HODLR3D: hierarchical matrices for N-body problems in three dimensions
This article introduces HODLR3D, a class of hierarchical matrices arising out of N -body problems in three dimensions. HODLR3D relies on the fact that certain off-diagonal matrix sub-blocks arising out of the N -body problems in three dimensions are numerically low rank. For the Laplace kernel in 3D...
Uložené v:
| Vydané v: | Numerical algorithms Ročník 97; číslo 4; s. 1635 - 1672 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.12.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This article introduces HODLR3D, a class of hierarchical matrices arising out of
N
-body problems in three dimensions. HODLR3D relies on the fact that certain off-diagonal matrix sub-blocks arising out of the
N
-body problems in three dimensions are numerically low rank. For the Laplace kernel in 3D, which is widely encountered, we prove that all the off-diagonal matrix sub-blocks are rank deficient in finite precision. We also obtain the growth of the rank as a function of the size of these matrix sub-blocks. For other kernels in three dimensions, we numerically illustrate a similar scaling in rank for the different off-diagonal sub-blocks. We leverage this hierarchical low-rank structure to construct HODLR3D representation, with which we accelerate matrix-vector products. The storage and computational complexity of the HODLR3D matrix-vector product scales almost linearly with system size. We demonstrate the computational performance of HODLR3D representation through various numerical experiments. Further, we explore the performance of the HODLR3D representation on distributed memory systems. HODLR3D, described in this article, is based on a weak admissibility condition. Among the hierarchical matrices with different weak admissibility conditions in 3D, only in HODLR3D did the rank of the admissible off-diagonal blocks not scale with any power of the system size. Thus, the storage and the computational complexity of the HODLR3D matrix-vector product remain tractable for
N
-body problems with large system sizes. |
|---|---|
| AbstractList | This article introduces HODLR3D, a class of hierarchical matrices arising out of
N
-body problems in three dimensions. HODLR3D relies on the fact that certain off-diagonal matrix sub-blocks arising out of the
N
-body problems in three dimensions are numerically low rank. For the Laplace kernel in 3D, which is widely encountered, we prove that all the off-diagonal matrix sub-blocks are rank deficient in finite precision. We also obtain the growth of the rank as a function of the size of these matrix sub-blocks. For other kernels in three dimensions, we numerically illustrate a similar scaling in rank for the different off-diagonal sub-blocks. We leverage this hierarchical low-rank structure to construct HODLR3D representation, with which we accelerate matrix-vector products. The storage and computational complexity of the HODLR3D matrix-vector product scales almost linearly with system size. We demonstrate the computational performance of HODLR3D representation through various numerical experiments. Further, we explore the performance of the HODLR3D representation on distributed memory systems. HODLR3D, described in this article, is based on a weak admissibility condition. Among the hierarchical matrices with different weak admissibility conditions in 3D, only in HODLR3D did the rank of the admissible off-diagonal blocks not scale with any power of the system size. Thus, the storage and the computational complexity of the HODLR3D matrix-vector product remain tractable for
N
-body problems with large system sizes. This article introduces HODLR3D, a class of hierarchical matrices arising out of N-body problems in three dimensions. HODLR3D relies on the fact that certain off-diagonal matrix sub-blocks arising out of the N-body problems in three dimensions are numerically low rank. For the Laplace kernel in 3D, which is widely encountered, we prove that all the off-diagonal matrix sub-blocks are rank deficient in finite precision. We also obtain the growth of the rank as a function of the size of these matrix sub-blocks. For other kernels in three dimensions, we numerically illustrate a similar scaling in rank for the different off-diagonal sub-blocks. We leverage this hierarchical low-rank structure to construct HODLR3D representation, with which we accelerate matrix-vector products. The storage and computational complexity of the HODLR3D matrix-vector product scales almost linearly with system size. We demonstrate the computational performance of HODLR3D representation through various numerical experiments. Further, we explore the performance of the HODLR3D representation on distributed memory systems. HODLR3D, described in this article, is based on a weak admissibility condition. Among the hierarchical matrices with different weak admissibility conditions in 3D, only in HODLR3D did the rank of the admissible off-diagonal blocks not scale with any power of the system size. Thus, the storage and the computational complexity of the HODLR3D matrix-vector product remain tractable for N-body problems with large system sizes. |
| Author | Gujjula, Vaishnavi A, Kandappan V. Ambikasaran, Sivaram |
| Author_xml | – sequence: 1 givenname: Kandappan V. surname: A fullname: A, Kandappan V. email: kandappanva@gmail.com organization: Department of Mathematics, Indian Institute of Technology Madras – sequence: 2 givenname: Vaishnavi surname: Gujjula fullname: Gujjula, Vaishnavi organization: Department of Mathematics, Indian Institute of Technology Madras – sequence: 3 givenname: Sivaram surname: Ambikasaran fullname: Ambikasaran, Sivaram organization: Department of Mathematics, Indian Institute of Technology Madras, Wadhwani School of Data Science and Artificial Intelligence, Indian Institute of Technology Madras, Department of Data Science and Artificial Intelligence, Indian Institute of Technology Madras, Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of Technology Madras |
| BookMark | eNp9kEFLwzAYhoNMcJv-AU8Fz9EkX5O03mRzThgORM8hTROX0bUz6Q7790YrCB52ykd4n-97eSZo1HatReiakltKiLyLlBLJMWE5JlQKjvMzNKZcMlwywUdpTt-YQllcoEmMW0ISxuQYLZbr-eoV5vfZxtugg9l4o5tsp_vgjY2Z60L2gquuPmb70FWN3cXMt1m_CdZmtd_ZNvqujZfo3Okm2qvfd4reF49vsyVerZ-eZw8rbICWPQZZl3ktrRCMG1eUUBFXWshdJRgtNDCXawHSgtaVkIZbVxrKQQpac1ZJA1N0M-xNZT4PNvZq2x1Cm04qoACFZCBEShVDyoQuxmCdMr7XfSraB-0bRYn6tqYGaypZUz_WVJ5Q9g_dB7_T4XgaggGKKdx-2PDX6gT1BTBCf_M |
| CitedBy_id | crossref_primary_10_1137_24M1683925 |
| Cites_doi | 10.1007/s00607-004-0080-4 10.1007/s006070070031 10.1137/120903476 10.1016/j.cma.2016.05.029 10.1007/s006070050015 10.1007/978-3-662-47324-5 10.1002/nla.455 10.1137/S0895479802405884 10.1137/060662083 10.1109/TEMC.2005.857898 10.1216/JIE-2009-21-3-331 10.1016/j.jcp.2023.112627 10.7551/mitpress/5750.001.0001 10.1137/22M1491253 10.1017/S0962492900002725 10.1007/PL00005410 10.1007/s00607-003-0019-1 10.1137/16M1077192 10.1007/s00607-002-1469-6 10.1007/s10092-005-0107-z 10.1137/1.9781611971538 10.1016/j.csda.2019.02.002 10.1016/S0955-7997(02)00152-2 10.1007/978-3-319-62426-6_17 10.1038/324446a0 10.1016/0021-9991(87)90140-9 10.1007/s10915-013-9714-z 10.1137/0907058 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11075-024-01765-4 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central (NC Live) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Computer Science |
| EISSN | 1572-9265 |
| EndPage | 1672 |
| ExternalDocumentID | 10_1007_s11075_024_01765_4 |
| GrantInformation_xml | – fundername: Board of Research in Nuclear Sciences, Department of Atomic Energy, India grantid: 34/20/03/2017-BRNS/34278 – fundername: MATRICS grant from the Science and Engineering Research Board, India grantid: MTR/2019/001241 – fundername: Women Leading IITM (India) 2022 in Mathematics grantid: SB22230053MAIITM008880 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-37d94d7e6625cf893b0f9e34fb6218a32f4a637e3aab67c5ef9c153761d52b7c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001174414500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1017-1398 |
| IngestDate | Tue Dec 02 10:00:36 EST 2025 Sat Nov 29 01:35:02 EST 2025 Tue Nov 18 21:43:06 EST 2025 Fri Feb 21 02:38:30 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | 68Q25 Hierarchical matrices 68U20 45B05 body problems HODLR 68U05 68R10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-37d94d7e6625cf893b0f9e34fb6218a32f4a637e3aab67c5ef9c153761d52b7c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3133872366 |
| PQPubID | 2043837 |
| PageCount | 38 |
| ParticipantIDs | proquest_journals_3133872366 crossref_citationtrail_10_1007_s11075_024_01765_4 crossref_primary_10_1007_s11075_024_01765_4 springer_journals_10_1007_s11075_024_01765_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20241200 2024-12-00 20241201 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Numerical algorithms |
| PublicationTitleAbbrev | Numer Algor |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | HackbuschWKhoromskijBNKriemannRHierarchical matrices based on a weak admissibility criterionComputing2004733207243210624910.1007/s00607-004-0080-4 Gujjula, V., Ambikasaran, S.: Algebraic inverse fast multipole method: a fast direct solver that is better than HODLR based fast direct solver. arXiv:2301.12704 (2023) GrasedyckLHackbuschWConstruction and arithmetics of H-matricesComputing2003704295334201141910.1007/s00607-003-0019-1 Li, Y., Poulson, J., Ying, L.: Distributed-memory H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}$$\end{document}-matrix algebra I: data distribution and matrix-vector multiplication. arXiv:2008.12441 (2020) Gray, A., Moore, A.: N-body’ problems in statistical learning. Advances in neural information processing systems 13 (2000) TyrtyshnikovEIncomplete cross approximation in the mosaic-skeleton methodComputing2000644367380178346810.1007/s006070070031 VandebrilRBarelMVGolubGMastronardiNA bibliography on semiseparable matricesCalcolo2005423249270219120110.1007/s10092-005-0107-z GumerovNADuraiswamiRFast radial basis function interpolation via preconditioned Krylov iterationSIAM J. Sci. Comput.200729518761899235001110.1137/060662083 CoulierPDarveEEfficient mesh deformation based on radial basis function interpolation by means of the inverse fast multipole methodComput. Methods Appl. Mech. Eng.2016308286309352227910.1016/j.cma.2016.05.029 Greengard, L.: The rapid evaluation of potential fields in particle systems. MIT Press, (1988) GreengardLRokhlinVA fast algorithm for particle simulationsJ. Comput. Phys.198773232534891844810.1016/0021-9991(87)90140-9 Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., Vorst, H.: Templates for the solution of linear systems: building blocks for iterative methods. SIAM, (1994) Barnes, J., Hut, P.: A hierarchical O (N log N) force-calculation algorithm. Nature. 324(6096), 446–449 (1986) Amestoy, P., Buttari, A., l’Excellent, J.-Y., Mary, T.: On the complexity of the block low-rank multifrontal factorization. SIAM Journal on Scientific Computing. 39(4), 1710–1740 (2017) Khan, R., Kandappan, V., Ambikasaran, S.: Numerical rank of singular kernel functions. arXiv:2209.05819 (2022) Izadi, M.: Hierarchical matrix techniques on massively parallel computers. Thesis (2012) VandebrilRVan BarelMMastronardiNA note on the representation and definition of semiseparable matricesNumerical Linear Algebra with Applications.2005128839858217268110.1002/nla.455 AmbikasaranSDarveEAn O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{O} (n \log n)$$\end{document}-fast direct solver for partial hierarchically semi-separable matricesJ. Sci. Comput.2013573477501312355410.1007/s10915-013-9714-z ZhaoKVouvakisMNLeeJ-FThe adaptive cross approximation algorithm for accelerated method of moments computations of EMC problemsIEEE Trans. Electromagn. Compat.200547476377310.1109/TEMC.2005.857898 GreengardLRokhlinVA new version of the fast multipole method for the Laplace equation in three dimensionsActa Numer19976229269148925710.1017/S0962492900002725 BörmSGrasedyckLHackbuschWIntroduction to hierarchical matrices with applicationsEng. Anal. Boundary Elem.200327540542210.1016/S0955-7997(02)00152-2 KandappanVAGujjulaVAmbikasaranSHODLR2D: a new class of hierarchical matricesSIAM J. Sci. Comput.202345523822408464384510.1137/22M1491253 Ambikasaran, S.: Fast algorithms for dense numerical linear algebra and applications. PhD thesis, Stanford University (2013) SaadYSchultzMHGMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systemsSIAM J. Sci. Stat. Comput.19867385686984856810.1137/0907058 Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. part i:Introduction to H-matrices. Computing. 62(2), 89–108 (1999) LitvinenkoASunYGentonMGKeyesDELikelihood approximation with hierarchical matrices for large spatial datasetsComputational Statistics & Data Analysis.2019137115132392106410.1016/j.csda.2019.02.002 ChandrasekaranSDewildePGuMPalsTSunXVeenA-JWhiteDSome fast algorithms for sequentially semiseparable representationsSIAM J. Matrix Anal. Appl.2005272341364217967610.1137/S0895479802405884 Hackbusch, W.: Hierarchical matrices: algorithms and analysis vol. 49. Springer (2015) BebendorfMRjasanowSAdaptive low-rank approximation of collocation matricesComputing2003701124197272410.1007/s00607-002-1469-6 Ambikasaran, S., Darve, E.: The inverse fast multipole method. arXiv:1407.1572 (2014) Amestoy, P., Ashcraft, C., Boiteau, O., Buttari, A., l’Excellent, J.-Y., Weisbecker, C.: Improving multifrontal methods by means of block low-rank representations. SIAM Journal on Scientific Computing. 37(3), 1451–1474 (2015) BebendorfMApproximation of boundary element matricesNumer. Math.2000864565589179434310.1007/PL00005410 BörmSGrasedyckLHackbuschWHierarchical matrices. Lecture notes.2003212003 BeatsonRGreengardLA short course on fast multipole methodsWavelets, multilevel methods and elliptic PDEs.199711371600672 Bebendorf, M., Kunis, S.: Recompression techniques for adaptive cross approximation. The Journal of Integral Equations and Applications, 331–357 (2009) Yokota, R., Ibeid, H., Keyes, D.: Fast multipole method as a matrix-free hierarchical low-rank approximation. In: International Workshop on Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing, pp. 267–286 (2015). Springer Y Saad (1765_CR32) 1986; 7 P Coulier (1765_CR3) 2016; 308 1765_CR5 1765_CR8 NA Gumerov (1765_CR4) 2007; 29 VA Kandappan (1765_CR7) 2023; 45 1765_CR1 S Börm (1765_CR17) 2003; 21 K Zhao (1765_CR27) 2005; 47 E Tyrtyshnikov (1765_CR28) 2000; 64 1765_CR20 1765_CR22 1765_CR21 1765_CR23 1765_CR19 R Vandebril (1765_CR16) 2005; 12 R Beatson (1765_CR25) 1997; 1 R Vandebril (1765_CR15) 2005; 42 S Chandrasekaran (1765_CR14) 2005; 27 M Bebendorf (1765_CR29) 2000; 86 L Greengard (1765_CR9) 1987; 73 1765_CR31 1765_CR30 L Greengard (1765_CR11) 1997; 6 M Bebendorf (1765_CR26) 2003; 70 A Litvinenko (1765_CR2) 2019; 137 L Grasedyck (1765_CR6) 2003; 70 1765_CR36 W Hackbusch (1765_CR24) 2004; 73 S Börm (1765_CR18) 2003; 27 1765_CR33 1765_CR10 S Ambikasaran (1765_CR13) 2013; 57 1765_CR35 1765_CR12 1765_CR34 |
| References_xml | – reference: CoulierPDarveEEfficient mesh deformation based on radial basis function interpolation by means of the inverse fast multipole methodComput. Methods Appl. Mech. Eng.2016308286309352227910.1016/j.cma.2016.05.029 – reference: GreengardLRokhlinVA new version of the fast multipole method for the Laplace equation in three dimensionsActa Numer19976229269148925710.1017/S0962492900002725 – reference: Khan, R., Kandappan, V., Ambikasaran, S.: Numerical rank of singular kernel functions. arXiv:2209.05819 (2022) – reference: BeatsonRGreengardLA short course on fast multipole methodsWavelets, multilevel methods and elliptic PDEs.199711371600672 – reference: Gray, A., Moore, A.: N-body’ problems in statistical learning. Advances in neural information processing systems 13 (2000) – reference: VandebrilRVan BarelMMastronardiNA note on the representation and definition of semiseparable matricesNumerical Linear Algebra with Applications.2005128839858217268110.1002/nla.455 – reference: TyrtyshnikovEIncomplete cross approximation in the mosaic-skeleton methodComputing2000644367380178346810.1007/s006070070031 – reference: Barnes, J., Hut, P.: A hierarchical O (N log N) force-calculation algorithm. Nature. 324(6096), 446–449 (1986) – reference: Yokota, R., Ibeid, H., Keyes, D.: Fast multipole method as a matrix-free hierarchical low-rank approximation. In: International Workshop on Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing, pp. 267–286 (2015). Springer – reference: GrasedyckLHackbuschWConstruction and arithmetics of H-matricesComputing2003704295334201141910.1007/s00607-003-0019-1 – reference: Ambikasaran, S., Darve, E.: The inverse fast multipole method. arXiv:1407.1572 (2014) – reference: Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. part i:Introduction to H-matrices. Computing. 62(2), 89–108 (1999) – reference: AmbikasaranSDarveEAn O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{O} (n \log n)$$\end{document}-fast direct solver for partial hierarchically semi-separable matricesJ. Sci. Comput.2013573477501312355410.1007/s10915-013-9714-z – reference: Amestoy, P., Buttari, A., l’Excellent, J.-Y., Mary, T.: On the complexity of the block low-rank multifrontal factorization. SIAM Journal on Scientific Computing. 39(4), 1710–1740 (2017) – reference: BörmSGrasedyckLHackbuschWHierarchical matrices. Lecture notes.2003212003 – reference: Ambikasaran, S.: Fast algorithms for dense numerical linear algebra and applications. PhD thesis, Stanford University (2013) – reference: Amestoy, P., Ashcraft, C., Boiteau, O., Buttari, A., l’Excellent, J.-Y., Weisbecker, C.: Improving multifrontal methods by means of block low-rank representations. SIAM Journal on Scientific Computing. 37(3), 1451–1474 (2015) – reference: BebendorfMRjasanowSAdaptive low-rank approximation of collocation matricesComputing2003701124197272410.1007/s00607-002-1469-6 – reference: HackbuschWKhoromskijBNKriemannRHierarchical matrices based on a weak admissibility criterionComputing2004733207243210624910.1007/s00607-004-0080-4 – reference: GreengardLRokhlinVA fast algorithm for particle simulationsJ. Comput. Phys.198773232534891844810.1016/0021-9991(87)90140-9 – reference: ZhaoKVouvakisMNLeeJ-FThe adaptive cross approximation algorithm for accelerated method of moments computations of EMC problemsIEEE Trans. Electromagn. Compat.200547476377310.1109/TEMC.2005.857898 – reference: Gujjula, V., Ambikasaran, S.: Algebraic inverse fast multipole method: a fast direct solver that is better than HODLR based fast direct solver. arXiv:2301.12704 (2023) – reference: Bebendorf, M., Kunis, S.: Recompression techniques for adaptive cross approximation. The Journal of Integral Equations and Applications, 331–357 (2009) – reference: Hackbusch, W.: Hierarchical matrices: algorithms and analysis vol. 49. Springer (2015) – reference: Li, Y., Poulson, J., Ying, L.: Distributed-memory H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{H}$$\end{document}-matrix algebra I: data distribution and matrix-vector multiplication. arXiv:2008.12441 (2020) – reference: ChandrasekaranSDewildePGuMPalsTSunXVeenA-JWhiteDSome fast algorithms for sequentially semiseparable representationsSIAM J. Matrix Anal. Appl.2005272341364217967610.1137/S0895479802405884 – reference: LitvinenkoASunYGentonMGKeyesDELikelihood approximation with hierarchical matrices for large spatial datasetsComputational Statistics & Data Analysis.2019137115132392106410.1016/j.csda.2019.02.002 – reference: Greengard, L.: The rapid evaluation of potential fields in particle systems. MIT Press, (1988) – reference: BebendorfMApproximation of boundary element matricesNumer. Math.2000864565589179434310.1007/PL00005410 – reference: Izadi, M.: Hierarchical matrix techniques on massively parallel computers. Thesis (2012) – reference: BörmSGrasedyckLHackbuschWIntroduction to hierarchical matrices with applicationsEng. Anal. Boundary Elem.200327540542210.1016/S0955-7997(02)00152-2 – reference: KandappanVAGujjulaVAmbikasaranSHODLR2D: a new class of hierarchical matricesSIAM J. Sci. Comput.202345523822408464384510.1137/22M1491253 – reference: GumerovNADuraiswamiRFast radial basis function interpolation via preconditioned Krylov iterationSIAM J. Sci. Comput.200729518761899235001110.1137/060662083 – reference: Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., Vorst, H.: Templates for the solution of linear systems: building blocks for iterative methods. SIAM, (1994) – reference: VandebrilRBarelMVGolubGMastronardiNA bibliography on semiseparable matricesCalcolo2005423249270219120110.1007/s10092-005-0107-z – reference: SaadYSchultzMHGMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systemsSIAM J. Sci. Stat. Comput.19867385686984856810.1137/0907058 – volume: 73 start-page: 207 issue: 3 year: 2004 ident: 1765_CR24 publication-title: Computing doi: 10.1007/s00607-004-0080-4 – volume: 64 start-page: 367 issue: 4 year: 2000 ident: 1765_CR28 publication-title: Computing doi: 10.1007/s006070070031 – ident: 1765_CR21 doi: 10.1137/120903476 – volume: 308 start-page: 286 year: 2016 ident: 1765_CR3 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.05.029 – ident: 1765_CR5 doi: 10.1007/s006070050015 – ident: 1765_CR23 – ident: 1765_CR19 doi: 10.1007/978-3-662-47324-5 – volume: 12 start-page: 839 issue: 8 year: 2005 ident: 1765_CR16 publication-title: Numerical Linear Algebra with Applications. doi: 10.1002/nla.455 – ident: 1765_CR12 – volume: 27 start-page: 341 issue: 2 year: 2005 ident: 1765_CR14 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479802405884 – volume: 29 start-page: 1876 issue: 5 year: 2007 ident: 1765_CR4 publication-title: SIAM J. Sci. Comput. doi: 10.1137/060662083 – volume: 47 start-page: 763 issue: 4 year: 2005 ident: 1765_CR27 publication-title: IEEE Trans. Electromagn. Compat. doi: 10.1109/TEMC.2005.857898 – ident: 1765_CR30 doi: 10.1216/JIE-2009-21-3-331 – volume: 21 start-page: 2003 year: 2003 ident: 1765_CR17 publication-title: Hierarchical matrices. Lecture notes. – ident: 1765_CR36 doi: 10.1016/j.jcp.2023.112627 – ident: 1765_CR10 doi: 10.7551/mitpress/5750.001.0001 – ident: 1765_CR33 – volume: 45 start-page: 2382 issue: 5 year: 2023 ident: 1765_CR7 publication-title: SIAM J. Sci. Comput. doi: 10.1137/22M1491253 – volume: 6 start-page: 229 year: 1997 ident: 1765_CR11 publication-title: Acta Numer doi: 10.1017/S0962492900002725 – ident: 1765_CR35 – volume: 86 start-page: 565 issue: 4 year: 2000 ident: 1765_CR29 publication-title: Numer. Math. doi: 10.1007/PL00005410 – volume: 70 start-page: 295 issue: 4 year: 2003 ident: 1765_CR6 publication-title: Computing doi: 10.1007/s00607-003-0019-1 – ident: 1765_CR1 – ident: 1765_CR22 doi: 10.1137/16M1077192 – volume: 70 start-page: 1 issue: 1 year: 2003 ident: 1765_CR26 publication-title: Computing doi: 10.1007/s00607-002-1469-6 – volume: 1 start-page: 1 year: 1997 ident: 1765_CR25 publication-title: Wavelets, multilevel methods and elliptic PDEs. – volume: 42 start-page: 249 issue: 3 year: 2005 ident: 1765_CR15 publication-title: Calcolo doi: 10.1007/s10092-005-0107-z – ident: 1765_CR31 doi: 10.1137/1.9781611971538 – volume: 137 start-page: 115 year: 2019 ident: 1765_CR2 publication-title: Computational Statistics & Data Analysis. doi: 10.1016/j.csda.2019.02.002 – volume: 27 start-page: 405 issue: 5 year: 2003 ident: 1765_CR18 publication-title: Eng. Anal. Boundary Elem. doi: 10.1016/S0955-7997(02)00152-2 – ident: 1765_CR20 doi: 10.1007/978-3-319-62426-6_17 – ident: 1765_CR8 doi: 10.1038/324446a0 – volume: 73 start-page: 325 issue: 2 year: 1987 ident: 1765_CR9 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(87)90140-9 – ident: 1765_CR34 – volume: 57 start-page: 477 issue: 3 year: 2013 ident: 1765_CR13 publication-title: J. Sci. Comput. doi: 10.1007/s10915-013-9714-z – volume: 7 start-page: 856 issue: 3 year: 1986 ident: 1765_CR32 publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0907058 |
| SSID | ssj0010027 |
| Score | 2.3819823 |
| Snippet | This article introduces HODLR3D, a class of hierarchical matrices arising out of
N
-body problems in three dimensions. HODLR3D relies on the fact that certain... This article introduces HODLR3D, a class of hierarchical matrices arising out of N-body problems in three dimensions. HODLR3D relies on the fact that certain... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1635 |
| SubjectTerms | Algebra Algorithms Complexity Computer Science Distributed memory Many body problem Numeric Computing Numerical Analysis Original Paper Representations Theory of Computation |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTwIxEJ0oetCDKGpE0fTgTRvZ7e6WejFGJBwQjR8Jt832YxMSBWTRxH_vtBSIJnLxvLtNs28689qZzgM4VYwLpNWaxrGUNJLMUImBnmK4iHnOBMsyh3SHd7uNXk88-AO3wpdVznyic9R6qOwZ-QWzmykesiS5Gr1Tqxpls6teQmMV1myXhMCV7j3Nswh2z-WyneiJkek0_KWZ6dU53PfYKdkaDJ7ENPoZmBZs81eC1MWdVvm_M96GLc84yfXURHZgxQwqUPbsk_i1XVRg827ewbXYhVb7vtl5ZM1LYsWyXboB0SRvrqO_KQhyXdKlcqi_iNekKUh_QCZoGoZoKxlgj-GKPXhp3T7ftKnXXKAKF-ME_Y0WkeYmQQBVjmRG1nNhWJTLBMlAxsI8yhLGDWIoE65ikwsV2JYwgY5DyRXbh9JgODAHQCTCXW-IEN2Iwe-FlDEGhlBHgisdm6QKweyHp8o3JLe6GK_popWyBSlFkFIHUhpV4Wz-zWjajmPp27UZMqlfmkW6gKUK5zNsF4__Hu1w-WhHsBFac3KlLjUoTcYf5hjW1eekX4xPnGF-A8_Q5WY priority: 102 providerName: ProQuest |
| Title | HODLR3D: hierarchical matrices for N-body problems in three dimensions |
| URI | https://link.springer.com/article/10.1007/s11075-024-01765-4 https://www.proquest.com/docview/3133872366 |
| Volume | 97 |
| WOSCitedRecordID | wos001174414500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: K7- dateStart: 20241201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: M7S dateStart: 20241201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (NC Live) customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: BENPR dateStart: 20241201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPfkzF6Sx58E0DrmmaxTd1joFzyqayt7KkKQy0ip2C_72XmG4oKuhrmoRwd7n7Xe9yB7CvmZAIq1PKuVI0UsxQhYaeorngImOSjUaO013R6zWHQ3ntH4UVZbZ7GZJ0mnr22A09FbuJzZoQMafRPCxwW23G-uiDu2nswHpaLsaJ-hfxTdM_lfl-j8_maIYxv4RFnbVpr_7vnGuw4tElOfkQh3WYM3kVVj3SJP4eFzhUNnMox6qwfDkt4FpsQLtz1er2WeuY2F7ZLtqAzCQPrqC_KQhCXdKj6jF9I74lTUHGOZmgZBiS2o4B9i9csQm37fObsw71LReoxrs4QXWTyigVJkb-6QyxjDrKpGFRpmLEAiMWZtEoZsIgC1UsNDeZ1A1bEaaR8lAJzbagkj_mZhuIQm4fNWWIWsTgeqkUR7sQppEUOuUmrkGjpHyifT1y2xbjPplVUraUTJCSiaNkEtXgYLrm6aMax6-z6yVDE38zi4RZp1yELMYDHJYMnH3-ebedv03fhaXQyoDLfKlDZfL8YvZgUb9OxsVzAAun573rfgDzF4IGNuF0EDgpfgeIfeUJ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB5BQKI9lEepmpaHD_QEFsn6FVeqqpYQBRG2CFGJ2xI_VkJqE5pNW-VP9Td2vPEmAgluHDjv2vKuP88347HnA9izTGl0qx0VwhjKDfPUINFTpAuhcqZZv1_OdE-laevqSp8vwL_qLkw4VlnZxNJQu6ENe-SHLARTKmFSfr79RYNqVMiuVhIaU1ic-slfDNmKTydtnN8PSdI5vjzq0qgqQC3CbYwrymnulJc4RJsjXZtGrj3juZFId32W5LwvmfI4SiOVFT7XthmKnjSdSIyyDPtdhCXOuBQ1WPp6nJ5fzPIWIcor86to-9G3asVrOtPLehhphZ8QTn0oKSi_S4Vz__ZeSrZkus7qc_tHa_Aq-tTky3QRrMOCH2zAavSvSbRexQa8PJvVqC1eQ6f7rd27YO2PJMiBlwkVxCv5WWoW-IKgN09SaoZuQqLqTkFuBmSM4PfEBVGEsNFYbML3J_m2N1AbDAf-LRCDgG60dIKG0mN7bYxA6ksc18o64WUdmtUEZzaWXA_KHz-yebHoAIoMQZGVoMh4HfZnbW6nBUcefXurQkIWjU-RzWFQh4MKS_PHD_f27vHedmGle3nWy3on6el7eJEEKJcHe7agNh799tuwbP-Mb4rRTlwWBK6fGmX_AdkOQ5o |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-J0ah580-LWtM3imziL4qzDG76V5VIYaDfWKvjvPcnaTUUF8TVNQsh3kvOl5wawLynjSKuV4_tCOJ6g2hGo6B1UFz5LKKfdrkW6zaKo-fjIOx-i-K23e2mSHMU0mCxNaX40UMnRJPANXy1mQuNBwQLf8aZhxsM249R1c_swtiOYV5e1d-JdjFynWYTNfD_HZ9U04ZtfTKRW84RL_1_zMiwWrJOcjMRkBaZ0ugpLBQMlxfnOsKks8lC2rcLC1Tixa7YG4fl1q31DW8fE1NC2VggEmTzbRP86I0iBSeSIvnojRamajPRSkqPEaKJMJQHzdy5bh_vw7O703ClKMTgSz2iO15DinmI6QFxlghxH1BOuqZeIADlCl7qJ1w0o0witCJj0dcJlw2SKaSjfFUzSDaik_VRvAhEoBfUmd_F20TieC-GjvnCVx5lUvg6q0ChRiGWRp9yUy3iKJxmWzU7GuJOx3cnYq8LBeMxglKXj1961Ety4OLFZTM1jnbk0wAUclmBOPv8829bfuu_BXKcVxu2L6HIb5l0jDtY5pgaVfPiid2BWvua9bLhrBfkdk3jtbw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HODLR3D%3A+hierarchical+matrices+for+N-body+problems+in+three+dimensions&rft.jtitle=Numerical+algorithms&rft.au=A%2C+Kandappan+V.&rft.au=Gujjula%2C+Vaishnavi&rft.au=Ambikasaran%2C+Sivaram&rft.date=2024-12-01&rft.pub=Springer+US&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=97&rft.issue=4&rft.spage=1635&rft.epage=1672&rft_id=info:doi/10.1007%2Fs11075-024-01765-4&rft.externalDocID=10_1007_s11075_024_01765_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon |