Inductive reasoning for significant concept and pattern discovery in cognitive IoT
Recent research on the Internet of Things (IoT) focuses on the insertion of cognition into its system architecture and design, which introduces a new field known as Cognitive IoT (CIoT). Therefore, the CIoT inherits several features and challenges from IoT. The Cognitive IoT encompasses billions of...
Uloženo v:
| Vydáno v: | Service oriented computing and applications Ročník 19; číslo 3; s. 209 - 224 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.09.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1863-2386, 1863-2394 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recent research on the Internet of Things (IoT) focuses on the insertion of cognition into its system architecture and design, which introduces a new field known as Cognitive IoT (CIoT). Therefore, the CIoT inherits several features and challenges from IoT. The Cognitive IoT encompasses billions of devices that generate large amounts of heterogeneous, volatile, and time-dependent data. To ensure the smooth functioning of CIoT applications, meaningful insight must be obtained from the massive amounts of data. Thus, in order to uncover the hidden knowledge from these massive data sets, there needs to be a cognitively intelligent data analysis technique that is computationally efficient and cost-effective. Keeping this in mind, this research proposes inductive reasoning for extracting the concept and patterns from twenty-one years of environmental data. In the first phase of the proposed algorithm, the inductive value is computed for each chunk of the dataset, and it is transformed into a binary dataset for concept lattice generation. Furthermore, a weight assignment is performed for each generated concept, and the minimal inductive-valued concept is selected for inductive reasoning. Following the extraction of the generalized concept, the highest entropy row is selected by combining its corresponding concept data. As a result, this pattern is referred to as significant. An evaluation of the proposed algorithm on different scales demonstrates its efficiency over competing approaches. |
|---|---|
| AbstractList | Recent research on the Internet of Things (IoT) focuses on the insertion of cognition into its system architecture and design, which introduces a new field known as Cognitive IoT (CIoT). Therefore, the CIoT inherits several features and challenges from IoT. The Cognitive IoT encompasses billions of devices that generate large amounts of heterogeneous, volatile, and time-dependent data. To ensure the smooth functioning of CIoT applications, meaningful insight must be obtained from the massive amounts of data. Thus, in order to uncover the hidden knowledge from these massive data sets, there needs to be a cognitively intelligent data analysis technique that is computationally efficient and cost-effective. Keeping this in mind, this research proposes inductive reasoning for extracting the concept and patterns from twenty-one years of environmental data. In the first phase of the proposed algorithm, the inductive value is computed for each chunk of the dataset, and it is transformed into a binary dataset for concept lattice generation. Furthermore, a weight assignment is performed for each generated concept, and the minimal inductive-valued concept is selected for inductive reasoning. Following the extraction of the generalized concept, the highest entropy row is selected by combining its corresponding concept data. As a result, this pattern is referred to as significant. An evaluation of the proposed algorithm on different scales demonstrates its efficiency over competing approaches. |
| Author | Jha, Vidyapati Tripathi, Priyanka |
| Author_xml | – sequence: 1 givenname: Vidyapati orcidid: 0000-0003-4513-6000 surname: Jha fullname: Jha, Vidyapati email: vjha.phd2021.mca@nitrr.ac.in organization: Department of Computer Applications, National Institute of Technology – sequence: 2 givenname: Priyanka surname: Tripathi fullname: Tripathi, Priyanka organization: Department of Computer Applications, National Institute of Technology |
| BookMark | eNp9kN1LQyEchiUWtGr_QFdC16f8Onq8jNHHYBDEuhbn0eFYelI32H-fbVHQxbxR5Hne34_3EoxCDBaAG4zuMELiPmMsOG4QYQ1CDPNGnoEx7jhtCJVs9Pvu-AWY5LxG9VAiOi7G4G0W-q0pfmdhsjrH4MMKuphg9qvgnTc6FGhiMHYoUIceDroUmwLsfTZxZ9Me-lCBCh9CZnFxDc6d3mQ7-bmvwPvT42L60sxfn2fTh3ljKJaloZy7trOEGEacWCLd2l4QqTkmgvWkRRi5pZQOMadNt-S9dK1oDe5bWz8so1fg9pg7pPi5tbmoddymUEcqSlpBGBOoq1R3pEyKOSfrlPFFFx9DSdpvFEbqu0R1LFHVEtWhRCWrSv6pQ_IfOu1PS_Qo5QqHlU1_W52wvgAJEYbJ |
| CitedBy_id | crossref_primary_10_1007_s42044_025_00248_6 crossref_primary_10_1007_s42044_025_00236_w crossref_primary_10_1007_s43069_025_00492_3 crossref_primary_10_1007_s12597_025_00977_z crossref_primary_10_1016_j_adhoc_2024_103700 crossref_primary_10_1007_s13748_025_00380_1 |
| Cites_doi | 10.1007/s00607-020-00864-z 10.5194/gmd-7-1247-2014 10.1016/j.compeleceng.2022.107884 10.1371/journal.pone.0174202 10.1016/j.eswa.2022.117350 10.1109/TPDS.2019.2896143 10.1109/MCOM.2006.273099 10.1002/spe.2704 10.1109/JSAC.2011.110219 10.1080/096725500750039282 10.1016/0004-3702(80)90011-9 10.1109/MC.2019.2916829 10.3390/jsan9020021 10.1109/MIS.2013.142 10.1109/98.788210 10.1109/ICIAI.2019.8850817 10.1109/COMST.2021.3073036 10.1016/j.neucom.2021.02.105 10.1109/TNSE.2022.3168533 10.1016/j.rser.2014.04.054 10.1109/GLOCOM.2017.8253941 10.3390/s21227518 10.7717/PEERJ-CS.623 10.1016/j.eswa.2022.117628 10.1016/j.engappai.2021.104626 10.1155/2015/718390 10.1155/2022/7811196 10.1016/j.comnet.2009.01.002 10.1016/S0019-9958(65)90241-X 10.1007/978-981-15-4992-2_35 10.1109/SURV.2013.103013.00206 10.1109/TETCI.2019.2907718 10.1155/2021/7179374 10.1109/infocom.2008.187 10.1609/aaai.v32i1.12057 10.1109/TETC.2017.2681113 10.1016/j.vehcom.2021.100370 10.1016/j.datak.2022.102044 10.1109/JIOT.2014.2311513 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11761-024-00416-9 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1863-2394 |
| EndPage | 224 |
| ExternalDocumentID | 10_1007_s11761_024_00416_9 |
| GroupedDBID | -Y2 .VR 06D 0R~ 123 203 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40E 5VS 67Z 6NX 875 8TC 8UJ 95- 95. 95~ AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ATHPR AXYYD AYFIA AYJHY B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 ZMTXR ~A9 AAYXX ABJCF AFFHD AFKRA ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c319t-366f58e22c42f7b0a5ed729a61274d25010fb99f04fac8b6d9f575c1d5eface43 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001251309800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1863-2386 |
| IngestDate | Sat Nov 29 03:17:02 EST 2025 Sat Nov 29 07:31:27 EST 2025 Tue Nov 18 21:07:32 EST 2025 Sat Sep 13 01:10:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Concept lattice Reasoning Concept and pattern discovery Cognitive IoT |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-366f58e22c42f7b0a5ed729a61274d25010fb99f04fac8b6d9f575c1d5eface43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4513-6000 |
| PQID | 3257244708 |
| PQPubID | 2044172 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3257244708 crossref_citationtrail_10_1007_s11761_024_00416_9 crossref_primary_10_1007_s11761_024_00416_9 springer_journals_10_1007_s11761_024_00416_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Service oriented computing and applications |
| PublicationTitleAbbrev | SOCA |
| PublicationYear | 2025 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | H Gui (416_CR32) 2022; 109 A Rabbachin (416_CR6) 2011; 29 MS Mecibah (416_CR36) 2014; 36 M Taneja (416_CR35) 2019; 49 A Fathalla (416_CR31) 2022; 485 J Duan (416_CR43) 2022; 204 R Thomas (416_CR4) 2006; 44 W Hou (416_CR17) 2019; 7 416_CR25 J Wang (416_CR34) 2019; 30 N Mishra (416_CR15) 2015; 2015 416_CR21 W Chen (416_CR27) 2021; 23 416_CR20 P Agarwal (416_CR23) 2022; 100 A Manocha (416_CR22) 2020; 53 R Urgaonkar (416_CR3) 2008 S Latif (416_CR28) 2021; 21 C Salim (416_CR19) 2021; 103 J McCarthy (416_CR13) 1980; 13 MO Osifeko (416_CR29) 2020; 9 T Kegyes (416_CR26) 2021 C-WW Tsai (416_CR7) 2014; 16 A LeClair (416_CR42) 2022; 140 M Chen (416_CR41) 2022; 202 Y Zhang (416_CR9) 2018 N Kompridis (416_CR10) 2000; 8 D Chicco (416_CR38) 2021; 7 T Hasan (416_CR30) 2022 MLM Peixoto (416_CR33) 2021; 31 416_CR18 C Chen (416_CR40) 2017; 12 C Fortuna (416_CR5) 2009; 53 LA Zadeh (416_CR14) 1965; 8 P Barnaghi (416_CR16) 2013; 28 416_CR39 L Tari (416_CR11) 2013 416_CR12 X Xin (416_CR24) 2022; 2022 T Chai (416_CR37) 2014; 7 Q Wu (416_CR1) 2014; 1 J Mitola (416_CR2) 1999; 6 Q Chen (416_CR8) 2019; 3 |
| References_xml | – ident: 416_CR25 – volume: 103 start-page: 509 year: 2021 ident: 416_CR19 publication-title: Computing doi: 10.1007/s00607-020-00864-z – volume: 7 start-page: 1247 year: 2014 ident: 416_CR37 publication-title: Geosci Model Dev doi: 10.5194/gmd-7-1247-2014 – volume: 100 year: 2022 ident: 416_CR23 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2022.107884 – volume: 12 year: 2017 ident: 416_CR40 publication-title: PLoS ONE doi: 10.1371/journal.pone.0174202 – volume: 202 year: 2022 ident: 416_CR41 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.117350 – volume: 30 start-page: 1826 year: 2019 ident: 416_CR34 publication-title: IEEE Trans Parallel Distrib Syst doi: 10.1109/TPDS.2019.2896143 – volume: 44 start-page: 51 year: 2006 ident: 416_CR4 publication-title: IEEE Commun Mag doi: 10.1109/MCOM.2006.273099 – volume: 49 start-page: 1055 year: 2019 ident: 416_CR35 publication-title: Softw Pract Exp doi: 10.1002/spe.2704 – volume: 29 start-page: 480 year: 2011 ident: 416_CR6 publication-title: IEEE J Sel Areas Commun doi: 10.1109/JSAC.2011.110219 – volume: 8 start-page: 271 year: 2000 ident: 416_CR10 publication-title: Int J Philos Stud doi: 10.1080/096725500750039282 – volume: 13 start-page: 27 year: 1980 ident: 416_CR13 publication-title: Artif Intell doi: 10.1016/0004-3702(80)90011-9 – volume: 53 start-page: 46 year: 2020 ident: 416_CR22 publication-title: Comput (Long Beach Calif) doi: 10.1109/MC.2019.2916829 – volume: 9 start-page: 21 year: 2020 ident: 416_CR29 publication-title: J Sens Actuator Net doi: 10.3390/jsan9020021 – volume: 28 start-page: 6 year: 2013 ident: 416_CR16 publication-title: IEEE Intell Syst doi: 10.1109/MIS.2013.142 – volume: 6 start-page: 13 year: 1999 ident: 416_CR2 publication-title: IEEE Pers Commun doi: 10.1109/98.788210 – ident: 416_CR21 doi: 10.1109/ICIAI.2019.8850817 – volume: 23 start-page: 1659 year: 2021 ident: 416_CR27 publication-title: IEEE Commun Surv Tutorials doi: 10.1109/COMST.2021.3073036 – volume: 485 start-page: 166 year: 2022 ident: 416_CR31 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.02.105 – year: 2022 ident: 416_CR30 publication-title: IEEE Trans Netw Sci Eng doi: 10.1109/TNSE.2022.3168533 – volume: 36 start-page: 194 year: 2014 ident: 416_CR36 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.04.054 – ident: 416_CR20 doi: 10.1109/GLOCOM.2017.8253941 – volume: 21 start-page: 7518 year: 2021 ident: 416_CR28 publication-title: Sensors doi: 10.3390/s21227518 – start-page: 1074 volume-title: Springer year: 2013 ident: 416_CR11 – volume: 7 start-page: 1 year: 2021 ident: 416_CR38 publication-title: PeerJ Comput Sci doi: 10.7717/PEERJ-CS.623 – volume: 204 year: 2022 ident: 416_CR43 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.117628 – volume: 109 year: 2022 ident: 416_CR32 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2021.104626 – volume: 2015 start-page: 1 year: 2015 ident: 416_CR15 publication-title: Int J Distrib Sens Net doi: 10.1155/2015/718390 – volume: 2022 start-page: 1 year: 2022 ident: 416_CR24 publication-title: J Math doi: 10.1155/2022/7811196 – volume: 53 start-page: 1354 year: 2009 ident: 416_CR5 publication-title: Comput Networks doi: 10.1016/j.comnet.2009.01.002 – volume: 8 start-page: 338 year: 1965 ident: 416_CR14 publication-title: Control doi: 10.1016/S0019-9958(65)90241-X – ident: 416_CR18 doi: 10.1007/978-981-15-4992-2_35 – volume: 16 start-page: 77 year: 2014 ident: 416_CR7 publication-title: IEEE Commun Surv Tutorials doi: 10.1109/SURV.2013.103013.00206 – volume: 3 start-page: 392 year: 2019 ident: 416_CR8 publication-title: IEEE Trans Emerg Top Comput Intell doi: 10.1109/TETCI.2019.2907718 – year: 2021 ident: 416_CR26 publication-title: Complexity doi: 10.1155/2021/7179374 – year: 2008 ident: 416_CR3 publication-title: IEEE Trans Mob Comput doi: 10.1109/infocom.2008.187 – year: 2018 ident: 416_CR9 publication-title: Proc AAAI Conf Artif Intell doi: 10.1609/aaai.v32i1.12057 – ident: 416_CR12 – volume: 7 start-page: 369 year: 2019 ident: 416_CR17 publication-title: IEEE Trans Emerg Top Comput doi: 10.1109/TETC.2017.2681113 – ident: 416_CR39 – volume: 31 year: 2021 ident: 416_CR33 publication-title: Veh Commun doi: 10.1016/j.vehcom.2021.100370 – volume: 140 year: 2022 ident: 416_CR42 publication-title: Data Knowl Eng doi: 10.1016/j.datak.2022.102044 – volume: 1 start-page: 129 year: 2014 ident: 416_CR1 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2014.2311513 |
| SSID | ssj0000327867 |
| Score | 2.3815742 |
| Snippet | Recent research on the Internet of Things (IoT) focuses on the insertion of cognition into its system architecture and design, which introduces a new field... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 209 |
| SubjectTerms | Algorithms Automation Cognition Cognition & reasoning Cognitive science Computer Appl. in Administrative Data Processing Computer Science Computer Systems Organization and Communication Networks Data analysis Datasets e-Commerce/e-business Internet of Things IT in Business Kalman filters Knowledge discovery Logic Machine learning Management of Computing and Information Systems Massive data points Original Research Paper Reasoning Software Engineering/Programming and Operating Systems |
| Title | Inductive reasoning for significant concept and pattern discovery in cognitive IoT |
| URI | https://link.springer.com/article/10.1007/s11761-024-00416-9 https://www.proquest.com/docview/3257244708 |
| Volume | 19 |
| WOSCitedRecordID | wos001251309800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1863-2394 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327867 issn: 1863-2386 databaseCode: RSV dateStart: 20070401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB20evBi_cRqlRy8aSCbTZPsUUTRS5FapbdlN5tAQbalrYL_3km620VRQa_7EZZJZuZt8mYewLk1nKnMSSoky6jA8EdzKXKqImuEzo0zGQtiE6rf16NR8lAVhc1rtnt9JBkidVPsFuEvN8WcQn2TKEmTddjAdKe9Ow4en1c7KyzmSgfp2EjLmGJOklW1zPfDfM5IDcz8cjIaEs5t-3-fugPbFcAkV8sVsQtrttyDdi3eQCpf3oeBF-0IwY54XnrYlSWIYIlndHj-EJqcmGVRI8nKgkxDJ86S-Dpez_t8J-OSrNhH5H4yPICn25vh9R2tBBaoQc9b0FhK19OWcyO4UznLerZAsJ0h6lGiQHAUMZcniWPCZUbnskgcojsTFT2LF6yID6FVTkp7BARhi3MxAobCasQkhbasUCI3iN64NLzXgag2cmqq7uNeBOMlbfome6OlaLQ0GC1NOnCxeme67L3x69Pdeu7Syg_naYwRCQGMYroDl_VcNbd_Hu34b4-fwBb3wsCBfNaF1mL2ak9h07wtxvPZWVifHwkC3hQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50Cvri_InTqXnwTQNpm6bpo4jD4Rwyp-yttGkCA-nGNgX_ey9Zu6GooK9tEsolufuafHcfwLlWPotSIygXLKUc3R_NBM9o5GnFZaaMSpkTm4i6XTkYxA9lUti0YrtXV5LOUy-T3Tz85aYYU6gtEiVovAprHCOWJfL1Hp8XJyss8CPppGM9KQKKMUmU2TLfD_M5Ii1h5pebURdwWvX_feo2bJUAk1zNV8QOrOhiF-qVeAMp9_Ie9Kxoh3N2xPLS3aksQQRLLKPD8ofQ5ETNkxpJWuRk7CpxFsTm8Vre5zsZFmTBPiLtUX8fnlo3_etbWgosUIU7b0YDIUwote8r7psoY2mocwTbKaKeiOcIjjxmsjg2jJtUyUzksUF0p7w81PhA8-AAasWo0IdAELYYEyBgyLVETJJLzfKIZwrRmy-UHzbAq4ycqLL6uBXBeEmWdZOt0RI0WuKMlsQNuFj0Gc9rb_zaulnNXVLuw2kSoEdCABMx2YDLaq6Wr38e7ehvzc9g47Z_30k67e7dMWz6ViTYEdGaUJtNXvUJrKu32XA6OXVr9QN6WeD4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FfHiW1xdNQdvGkzbbJoeRV1clGXxhbfS5gGC1EVXwX_vJG23KiqI1zYNZSbJfEm-mQ9gz6iQxZkVlAuWUY7LH80Fz2kcGMVlrqzKmBebiAcDeXeXDD9k8Xu2e30lWeY0uCpNxfhwpO1hk_gW4PabYnyhrmCUoMk0zHAnGuT261e3k1MWFoWx9DKygRQRxfgkqsyZ77v5HJ0ayPnlltQHn97i_397CRYq4EmOypGyDFOmWIHFWtSBVHN8FS6dmIdfBInjq_vTWoLIljimh-MVoSuIKpMdSVZoMvIVOgvi8nsdH_SN3Bdkwkoi_cfrNbjpnV4fn9FKeIEqnJFjGglhu9KEoeKhjXOWdY1GEJ4hGoq5RtAUMJsniWXcZkrmQicWUZ8KdNfgA8OjdWgVj4XZAIJwxtoIgYQ2ErGKlobpmOcKUV0oVNhtQ1AbPFVVVXInjvGQNvWUndFSNFrqjZYmbdiffDMqa3L82rpT-zGt5udzGuFKhcAmZrINB7Xfmtc_97b5t-a7MDc86aUX_cH5FsyHTjvY89M60Bo_vZhtmFWv4_vnpx0_bN8BE0Hp3A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inductive+reasoning+for+significant+concept+and+pattern+discovery+in+cognitive+IoT&rft.jtitle=Service+oriented+computing+and+applications&rft.au=Jha%2C+Vidyapati&rft.au=Tripathi%2C+Priyanka&rft.date=2025-09-01&rft.pub=Springer+London&rft.issn=1863-2386&rft.eissn=1863-2394&rft.volume=19&rft.issue=3&rft.spage=209&rft.epage=224&rft_id=info:doi/10.1007%2Fs11761-024-00416-9&rft.externalDocID=10_1007_s11761_024_00416_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-2386&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-2386&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-2386&client=summon |