.springer.com/article/10.1007/s11075-024-01765-4
https://www.proquest.com/docview/3133872366
Volume 97
WOSCitedRecordID wos001174414500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: K7-
  dateStart: 20241201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: M7S
  dateStart: 20241201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (NC Live)
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: BENPR
  dateStart: 20241201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPfkzF6Sx58E0DrmmaxTd1joFzyqayt7KkKQy0ip2C_72XmG4oKuhrmoRwd7n7Xe9yB7CvmZAIq1PKuVI0UsxQhYaeorngImOSjUaO013R6zWHQ3ntH4UVZbZ7GZJ0mnr22A09FbuJzZoQMafRPCxwW23G-uiDu2nswHpaLsaJ-hfxTdM_lfl-j8_maIYxv4RFnbVpr_7vnGuw4tElOfkQh3WYM3kVVj3SJP4eFzhUNnMox6qwfDkt4FpsQLtz1er2WeuY2F7ZLtqAzCQPrqC_KQhCXdKj6jF9I74lTUHGOZmgZBiS2o4B9i9csQm37fObsw71LReoxrs4QXWTyigVJkb-6QyxjDrKpGFRpmLEAiMWZtEoZsIgC1UsNDeZ1A1bEaaR8lAJzbagkj_mZhuIQm4fNWWIWsTgeqkUR7sQppEUOuUmrkGjpHyifT1y2xbjPplVUraUTJCSiaNkEtXgYLrm6aMax6-z6yVDE38zi4RZp1yELMYDHJYMnH3-ebedv03fhaXQyoDLfKlDZfL8YvZgUb9OxsVzAAun573rfgDzF4IGNuF0EDgpfgeIfeUJ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB5BQKI9lEepmpaHD_QEFsn6FVeqqpYQBRG2CFGJ2xI_VkJqE5pNW-VP9Td2vPEmAgluHDjv2vKuP88347HnA9izTGl0qx0VwhjKDfPUINFTpAuhcqZZv1_OdE-laevqSp8vwL_qLkw4VlnZxNJQu6ENe-SHLARTKmFSfr79RYNqVMiuVhIaU1ic-slfDNmKTydtnN8PSdI5vjzq0qgqQC3CbYwrymnulJc4RJsjXZtGrj3juZFId32W5LwvmfI4SiOVFT7XthmKnjSdSIyyDPtdhCXOuBQ1WPp6nJ5fzPIWIcor86to-9G3asVrOtPLehhphZ8QTn0oKSi_S4Vz__ZeSrZkus7qc_tHa_Aq-tTky3QRrMOCH2zAavSvSbRexQa8PJvVqC1eQ6f7rd27YO2PJMiBlwkVxCv5WWoW-IKgN09SaoZuQqLqTkFuBmSM4PfEBVGEsNFYbML3J_m2N1AbDAf-LRCDgG60dIKG0mN7bYxA6ksc18o64WUdmtUEZzaWXA_KHz-yebHoAIoMQZGVoMh4HfZnbW6nBUcefXurQkIWjU-RzWFQh4MKS_PHD_f27vHedmGle3nWy3on6el7eJEEKJcHe7agNh799tuwbP-Mb4rRTlwWBK6fGmX_AdkOQ5o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-J0ah580-LWtM3imziL4qzDG76V5VIYaDfWKvjvPcnaTUUF8TVNQsh3kvOl5wawLynjSKuV4_tCOJ6g2hGo6B1UFz5LKKfdrkW6zaKo-fjIOx-i-K23e2mSHMU0mCxNaX40UMnRJPANXy1mQuNBwQLf8aZhxsM249R1c_swtiOYV5e1d-JdjFynWYTNfD_HZ9U04ZtfTKRW84RL_1_zMiwWrJOcjMRkBaZ0ugpLBQMlxfnOsKks8lC2rcLC1Tixa7YG4fl1q31DW8fE1NC2VggEmTzbRP86I0iBSeSIvnojRamajPRSkqPEaKJMJQHzdy5bh_vw7O703ClKMTgSz2iO15DinmI6QFxlghxH1BOuqZeIADlCl7qJ1w0o0witCJj0dcJlw2SKaSjfFUzSDaik_VRvAhEoBfUmd_F20TieC-GjvnCVx5lUvg6q0ChRiGWRp9yUy3iKJxmWzU7GuJOx3cnYq8LBeMxglKXj1961Ety4OLFZTM1jnbk0wAUclmBOPv8829bfuu_BXKcVxu2L6HIb5l0jDtY5pgaVfPiid2BWvua9bLhrBfkdk3jtbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HODLR3D%3A+hierarchical+matrices+for+N-body+problems+in+three+dimensions&rft.jtitle=Numerical+algorithms&rft.au=A%2C+Kandappan+V.&rft.au=Gujjula%2C+Vaishnavi&rft.au=Ambikasaran%2C+Sivaram&rft.date=2024-12-01&rft.pub=Springer+US&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=97&rft.issue=4&rft.spage=1635&rft.epage=1672&rft_id=info:doi/10.1007%2Fs11075-024-01765-4&rft.externalDocID=10_1007_s11075_024_01765_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon