Fractional-Based Stochastic Gradient Algorithms for Time-Delayed ARX Models
In this study, two fractional-based stochastic gradient (FSG) algorithms for time-delayed auto-regressive exogenous (ARX) models are proposed. By combining momentum and adaptive methods, a momentum-based FSG and an adaptive-based FSG algorithms are developed. These two FSG algorithms have faster con...
Gespeichert in:
| Veröffentlicht in: | Circuits, systems, and signal processing Jg. 41; H. 4; S. 1895 - 1912 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.04.2022
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0278-081X, 1531-5878 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this study, two fractional-based stochastic gradient (FSG) algorithms for time-delayed auto-regressive exogenous (ARX) models are proposed. By combining momentum and adaptive methods, a momentum-based FSG and an adaptive-based FSG algorithms are developed. These two FSG algorithms have faster convergence rates when compared with the stochastic gradient algorithm. The mechanism of the convergence is proved in theory. Furthermore, two simulated examples are presented to illustrate the efficiency of the new proposed algorithms. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0278-081X 1531-5878 |
| DOI: | 10.1007/s00034-021-01874-8 |