Fractional-Based Stochastic Gradient Algorithms for Time-Delayed ARX Models

In this study, two fractional-based stochastic gradient (FSG) algorithms for time-delayed auto-regressive exogenous (ARX) models are proposed. By combining momentum and adaptive methods, a momentum-based FSG and an adaptive-based FSG algorithms are developed. These two FSG algorithms have faster con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing Jg. 41; H. 4; S. 1895 - 1912
Hauptverfasser: Xu, Tianyang, Chen, Jing, Pu, Yan, Guo, Liuxiao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.04.2022
Springer Nature B.V
Schlagworte:
ISSN:0278-081X, 1531-5878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, two fractional-based stochastic gradient (FSG) algorithms for time-delayed auto-regressive exogenous (ARX) models are proposed. By combining momentum and adaptive methods, a momentum-based FSG and an adaptive-based FSG algorithms are developed. These two FSG algorithms have faster convergence rates when compared with the stochastic gradient algorithm. The mechanism of the convergence is proved in theory. Furthermore, two simulated examples are presented to illustrate the efficiency of the new proposed algorithms.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-021-01874-8