Convergence Results of a New Monotone Inertial Forward–Backward Splitting Algorithm Under the Local Hölder Error Bound Condition

In this paper, we introduce a new monotone inertial Forward–Backward splitting algorithm (newMIFBS) for the convex minimization of the sum of a non-smooth function and a smooth differentiable function. The newMIFBS can overcome two negative effects caused by IFBS, i.e., the undesirable oscillations...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics & optimization Ročník 85; číslo 2
Hlavní autoři: Wang, Ting, Liu, Hongwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2022
Springer Nature B.V
Témata:
ISSN:0095-4616, 1432-0606
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we introduce a new monotone inertial Forward–Backward splitting algorithm (newMIFBS) for the convex minimization of the sum of a non-smooth function and a smooth differentiable function. The newMIFBS can overcome two negative effects caused by IFBS, i.e., the undesirable oscillations ultimately and extremely nonmonotone, which might lead to the algorithm diverges, for some special problems. We study the improved convergence rates for the objective function and the convergence of iterates under a local Hölder error bound (Local HEB) condition. Also, our study extends the previous results for IFBS under the Local HEB. Finally, we present some numerical experiments for the simplest newMIFBS (hybrid_MIFBS) to illustrate our results.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0095-4616
1432-0606
DOI:10.1007/s00245-022-09859-y