Reducing the overfitting in the gROC curve estimation
The generalized receiver-operating characteristic, gROC, curve considers the classification ability of diagnostic tests when both larger and lower values of the marker are associated with higher probabilities of being positive. Its empirical estimation implies to select the best classification subse...
Saved in:
| Published in: | Computational statistics Vol. 39; no. 2; pp. 1005 - 1022 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0943-4062, 1613-9658 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The generalized receiver-operating characteristic, gROC, curve considers the classification ability of diagnostic tests when both larger and lower values of the marker are associated with higher probabilities of being positive. Its empirical estimation implies to select the best classification subsets among those satisfying particular condition. Both strong and weak consistency have already been proved. However, using the same data for both to select the classification subsets and to calculate its gROC curve leads to an over-optimistic estimate of the real performance of the diagnostic criteria on future samples. In this work, the bias of the empirical gROC curve estimator is explored through Monte Carlo simulations. Besides, two cross-validation based algorithms are proposed for reducing the overfitting. The practical application of the proposed algorithms is illustrated through the analysis of a real-world dataset. Simulation results suggest that the empirical gROC curve estimator returns optimistic approximations, especially, in situations in which the diagnostic capacity of the marker is poor and the sample size is small. The new proposed algorithms improve the estimation of the actual diagnostic test accuracy, and get almost unbiased gAUCs in most of the considered scenarios. However, the cross-validation based algorithms reported larger
L
1
-errors than the standard empirical estimators, and increment the computational cost of the procedures. As online supplementary material, this manuscript includes an R function which wraps up the implemented routines. |
|---|---|
| AbstractList | The generalized receiver-operating characteristic, gROC, curve considers the classification ability of diagnostic tests when both larger and lower values of the marker are associated with higher probabilities of being positive. Its empirical estimation implies to select the best classification subsets among those satisfying particular condition. Both strong and weak consistency have already been proved. However, using the same data for both to select the classification subsets and to calculate its gROC curve leads to an over-optimistic estimate of the real performance of the diagnostic criteria on future samples. In this work, the bias of the empirical gROC curve estimator is explored through Monte Carlo simulations. Besides, two cross-validation based algorithms are proposed for reducing the overfitting. The practical application of the proposed algorithms is illustrated through the analysis of a real-world dataset. Simulation results suggest that the empirical gROC curve estimator returns optimistic approximations, especially, in situations in which the diagnostic capacity of the marker is poor and the sample size is small. The new proposed algorithms improve the estimation of the actual diagnostic test accuracy, and get almost unbiased gAUCs in most of the considered scenarios. However, the cross-validation based algorithms reported larger
L
1
-errors than the standard empirical estimators, and increment the computational cost of the procedures. As online supplementary material, this manuscript includes an R function which wraps up the implemented routines. The generalized receiver-operating characteristic, gROC, curve considers the classification ability of diagnostic tests when both larger and lower values of the marker are associated with higher probabilities of being positive. Its empirical estimation implies to select the best classification subsets among those satisfying particular condition. Both strong and weak consistency have already been proved. However, using the same data for both to select the classification subsets and to calculate its gROC curve leads to an over-optimistic estimate of the real performance of the diagnostic criteria on future samples. In this work, the bias of the empirical gROC curve estimator is explored through Monte Carlo simulations. Besides, two cross-validation based algorithms are proposed for reducing the overfitting. The practical application of the proposed algorithms is illustrated through the analysis of a real-world dataset. Simulation results suggest that the empirical gROC curve estimator returns optimistic approximations, especially, in situations in which the diagnostic capacity of the marker is poor and the sample size is small. The new proposed algorithms improve the estimation of the actual diagnostic test accuracy, and get almost unbiased gAUCs in most of the considered scenarios. However, the cross-validation based algorithms reported larger L1-errors than the standard empirical estimators, and increment the computational cost of the procedures. As online supplementary material, this manuscript includes an R function which wraps up the implemented routines. |
| Author | Díaz-Coto, Susana Martínez-Camblor, Pablo |
| Author_xml | – sequence: 1 givenname: Pablo orcidid: 0000-0001-7845-3905 surname: Martínez-Camblor fullname: Martínez-Camblor, Pablo email: Pablo.Martinez-Camblor@hitchcock.org organization: Department of Anesthesiology, Geisel School of Medicine at Dartmouth, Faculty of Health Sciences, Universidad Autonoma de Chile – sequence: 2 givenname: Susana surname: Díaz-Coto fullname: Díaz-Coto, Susana organization: Department of Epidemiology, Geisel School of Medicine at Dartmouth |
| BookMark | eNp9kEFLAzEQhYNUsK3-AU8LnqOTZDebPUpRKxQKRc9hN53UlLpbk2zBf2_aFQQPhcCQ4X0zb96EjNquRUJuGdwzgPIhADAFFLigwESeU3lBxkwyQStZqBEZQ5ULmoPkV2QSwhaA85KzMSlWuO6NazdZ_MCsO6C3Lsbj37Wn1ma1nGWm9wfMMET3WUfXtdfk0ta7gDe_dUren5_eZnO6WL68zh4X1AhWRSoKrAreGMZVIwS3qRTSGixrjsgaUFI0yYYslV1XVWNBNpLljYESa5FUYkruhrl73331ab_edr1v00rNq0KmV6g8qdSgMr4LwaPVxsWTz-hrt9MM9DEkPYSkU0j6FJKWCeX_0L1PN_rv85AYoJDE7Qb9n6sz1A8xW3pT |
| CitedBy_id | crossref_primary_10_1080_09593330_2024_2415722 |
| Cites_doi | 10.1201/9781439800225 10.1001/jama.1989.03430190084036 10.1177/0962280214541095 10.1146/annurev-statistics-040720-022432 10.1016/j.csda.2017.07.008 10.1007/s10182-020-00385-2 10.1093/biomet/89.2.315 10.1177/0962280217747009 10.1016/j.cgh.2022.03.022 10.1148/radiology.143.1.7063747 10.1002/sim.942 10.1177/0962280218795190 10.1016/j.csda.2010.11.018 10.1002/9780470317082 10.1002/sim.8869 10.1080/02664763.2018.1554628 10.1111/j.0006-341X.2002.00657.x 10.1126/science.171.3977.1217 10.1515/ijb-2020-0091 10.1093/oso/9780198509844.001.0001 10.1007/978-0-387-30164-8_469 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AL 8C1 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
| DOI | 10.1007/s00180-023-01344-6 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Public Health Database (NC LIVE) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1613-9658 |
| EndPage | 1022 |
| ExternalDocumentID | 10_1007_s00180_023_01344_6 |
| GrantInformation_xml | – fundername: Gobierno del Principado de Asturias grantid: GRUPIN AYUD/2021/50897 funderid: http://dx.doi.org/10.13039/100011941 – fundername: Ministerio de Ciencia e Innovación grantid: PID2020-118101GB-I00 funderid: http://dx.doi.org/10.13039/501100004837 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 7WY 88I 8C1 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAS LLZTM M0C M0N M2O M2P M4Y M7S MA- MK~ N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Y Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-35e952bc128b332f28b56fce7a2ee1b0863b272678fd99bf06b614bc07ea3e7a3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000946482400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0943-4062 |
| IngestDate | Wed Nov 26 14:52:10 EST 2025 Tue Nov 18 22:00:53 EST 2025 Sat Nov 29 06:39:13 EST 2025 Fri Feb 21 02:40:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Diagnostic problem gROC curve Binary classification problem Cross-validation Overfitting |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-35e952bc128b332f28b56fce7a2ee1b0863b272678fd99bf06b614bc07ea3e7a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7845-3905 |
| PQID | 2956956584 |
| PQPubID | 54096 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2956956584 crossref_citationtrail_10_1007_s00180_023_01344_6 crossref_primary_10_1007_s00180_023_01344_6 springer_journals_10_1007_s00180_023_01344_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20240400 2024-04-00 20240401 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 4 year: 2024 text: 20240400 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Computational statistics |
| PublicationTitleAbbrev | Comput Stat |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Hanley, McNeil (CR5) 1982; 143 Martínez-Camblor, Pérez-Fernández, Díaz-Coto (CR13) 2021; 18 McIntosh, Pepe (CR14) 2002; 58 Parodi, Pistoia, Muselli (CR16) 2008; 9 CR4 Bantis, Tsimikas, Chambers, Capello, Hanash, Feng (CR2) 2021; 40 Copas, Corbett (CR3) 2002; 89 CR7 Pepe (CR17) 2003 Pérez-Fernández, Martínez-Camblor, Filzmoser, Corral (CR18) 2021; 105 Zhou, Obuchowski, Clish (CR24) 2002 Montoya-Pérez, Airola, Jambor, Pahikkala (CR15) 2019; 28 Lusted (CR8) 1971; 171 Martínez-Camblor, Pardo-Fernández (CR11) 2019; 28 Airola, Pahikkala, Waegeman, De Baets, Salakoski (CR1) 2011; 55 Martínez-Camblor, Corral, Rey, Pascual, Cernuda-Morollón (CR10) 2017; 26 Shah, Pelletier, Greeley, Sieglinger, Sanchez, Northam, Perrone, Curley, Navas, Ostler, Burnett Greeley, Martínez-Camblor, Baker, Harris, Siegel, Chey (CR21) 2022 Rutter, Gatsonis (CR19) 2001; 20 CR20 Vanda, Rodríguez-Álvarez, Gayoso-Diz (CR23) 2021; 8 Krzanowski, Hand (CR6) 2009 Ma, Bandos, Gur (CR9) 2018; 117 Martínez-Camblor, Pérez-Fernández, Díaz-Coto (CR12) 2019; 46 Spanos, Harrell, Durack (CR22) 1989; 262 J Hanley (1344_CR5) 1982; 143 P Martínez-Camblor (1344_CR11) 2019; 28 1344_CR20 JB Copas (1344_CR3) 2002; 89 E Shah (1344_CR21) 2022 M Pepe (1344_CR17) 2003 P Martínez-Camblor (1344_CR13) 2021; 18 I Vanda (1344_CR23) 2021; 8 L Bantis (1344_CR2) 2021; 40 MW McIntosh (1344_CR14) 2002; 58 X Zhou (1344_CR24) 2002 H Ma (1344_CR9) 2018; 117 C Rutter (1344_CR19) 2001; 20 1344_CR4 S Pérez-Fernández (1344_CR18) 2021; 105 1344_CR7 P Martínez-Camblor (1344_CR12) 2019; 46 S Parodi (1344_CR16) 2008; 9 A Spanos (1344_CR22) 1989; 262 A Airola (1344_CR1) 2011; 55 IA Montoya-Pérez (1344_CR15) 2019; 28 W Krzanowski (1344_CR6) 2009 L Lusted (1344_CR8) 1971; 171 P Martínez-Camblor (1344_CR10) 2017; 26 |
| References_xml | – year: 2009 ident: CR6 publication-title: ROC curves for continuous data doi: 10.1201/9781439800225 – volume: 262 start-page: 2700 issue: 19 year: 1989 end-page: 2707 ident: CR22 article-title: Differential diagnosis of acute meningitis: an analysis of the predictive value of initial observations publication-title: J Am Med Assoc doi: 10.1001/jama.1989.03430190084036 – volume: 26 start-page: 113 issue: 1 year: 2017 end-page: 123 ident: CR10 article-title: Receiver operating characteristic curve generalization for non-monotone relationships publication-title: Stat Methods Med Res doi: 10.1177/0962280214541095 – volume: 8 start-page: 41 issue: 1 year: 2021 end-page: 67 ident: CR23 article-title: Statistical evaluation of medical tests publication-title: Ann Rev Stat Appl doi: 10.1146/annurev-statistics-040720-022432 – volume: 117 start-page: 76 year: 2018 end-page: 89 ident: CR9 article-title: Informativeness of diagnostic marker values and the impact of data grouping publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2017.07.008 – volume: 105 start-page: 135 year: 2021 ident: CR18 article-title: Visualizing the decision rules behind the ROC curves: understanding the classification process publication-title: AStA Adv Stat Anal doi: 10.1007/s10182-020-00385-2 – volume: 89 start-page: 315 issue: 2 year: 2002 end-page: 331 ident: CR3 article-title: Overestimation of the receiver operating characteristic curve for logistic regression publication-title: Biometrika doi: 10.1093/biomet/89.2.315 – ident: CR4 – volume: 9 start-page: 1 issue: 410 year: 2008 end-page: 30 ident: CR16 article-title: Not proper ROC curves as new tool for the analysis of differentially expressed genes in microarray experiments publication-title: J Math Psychol – volume: 28 start-page: 2032 issue: 7 year: 2019 end-page: 2048 ident: CR11 article-title: Parametric estimates for the receiver operating characteristic curve generalization for non-monotone relationships publication-title: Stat Methods Med Res doi: 10.1177/0962280217747009 – year: 2022 ident: CR21 article-title: An office-based, point-of-care test predicts treatment outcomes with community-based pelvic floor physical therapy in patients with chronic constipation publication-title: Clin Gastroenterol Hepatol doi: 10.1016/j.cgh.2022.03.022 – volume: 143 start-page: 29 year: 1982 end-page: 36 ident: CR5 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 20 start-page: 2865 issue: 19 year: 2001 end-page: 2884 ident: CR19 article-title: A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations publication-title: Stat Med doi: 10.1002/sim.942 – volume: 28 start-page: 2975 issue: 10–11 year: 2019 end-page: 2991 ident: CR15 article-title: Tournament leave-pair-out cross-validation for receiver operating characteristic analysis publication-title: Stat Methods Med Res doi: 10.1177/0962280218795190 – volume: 55 start-page: 1828 issue: 4 year: 2011 end-page: 1844 ident: CR1 article-title: An experimental comparison of cross-validation techniques for estimating the area under the ROC curve publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2010.11.018 – year: 2002 ident: CR24 publication-title: Statistical methods in diagnostic medicine doi: 10.1002/9780470317082 – volume: 40 start-page: 1767 issue: 7 year: 2021 end-page: 1789 ident: CR2 article-title: The length of the receiver operating characteristic curve and the two cutoff Youden index within a robust framework for discovery, evaluation, and cutoff estimation in biomarker studies involving improper receiver operating characteristic curves publication-title: Stat Med doi: 10.1002/sim.8869 – volume: 46 start-page: 1550 issue: 9 year: 2019 end-page: 1566 ident: CR12 article-title: Improving the biomarker diagnostic capacity via functional transformations publication-title: J Appl Stat doi: 10.1080/02664763.2018.1554628 – ident: CR7 – volume: 58 start-page: 657 issue: 3 year: 2002 end-page: 664 ident: CR14 article-title: Combining several screening tests: optimality of the risk score publication-title: Biometrics doi: 10.1111/j.0006-341X.2002.00657.x – volume: 171 start-page: 1217 issue: 3977 year: 1971 end-page: 1219 ident: CR8 article-title: Signal detectability and medical decision-making publication-title: Science doi: 10.1126/science.171.3977.1217 – volume: 18 start-page: 293 year: 2021 ident: CR13 article-title: The area under the generalized receiver-operating characteristic curve publication-title: Int J Biostat doi: 10.1515/ijb-2020-0091 – ident: CR20 – year: 2003 ident: CR17 publication-title: The statistical evaluation of medical tests for classification and prediction doi: 10.1093/oso/9780198509844.001.0001 – volume-title: The statistical evaluation of medical tests for classification and prediction year: 2003 ident: 1344_CR17 doi: 10.1093/oso/9780198509844.001.0001 – volume: 40 start-page: 1767 issue: 7 year: 2021 ident: 1344_CR2 publication-title: Stat Med doi: 10.1002/sim.8869 – volume: 9 start-page: 1 issue: 410 year: 2008 ident: 1344_CR16 publication-title: J Math Psychol – volume: 8 start-page: 41 issue: 1 year: 2021 ident: 1344_CR23 publication-title: Ann Rev Stat Appl doi: 10.1146/annurev-statistics-040720-022432 – volume: 105 start-page: 135 year: 2021 ident: 1344_CR18 publication-title: AStA Adv Stat Anal doi: 10.1007/s10182-020-00385-2 – year: 2022 ident: 1344_CR21 publication-title: Clin Gastroenterol Hepatol doi: 10.1016/j.cgh.2022.03.022 – volume: 26 start-page: 113 issue: 1 year: 2017 ident: 1344_CR10 publication-title: Stat Methods Med Res doi: 10.1177/0962280214541095 – volume: 262 start-page: 2700 issue: 19 year: 1989 ident: 1344_CR22 publication-title: J Am Med Assoc doi: 10.1001/jama.1989.03430190084036 – volume-title: Statistical methods in diagnostic medicine year: 2002 ident: 1344_CR24 doi: 10.1002/9780470317082 – volume: 89 start-page: 315 issue: 2 year: 2002 ident: 1344_CR3 publication-title: Biometrika doi: 10.1093/biomet/89.2.315 – ident: 1344_CR4 – volume: 28 start-page: 2975 issue: 10–11 year: 2019 ident: 1344_CR15 publication-title: Stat Methods Med Res doi: 10.1177/0962280218795190 – ident: 1344_CR7 – volume: 28 start-page: 2032 issue: 7 year: 2019 ident: 1344_CR11 publication-title: Stat Methods Med Res doi: 10.1177/0962280217747009 – volume: 20 start-page: 2865 issue: 19 year: 2001 ident: 1344_CR19 publication-title: Stat Med doi: 10.1002/sim.942 – volume: 55 start-page: 1828 issue: 4 year: 2011 ident: 1344_CR1 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2010.11.018 – volume: 18 start-page: 293 year: 2021 ident: 1344_CR13 publication-title: Int J Biostat doi: 10.1515/ijb-2020-0091 – volume-title: ROC curves for continuous data year: 2009 ident: 1344_CR6 doi: 10.1201/9781439800225 – ident: 1344_CR20 doi: 10.1007/978-0-387-30164-8_469 – volume: 117 start-page: 76 year: 2018 ident: 1344_CR9 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2017.07.008 – volume: 58 start-page: 657 issue: 3 year: 2002 ident: 1344_CR14 publication-title: Biometrics doi: 10.1111/j.0006-341X.2002.00657.x – volume: 143 start-page: 29 year: 1982 ident: 1344_CR5 publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – volume: 171 start-page: 1217 issue: 3977 year: 1971 ident: 1344_CR8 publication-title: Science doi: 10.1126/science.171.3977.1217 – volume: 46 start-page: 1550 issue: 9 year: 2019 ident: 1344_CR12 publication-title: J Appl Stat doi: 10.1080/02664763.2018.1554628 |
| SSID | ssj0022721 |
| Score | 2.3300061 |
| Snippet | The generalized receiver-operating characteristic, gROC, curve considers the classification ability of diagnostic tests when both larger and lower values of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1005 |
| SubjectTerms | Algorithms Classification Computer simulation Economic Theory/Quantitative Economics/Mathematical Methods Empirical analysis Mathematics and Statistics Monte Carlo simulation Original Paper Probability and Statistics in Computer Science Probability Theory and Stochastic Processes Statistics |
| SummonAdditionalLinks | – databaseName: SpringerLink Contemporary dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509bAefKyK64sevGmgm7RNe5TFxYOusj7YW2myE1mQKvv6_U7Sx6KooFAotNNQZpLMfGTmG4CzJAuFFBgxTKTPgiDkLPOVZCPa-TCWsTDo2PVvZL8fD4fJfVkUNq2y3asjSbdT18Vutn-cz8jHEPwVQcCiVVgjdxfb5Th4eK5hFpeu2sqmzBE6inhZKvP9GJ_d0TLG_HIs6rxNb-t__7kNm2V06V0W02EHVjBvwcZtTc06bUHThpcFO_MuhAPL3EqjeyTh2WxOM3aJ0N44d49eBnddT88nC_QsHUdR57gHT72rx-41KxspME0rbMZEiEnIlSZfpITghm5hZDTKjCN2FKEaoUhr5LcM2UgZP1LktZX2JWaCpMQ-NPK3HA_Ay3CkOoYwTkaxnjBGKdofBWJMSEt3ULShU-kz1SXLuG128ZrW_MhOPynpJ3X6SaM2nNffvBccG79KH1dmSsv1Nk05wTy6KJpqw0VlluXrn0c7_Jv4ETQ5RTVF6s4xNGaTOZ7Aul6Q4Sanbh5-AObD1Is priority: 102 providerName: Springer Nature |
| Title | Reducing the overfitting in the gROC curve estimation |
| URI | https://link.springer.com/article/10.1007/s00180-023-01344-6 https://www.proquest.com/docview/2956956584 |
| Volume | 39 |
| WOSCitedRecordID | wos000946482400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1613-9658 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: RSV dateStart: 20030901 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LSgMxcFDrQQ--xfooe_Cmwd2ku9meRIsiaB-0PqqXZZNOpCBt7cPvd5JuWxTsRVhmIZvNLjPJPJJ5AJyW0lBIgRHDkvRZsRhylvpKsjZxPoxlLAy67PoPslqNW61SPdtwG2ZulVOe6Bh1u6ftHvkFJ0WeLpKXl_1PZqtG2dPVrITGMuQCzgM7z-8lmxlcXLq4K-s8R3ZSxLOgGRc6Z6vR-YwkFhnTolhk0U_BNNc2fx2QOrlzu_nfP96CjUzj9K4mU2QblrC7A-uVWbrW4S6EDZvAlT7vUaNnnTpNx_lDe52ua3pv1MqeHg--0LNZOSbhjnvwdHvzWL5jWT0FpmmhjZgIsRRypUkkKSG4oVsYGY0y5YiBIuNGKEIZiS9DpFLGjxQJb6V9iamgXmIfVrq9Lh6Al2JbBYZMnZRUPmGMUsQmBWJMBpcOUOQhmCIz0VmycVvz4iOZpUl2BEiIAIkjQBLl4Wz2Tn-SamNh7-Mp1pNs2Q2TOcrzcD6l2_zx36MdLh7tCNY4KTMTj51jWBkNxngCq_pr1BkOCrAsX14JxuWgALnrm2q9UXATkWDFL1vIaw7WLZRNgvXwjWCj-fwN0ZnjlQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSwMxEB58gXrwLVar7kFPGtwm--geRKQqSh9KUfC2btKJFKRqWyv-KX-jk-xui4K9eRAWFrJJyO5M5rGZ-QZgL0p8EQoMGEahyzzP5yxxZchaJPmwHJaFRouuXwsbjfL9fXQzAZ95LowJq8xlohXUrWdl_pEfcTLk6SJ9efLyykzVKHO6mpfQSNmiih_v5LL1jq_OiL77nF-c31YuWVZVgClitz4TPkY-l4oEsxSCa7r5gVYYJhyxJMnEF5KHnIS4pgVL7QaSVJhUboiJoF6C5p2Eac-j7WBCBd3K0MGjYbZCX-QJ8ssCniXp2FQ9U_3OZaQhyXkXnseC74pwZN3-OJC1eu5i8b99oSVYyCxq5zTdAsswgZ0VmK8P4Wh7q-A3DUAtva5DjY4JWtVtG-_ttDu26bF5XXHUW3eAjkEdSdM51-DuT9a9DlOd5w5ugJNgS5Y0uXIJmbRCaylJDQjEMjmUqoSiAKWceLHKwNRNTY-neAgDbQkeE8FjS_A4KMDBcMxLCiUytncxp3KciZVePCJxAQ5zPhk9_n22zfGz7cLs5W29FteuGtUtmONkuKXRSUWY6nffcBtm1KDf7nV3LMM78PDX_PMFoJc3sg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS8MwFD7oFNEH7-K89kGfNNglbbM-iIg6lOkUUfCtNtmJDGTObSr-NX-dJ2m7oaBvPgiFQpqEtN_JuTTnArAVp6GQAiOGsfRZEIScpb6SrEmcD6uyKgy67PrnstGo3t3FVyPwUcTCWLfKgic6Rt180vYf-R4nRZ4ukpd7JneLuDquHXSema0gZU9ai3IaGYnU8f2NzLfe_tkxYb3Nee3k5uiU5RUGmCbS6zMRYhxypYlJKyG4oVsYGY0y5YgVReq-UFxyYuiGFq-MHykSZ0r7ElNBvQTNOwpjJIVDu8fqkg2MPRrmqvXFgSAbLeJ5wI4L27OV8HxG0pIMeREELPoqFIea7rfDWSfzajP_-WvNwnSuaXuH2daYgxFsz8PUxSBNbW8BwmubuJZe3aNGzzqzmpbzA_dabdf0cH155OmX7it6NhtJFua5CLd_su4lKLWf2rgMXopNVTFk4qWk6gpjlCLxIBCrZGjqCooyVAogE50nWbe1Ph6TQXpoB35C4CcO_CQqw85gTCdLMfJr77UC8SRnN71kCHcZdguaGT7-ebaV32fbhAkim-T8rFFfhUlO-lzmtLQGpX73BddhXL_2W73uhqN9D-7_mnw-ATElQFg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+the+overfitting+in+the+gROC+curve+estimation&rft.jtitle=Computational+statistics&rft.au=Mart%C3%ADnez-Camblor%2C+Pablo&rft.au=D%C3%ADaz-Coto%2C+Susana&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=39&rft.issue=2&rft.spage=1005&rft.epage=1022&rft_id=info:doi/10.1007%2Fs00180-023-01344-6&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon |