Reducing the overfitting in the gROC curve estimation

The generalized receiver-operating characteristic, gROC, curve considers the classification ability of diagnostic tests when both larger and lower values of the marker are associated with higher probabilities of being positive. Its empirical estimation implies to select the best classification subse...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics Vol. 39; no. 2; pp. 1005 - 1022
Main Authors: Martínez-Camblor, Pablo, Díaz-Coto, Susana
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2024
Springer Nature B.V
Subjects:
ISSN:0943-4062, 1613-9658
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The generalized receiver-operating characteristic, gROC, curve considers the classification ability of diagnostic tests when both larger and lower values of the marker are associated with higher probabilities of being positive. Its empirical estimation implies to select the best classification subsets among those satisfying particular condition. Both strong and weak consistency have already been proved. However, using the same data for both to select the classification subsets and to calculate its gROC curve leads to an over-optimistic estimate of the real performance of the diagnostic criteria on future samples. In this work, the bias of the empirical gROC curve estimator is explored through Monte Carlo simulations. Besides, two cross-validation based algorithms are proposed for reducing the overfitting. The practical application of the proposed algorithms is illustrated through the analysis of a real-world dataset. Simulation results suggest that the empirical gROC curve estimator returns optimistic approximations, especially, in situations in which the diagnostic capacity of the marker is poor and the sample size is small. The new proposed algorithms improve the estimation of the actual diagnostic test accuracy, and get almost unbiased gAUCs in most of the considered scenarios. However, the cross-validation based algorithms reported larger L 1 -errors than the standard empirical estimators, and increment the computational cost of the procedures. As online supplementary material, this manuscript includes an R function which wraps up the implemented routines.
AbstractList The generalized receiver-operating characteristic, gROC, curve considers the classification ability of diagnostic tests when both larger and lower values of the marker are associated with higher probabilities of being positive. Its empirical estimation implies to select the best classification subsets among those satisfying particular condition. Both strong and weak consistency have already been proved. However, using the same data for both to select the classification subsets and to calculate its gROC curve leads to an over-optimistic estimate of the real performance of the diagnostic criteria on future samples. In this work, the bias of the empirical gROC curve estimator is explored through Monte Carlo simulations. Besides, two cross-validation based algorithms are proposed for reducing the overfitting. The practical application of the proposed algorithms is illustrated through the analysis of a real-world dataset. Simulation results suggest that the empirical gROC curve estimator returns optimistic approximations, especially, in situations in which the diagnostic capacity of the marker is poor and the sample size is small. The new proposed algorithms improve the estimation of the actual diagnostic test accuracy, and get almost unbiased gAUCs in most of the considered scenarios. However, the cross-validation based algorithms reported larger L 1 -errors than the standard empirical estimators, and increment the computational cost of the procedures. As online supplementary material, this manuscript includes an R function which wraps up the implemented routines.
The generalized receiver-operating characteristic, gROC, curve considers the classification ability of diagnostic tests when both larger and lower values of the marker are associated with higher probabilities of being positive. Its empirical estimation implies to select the best classification subsets among those satisfying particular condition. Both strong and weak consistency have already been proved. However, using the same data for both to select the classification subsets and to calculate its gROC curve leads to an over-optimistic estimate of the real performance of the diagnostic criteria on future samples. In this work, the bias of the empirical gROC curve estimator is explored through Monte Carlo simulations. Besides, two cross-validation based algorithms are proposed for reducing the overfitting. The practical application of the proposed algorithms is illustrated through the analysis of a real-world dataset. Simulation results suggest that the empirical gROC curve estimator returns optimistic approximations, especially, in situations in which the diagnostic capacity of the marker is poor and the sample size is small. The new proposed algorithms improve the estimation of the actual diagnostic test accuracy, and get almost unbiased gAUCs in most of the considered scenarios. However, the cross-validation based algorithms reported larger L1-errors than the standard empirical estimators, and increment the computational cost of the procedures. As online supplementary material, this manuscript includes an R function which wraps up the implemented routines.
Author Díaz-Coto, Susana
Martínez-Camblor, Pablo
Author_xml – sequence: 1
  givenname: Pablo
  orcidid: 0000-0001-7845-3905
  surname: Martínez-Camblor
  fullname: Martínez-Camblor, Pablo
  email: Pablo.Martinez-Camblor@hitchcock.org
  organization: Department of Anesthesiology, Geisel School of Medicine at Dartmouth, Faculty of Health Sciences, Universidad Autonoma de Chile
– sequence: 2
  givenname: Susana
  surname: Díaz-Coto
  fullname: Díaz-Coto, Susana
  organization: Department of Epidemiology, Geisel School of Medicine at Dartmouth
BookMark eNp9kEFLAzEQhYNUsK3-AU8LnqOTZDebPUpRKxQKRc9hN53UlLpbk2zBf2_aFQQPhcCQ4X0zb96EjNquRUJuGdwzgPIhADAFFLigwESeU3lBxkwyQStZqBEZQ5ULmoPkV2QSwhaA85KzMSlWuO6NazdZ_MCsO6C3Lsbj37Wn1ma1nGWm9wfMMET3WUfXtdfk0ta7gDe_dUren5_eZnO6WL68zh4X1AhWRSoKrAreGMZVIwS3qRTSGixrjsgaUFI0yYYslV1XVWNBNpLljYESa5FUYkruhrl73331ab_edr1v00rNq0KmV6g8qdSgMr4LwaPVxsWTz-hrt9MM9DEkPYSkU0j6FJKWCeX_0L1PN_rv85AYoJDE7Qb9n6sz1A8xW3pT
CitedBy_id crossref_primary_10_1080_09593330_2024_2415722
Cites_doi 10.1201/9781439800225
10.1001/jama.1989.03430190084036
10.1177/0962280214541095
10.1146/annurev-statistics-040720-022432
10.1016/j.csda.2017.07.008
10.1007/s10182-020-00385-2
10.1093/biomet/89.2.315
10.1177/0962280217747009
10.1016/j.cgh.2022.03.022
10.1148/radiology.143.1.7063747
10.1002/sim.942
10.1177/0962280218795190
10.1016/j.csda.2010.11.018
10.1002/9780470317082
10.1002/sim.8869
10.1080/02664763.2018.1554628
10.1111/j.0006-341X.2002.00657.x
10.1126/science.171.3977.1217
10.1515/ijb-2020-0091
10.1093/oso/9780198509844.001.0001
10.1007/978-0-387-30164-8_469
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8C1
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s00180-023-01344-6
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Public Health Database (NC LIVE)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1613-9658
EndPage 1022
ExternalDocumentID 10_1007_s00180_023_01344_6
GrantInformation_xml – fundername: Gobierno del Principado de Asturias
  grantid: GRUPIN AYUD/2021/50897
  funderid: http://dx.doi.org/10.13039/100011941
– fundername: Ministerio de Ciencia e Innovación
  grantid: PID2020-118101GB-I00
  funderid: http://dx.doi.org/10.13039/501100004837
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7WY
88I
8C1
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Y
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-35e952bc128b332f28b56fce7a2ee1b0863b272678fd99bf06b614bc07ea3e7a3
IEDL.DBID K7-
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000946482400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0943-4062
IngestDate Wed Nov 26 14:52:10 EST 2025
Tue Nov 18 22:00:53 EST 2025
Sat Nov 29 06:39:13 EST 2025
Fri Feb 21 02:40:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Diagnostic problem
gROC curve
Binary classification problem
Cross-validation
Overfitting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-35e952bc128b332f28b56fce7a2ee1b0863b272678fd99bf06b614bc07ea3e7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7845-3905
PQID 2956956584
PQPubID 54096
PageCount 18
ParticipantIDs proquest_journals_2956956584
crossref_citationtrail_10_1007_s00180_023_01344_6
crossref_primary_10_1007_s00180_023_01344_6
springer_journals_10_1007_s00180_023_01344_6
PublicationCentury 2000
PublicationDate 20240400
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 4
  year: 2024
  text: 20240400
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Computational statistics
PublicationTitleAbbrev Comput Stat
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Hanley, McNeil (CR5) 1982; 143
Martínez-Camblor, Pérez-Fernández, Díaz-Coto (CR13) 2021; 18
McIntosh, Pepe (CR14) 2002; 58
Parodi, Pistoia, Muselli (CR16) 2008; 9
CR4
Bantis, Tsimikas, Chambers, Capello, Hanash, Feng (CR2) 2021; 40
Copas, Corbett (CR3) 2002; 89
CR7
Pepe (CR17) 2003
Pérez-Fernández, Martínez-Camblor, Filzmoser, Corral (CR18) 2021; 105
Zhou, Obuchowski, Clish (CR24) 2002
Montoya-Pérez, Airola, Jambor, Pahikkala (CR15) 2019; 28
Lusted (CR8) 1971; 171
Martínez-Camblor, Pardo-Fernández (CR11) 2019; 28
Airola, Pahikkala, Waegeman, De Baets, Salakoski (CR1) 2011; 55
Martínez-Camblor, Corral, Rey, Pascual, Cernuda-Morollón (CR10) 2017; 26
Shah, Pelletier, Greeley, Sieglinger, Sanchez, Northam, Perrone, Curley, Navas, Ostler, Burnett Greeley, Martínez-Camblor, Baker, Harris, Siegel, Chey (CR21) 2022
Rutter, Gatsonis (CR19) 2001; 20
CR20
Vanda, Rodríguez-Álvarez, Gayoso-Diz (CR23) 2021; 8
Krzanowski, Hand (CR6) 2009
Ma, Bandos, Gur (CR9) 2018; 117
Martínez-Camblor, Pérez-Fernández, Díaz-Coto (CR12) 2019; 46
Spanos, Harrell, Durack (CR22) 1989; 262
J Hanley (1344_CR5) 1982; 143
P Martínez-Camblor (1344_CR11) 2019; 28
1344_CR20
JB Copas (1344_CR3) 2002; 89
E Shah (1344_CR21) 2022
M Pepe (1344_CR17) 2003
P Martínez-Camblor (1344_CR13) 2021; 18
I Vanda (1344_CR23) 2021; 8
L Bantis (1344_CR2) 2021; 40
MW McIntosh (1344_CR14) 2002; 58
X Zhou (1344_CR24) 2002
H Ma (1344_CR9) 2018; 117
C Rutter (1344_CR19) 2001; 20
1344_CR4
S Pérez-Fernández (1344_CR18) 2021; 105
1344_CR7
P Martínez-Camblor (1344_CR12) 2019; 46
S Parodi (1344_CR16) 2008; 9
A Spanos (1344_CR22) 1989; 262
A Airola (1344_CR1) 2011; 55
IA Montoya-Pérez (1344_CR15) 2019; 28
W Krzanowski (1344_CR6) 2009
L Lusted (1344_CR8) 1971; 171
P Martínez-Camblor (1344_CR10) 2017; 26
References_xml – year: 2009
  ident: CR6
  publication-title: ROC curves for continuous data
  doi: 10.1201/9781439800225
– volume: 262
  start-page: 2700
  issue: 19
  year: 1989
  end-page: 2707
  ident: CR22
  article-title: Differential diagnosis of acute meningitis: an analysis of the predictive value of initial observations
  publication-title: J Am Med Assoc
  doi: 10.1001/jama.1989.03430190084036
– volume: 26
  start-page: 113
  issue: 1
  year: 2017
  end-page: 123
  ident: CR10
  article-title: Receiver operating characteristic curve generalization for non-monotone relationships
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280214541095
– volume: 8
  start-page: 41
  issue: 1
  year: 2021
  end-page: 67
  ident: CR23
  article-title: Statistical evaluation of medical tests
  publication-title: Ann Rev Stat Appl
  doi: 10.1146/annurev-statistics-040720-022432
– volume: 117
  start-page: 76
  year: 2018
  end-page: 89
  ident: CR9
  article-title: Informativeness of diagnostic marker values and the impact of data grouping
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2017.07.008
– volume: 105
  start-page: 135
  year: 2021
  ident: CR18
  article-title: Visualizing the decision rules behind the ROC curves: understanding the classification process
  publication-title: AStA Adv Stat Anal
  doi: 10.1007/s10182-020-00385-2
– volume: 89
  start-page: 315
  issue: 2
  year: 2002
  end-page: 331
  ident: CR3
  article-title: Overestimation of the receiver operating characteristic curve for logistic regression
  publication-title: Biometrika
  doi: 10.1093/biomet/89.2.315
– ident: CR4
– volume: 9
  start-page: 1
  issue: 410
  year: 2008
  end-page: 30
  ident: CR16
  article-title: Not proper ROC curves as new tool for the analysis of differentially expressed genes in microarray experiments
  publication-title: J Math Psychol
– volume: 28
  start-page: 2032
  issue: 7
  year: 2019
  end-page: 2048
  ident: CR11
  article-title: Parametric estimates for the receiver operating characteristic curve generalization for non-monotone relationships
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280217747009
– year: 2022
  ident: CR21
  article-title: An office-based, point-of-care test predicts treatment outcomes with community-based pelvic floor physical therapy in patients with chronic constipation
  publication-title: Clin Gastroenterol Hepatol
  doi: 10.1016/j.cgh.2022.03.022
– volume: 143
  start-page: 29
  year: 1982
  end-page: 36
  ident: CR5
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 20
  start-page: 2865
  issue: 19
  year: 2001
  end-page: 2884
  ident: CR19
  article-title: A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations
  publication-title: Stat Med
  doi: 10.1002/sim.942
– volume: 28
  start-page: 2975
  issue: 10–11
  year: 2019
  end-page: 2991
  ident: CR15
  article-title: Tournament leave-pair-out cross-validation for receiver operating characteristic analysis
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280218795190
– volume: 55
  start-page: 1828
  issue: 4
  year: 2011
  end-page: 1844
  ident: CR1
  article-title: An experimental comparison of cross-validation techniques for estimating the area under the ROC curve
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2010.11.018
– year: 2002
  ident: CR24
  publication-title: Statistical methods in diagnostic medicine
  doi: 10.1002/9780470317082
– volume: 40
  start-page: 1767
  issue: 7
  year: 2021
  end-page: 1789
  ident: CR2
  article-title: The length of the receiver operating characteristic curve and the two cutoff Youden index within a robust framework for discovery, evaluation, and cutoff estimation in biomarker studies involving improper receiver operating characteristic curves
  publication-title: Stat Med
  doi: 10.1002/sim.8869
– volume: 46
  start-page: 1550
  issue: 9
  year: 2019
  end-page: 1566
  ident: CR12
  article-title: Improving the biomarker diagnostic capacity via functional transformations
  publication-title: J Appl Stat
  doi: 10.1080/02664763.2018.1554628
– ident: CR7
– volume: 58
  start-page: 657
  issue: 3
  year: 2002
  end-page: 664
  ident: CR14
  article-title: Combining several screening tests: optimality of the risk score
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2002.00657.x
– volume: 171
  start-page: 1217
  issue: 3977
  year: 1971
  end-page: 1219
  ident: CR8
  article-title: Signal detectability and medical decision-making
  publication-title: Science
  doi: 10.1126/science.171.3977.1217
– volume: 18
  start-page: 293
  year: 2021
  ident: CR13
  article-title: The area under the generalized receiver-operating characteristic curve
  publication-title: Int J Biostat
  doi: 10.1515/ijb-2020-0091
– ident: CR20
– year: 2003
  ident: CR17
  publication-title: The statistical evaluation of medical tests for classification and prediction
  doi: 10.1093/oso/9780198509844.001.0001
– volume-title: The statistical evaluation of medical tests for classification and prediction
  year: 2003
  ident: 1344_CR17
  doi: 10.1093/oso/9780198509844.001.0001
– volume: 40
  start-page: 1767
  issue: 7
  year: 2021
  ident: 1344_CR2
  publication-title: Stat Med
  doi: 10.1002/sim.8869
– volume: 9
  start-page: 1
  issue: 410
  year: 2008
  ident: 1344_CR16
  publication-title: J Math Psychol
– volume: 8
  start-page: 41
  issue: 1
  year: 2021
  ident: 1344_CR23
  publication-title: Ann Rev Stat Appl
  doi: 10.1146/annurev-statistics-040720-022432
– volume: 105
  start-page: 135
  year: 2021
  ident: 1344_CR18
  publication-title: AStA Adv Stat Anal
  doi: 10.1007/s10182-020-00385-2
– year: 2022
  ident: 1344_CR21
  publication-title: Clin Gastroenterol Hepatol
  doi: 10.1016/j.cgh.2022.03.022
– volume: 26
  start-page: 113
  issue: 1
  year: 2017
  ident: 1344_CR10
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280214541095
– volume: 262
  start-page: 2700
  issue: 19
  year: 1989
  ident: 1344_CR22
  publication-title: J Am Med Assoc
  doi: 10.1001/jama.1989.03430190084036
– volume-title: Statistical methods in diagnostic medicine
  year: 2002
  ident: 1344_CR24
  doi: 10.1002/9780470317082
– volume: 89
  start-page: 315
  issue: 2
  year: 2002
  ident: 1344_CR3
  publication-title: Biometrika
  doi: 10.1093/biomet/89.2.315
– ident: 1344_CR4
– volume: 28
  start-page: 2975
  issue: 10–11
  year: 2019
  ident: 1344_CR15
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280218795190
– ident: 1344_CR7
– volume: 28
  start-page: 2032
  issue: 7
  year: 2019
  ident: 1344_CR11
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280217747009
– volume: 20
  start-page: 2865
  issue: 19
  year: 2001
  ident: 1344_CR19
  publication-title: Stat Med
  doi: 10.1002/sim.942
– volume: 55
  start-page: 1828
  issue: 4
  year: 2011
  ident: 1344_CR1
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2010.11.018
– volume: 18
  start-page: 293
  year: 2021
  ident: 1344_CR13
  publication-title: Int J Biostat
  doi: 10.1515/ijb-2020-0091
– volume-title: ROC curves for continuous data
  year: 2009
  ident: 1344_CR6
  doi: 10.1201/9781439800225
– ident: 1344_CR20
  doi: 10.1007/978-0-387-30164-8_469
– volume: 117
  start-page: 76
  year: 2018
  ident: 1344_CR9
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2017.07.008
– volume: 58
  start-page: 657
  issue: 3
  year: 2002
  ident: 1344_CR14
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2002.00657.x
– volume: 143
  start-page: 29
  year: 1982
  ident: 1344_CR5
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 171
  start-page: 1217
  issue: 3977
  year: 1971
  ident: 1344_CR8
  publication-title: Science
  doi: 10.1126/science.171.3977.1217
– volume: 46
  start-page: 1550
  issue: 9
  year: 2019
  ident: 1344_CR12
  publication-title: J Appl Stat
  doi: 10.1080/02664763.2018.1554628
SSID ssj0022721
Score 2.3300061
Snippet The generalized receiver-operating characteristic, gROC, curve considers the classification ability of diagnostic tests when both larger and lower values of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1005
SubjectTerms Algorithms
Classification
Computer simulation
Economic Theory/Quantitative Economics/Mathematical Methods
Empirical analysis
Mathematics and Statistics
Monte Carlo simulation
Original Paper
Probability and Statistics in Computer Science
Probability Theory and Stochastic Processes
Statistics
SummonAdditionalLinks – databaseName: SpringerLink Contemporary
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509bAefKyK64sevGmgm7RNe5TFxYOusj7YW2myE1mQKvv6_U7Sx6KooFAotNNQZpLMfGTmG4CzJAuFFBgxTKTPgiDkLPOVZCPa-TCWsTDo2PVvZL8fD4fJfVkUNq2y3asjSbdT18Vutn-cz8jHEPwVQcCiVVgjdxfb5Th4eK5hFpeu2sqmzBE6inhZKvP9GJ_d0TLG_HIs6rxNb-t__7kNm2V06V0W02EHVjBvwcZtTc06bUHThpcFO_MuhAPL3EqjeyTh2WxOM3aJ0N44d49eBnddT88nC_QsHUdR57gHT72rx-41KxspME0rbMZEiEnIlSZfpITghm5hZDTKjCN2FKEaoUhr5LcM2UgZP1LktZX2JWaCpMQ-NPK3HA_Ay3CkOoYwTkaxnjBGKdofBWJMSEt3ULShU-kz1SXLuG128ZrW_MhOPynpJ3X6SaM2nNffvBccG79KH1dmSsv1Nk05wTy6KJpqw0VlluXrn0c7_Jv4ETQ5RTVF6s4xNGaTOZ7Aul6Q4Sanbh5-AObD1Is
  priority: 102
  providerName: Springer Nature
Title Reducing the overfitting in the gROC curve estimation
URI https://link.springer.com/article/10.1007/s00180-023-01344-6
https://www.proquest.com/docview/2956956584
Volume 39
WOSCitedRecordID wos000946482400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1613-9658
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: RSV
  dateStart: 20030901
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LSgMxcFDrQQ--xfooe_Cmwd2ku9meRIsiaB-0PqqXZZNOpCBt7cPvd5JuWxTsRVhmIZvNLjPJPJJ5AJyW0lBIgRHDkvRZsRhylvpKsjZxPoxlLAy67PoPslqNW61SPdtwG2ZulVOe6Bh1u6ftHvkFJ0WeLpKXl_1PZqtG2dPVrITGMuQCzgM7z-8lmxlcXLq4K-s8R3ZSxLOgGRc6Z6vR-YwkFhnTolhk0U_BNNc2fx2QOrlzu_nfP96CjUzj9K4mU2QblrC7A-uVWbrW4S6EDZvAlT7vUaNnnTpNx_lDe52ua3pv1MqeHg--0LNZOSbhjnvwdHvzWL5jWT0FpmmhjZgIsRRypUkkKSG4oVsYGY0y5YiBIuNGKEIZiS9DpFLGjxQJb6V9iamgXmIfVrq9Lh6Al2JbBYZMnZRUPmGMUsQmBWJMBpcOUOQhmCIz0VmycVvz4iOZpUl2BEiIAIkjQBLl4Wz2Tn-SamNh7-Mp1pNs2Q2TOcrzcD6l2_zx36MdLh7tCNY4KTMTj51jWBkNxngCq_pr1BkOCrAsX14JxuWgALnrm2q9UXATkWDFL1vIaw7WLZRNgvXwjWCj-fwN0ZnjlQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LSwMxEB58gXrwLVar7kFPGtwm--geRKQqSh9KUfC2btKJFKRqWyv-KX-jk-xui4K9eRAWFrJJyO5M5rGZ-QZgL0p8EQoMGEahyzzP5yxxZchaJPmwHJaFRouuXwsbjfL9fXQzAZ95LowJq8xlohXUrWdl_pEfcTLk6SJ9efLyykzVKHO6mpfQSNmiih_v5LL1jq_OiL77nF-c31YuWVZVgClitz4TPkY-l4oEsxSCa7r5gVYYJhyxJMnEF5KHnIS4pgVL7QaSVJhUboiJoF6C5p2Eac-j7WBCBd3K0MGjYbZCX-QJ8ssCniXp2FQ9U_3OZaQhyXkXnseC74pwZN3-OJC1eu5i8b99oSVYyCxq5zTdAsswgZ0VmK8P4Wh7q-A3DUAtva5DjY4JWtVtG-_ttDu26bF5XXHUW3eAjkEdSdM51-DuT9a9DlOd5w5ugJNgS5Y0uXIJmbRCaylJDQjEMjmUqoSiAKWceLHKwNRNTY-neAgDbQkeE8FjS_A4KMDBcMxLCiUytncxp3KciZVePCJxAQ5zPhk9_n22zfGz7cLs5W29FteuGtUtmONkuKXRSUWY6nffcBtm1KDf7nV3LMM78PDX_PMFoJc3sg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bS8MwFD7oFNEH7-K89kGfNNglbbM-iIg6lOkUUfCtNtmJDGTObSr-NX-dJ2m7oaBvPgiFQpqEtN_JuTTnArAVp6GQAiOGsfRZEIScpb6SrEmcD6uyKgy67PrnstGo3t3FVyPwUcTCWLfKgic6Rt180vYf-R4nRZ4ukpd7JneLuDquHXSema0gZU9ai3IaGYnU8f2NzLfe_tkxYb3Nee3k5uiU5RUGmCbS6zMRYhxypYlJKyG4oVsYGY0y5YgVReq-UFxyYuiGFq-MHykSZ0r7ElNBvQTNOwpjJIVDu8fqkg2MPRrmqvXFgSAbLeJ5wI4L27OV8HxG0pIMeREELPoqFIea7rfDWSfzajP_-WvNwnSuaXuH2daYgxFsz8PUxSBNbW8BwmubuJZe3aNGzzqzmpbzA_dabdf0cH155OmX7it6NhtJFua5CLd_su4lKLWf2rgMXopNVTFk4qWk6gpjlCLxIBCrZGjqCooyVAogE50nWbe1Ph6TQXpoB35C4CcO_CQqw85gTCdLMfJr77UC8SRnN71kCHcZdguaGT7-ebaV32fbhAkim-T8rFFfhUlO-lzmtLQGpX73BddhXL_2W73uhqN9D-7_mnw-ATElQFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+the+overfitting+in+the+gROC+curve+estimation&rft.jtitle=Computational+statistics&rft.au=Mart%C3%ADnez-Camblor%2C+Pablo&rft.au=D%C3%ADaz-Coto%2C+Susana&rft.date=2024-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=39&rft.issue=2&rft.spage=1005&rft.epage=1022&rft_id=info:doi/10.1007%2Fs00180-023-01344-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon