Parallelization of the self-organized maps algorithm for federated learning on distributed sources

This paper describes a formally based approach for parallelizing the Kohonen algorithm used for the federated learning process in a special kind of neural networks—Self-Organizing Maps. Our approach enables executing the parallel algorithm version on the distributed data sources, taking into account...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of supercomputing Ročník 77; číslo 6; s. 6197 - 6213
Hlavní autoři: Kholod, Ivan, Rukavitsyn, Andrey, Paznikov, Alexey, Gorlatch, Sergei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.06.2021
Springer Nature B.V
Témata:
ISSN:0920-8542, 1573-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper describes a formally based approach for parallelizing the Kohonen algorithm used for the federated learning process in a special kind of neural networks—Self-Organizing Maps. Our approach enables executing the parallel algorithm version on the distributed data sources, taking into account the kind of data distribution on the nodes. Compared to the traditional approaches, we distinguish two kinds of data distributions—horizontal and vertical: for both, our suggested approach avoids gathering data in a single storage, but rather moves computations nearer to the data source nodes. This reduces the execution time of the algorithm, the network traffic, and the risk of an unauthorized access to the data during their transmission. Our experimental evaluation demonstrates the advantages of the approach.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-020-03509-2